
CSc 453

Compilers and Systems Software

15 : Intermediate Code III

Department of Computer Science

University of Arizona

collberg@gmail.com

Copyright c© 2009 Christian Collberg

Basic Blocks and Flow Graphs

Control Flow Graphs

We divide the intermediate code of each procedure into basic
blocks. A basic block is a piece of straight line code, i.e. there
are no jumps in or out of the middle of a block.

The basic blocks within one procedure are organized as a
(control) flow graph, or CFG. A flow-graph has

basic blocks B1 · · ·Bn as nodes,
a directed edge B1 → B2 if control can flow from B1 to B2.
Special nodes ENTER and EXIT that are the source and sink
of the graph.

Inside each basic block can be any of the IRs we’ve seen:
tuples, trees, DAGs, etc.

ENTER

Source node

EXIT

Sink node

B2

if ... goto B2

B3

if ... goto B3

B4

if ... goto B6

B6

B5

goto B2

x := a * 5

B1

y := Z[x]

a := a + 1

Straight 

line code

Block

If-

Statement
Loop

Basic



Control Flow Graphs. . .

Source Code:

X := 20; WHILE X < 10 DO

X := X-1; A[X] := 10;

IF X = 4 THEN X := X - 2; ENDIF;

ENDDO; Y := X + 5;

Intermediate Code:
(1) X := 20

(2) if X>=10 goto (8)

(3) X := X-1

(4) A[X] := 10

(5) if X<>4 goto (7)

(6) X := X-2

(7) goto (2)

(8) Y := X+5

Control Flow Graphs. . .

Flow Graph:
ENTER

EXIT
goto B2

B6

X := X − 2;
B5

Y := X + 5;
B4

X := X−1;

A[X] := 10;

if X <> 4 goto B6

if x >= 10 goto B4
B2

B3

X := 20;
B1

:=

>=

10 B4X

X 4 B6

<>

EXIT

X

−X

2

goto

B2

:=

X

Y +

5

X

:=

20

ENTER

:=

X

−

1

X

[]

A X

:=

10

B2

B6

B4

B5

B3

B1

Constructing Basic Blocks



Constructing Basic Blocks

Assume that the input is a list of tuples. How do we find the
beginning and end of each basic block?

1 First determine a set of leaders, the first tuple of basic
blocks:

1 The first tuple is a leader.
2 Tuple L is a leader if there is a tuple if ...goto L or

goto L .

3 Tuple L is a leader if it immediately follows a tuple
if ...goto B or goto B .

2 A basic block consists of a leader and all the following tuples
until the next leader.

Basic Blocks. . .

P := 0; I := 1;

REPEAT

P := P + I;

IF P > 60 THEN

P := 0;

I := 5

ENDIF;

I := I * 2 + 1;

UNTIL I > 20;

K := P * 3

(1) P := 0 ⇐ (Rule 1.a)

(2) I := 1

(3) P := P + I ⇐ (Rule 1.b)

(4) IF P <= 60 GOTO (7)

(5) P := 0 ⇐ (Rule 1.c)

(6) I := 5

(7) T1 := I * 2 ⇐ (Rule 1.b)

(8) I := T1 + 1

(9) IF I <= 20 GOTO (3)

(10) K := P * 3 ⇐ (Rule 1.c)

Basic Blocks. . .

B1: [(1) P:=0; (2) I:=1]

B2: [(3) P:=P+I;

(4) IF P<=60 GOTO B4 ]

B3: [(5) P:=0; (6) I:=5]

B4: [(7) T1:=I*2; (8) I:=T1+1;

(9) IF I<=20 GOTO B2 ]

B5: [(10) K:=P*3]

B4

P := 0

I := 1

B1

K := P * 3 B5

I := T1 + 1

IF I <= 20 GOTO B2

T1 := I * 2

B3

I := 5

P := 0

P := P + I

IF P <= 60 GOTO B4

B2

Summary



Readings and References

Read Louden:

Flow Graphs 475–477

Or, read the Dragon book:

Basic Blocks 528–530
Flow Graphs 532–534

Summary

A Control Flow Graph (CFG) is a graph whose nodes are basic
blocks. There is an edge from basic block B1 to B2 if control
can flow from B1 to B2.

Control flows in and out of a CFG through two special nodes
ENTER and EXIT.

We construct a CFG for each procedure. This representation
is used during code generation and optimization.

Java bytecode is a stack-based IR. It was never intended as an
UNCOL, but people have still built compilers for Ada, Scheme
and other languages that generate Java bytecode. It is painful.

Microsoft’s MSIL is the latest UNCOL attempt.

Homework

Homework I

Translate the program below into quadruples. Identify beginnings
and ends of basic blocks. Build the control flow graph.

PROGRAM P;

VAR X : INTEGER; Y : REAL;

BEGIN

X := 1; Y := 5.5;

WHILE X < 10 DO

Y := Y + FLOAT(X);

X := X + 1;

IF Y > 10 THEN Y := Y * 2.2; ENDIF;

ENDDO;

END.



Exam Question

Draw the control flow graph for the tuples.

int A[5],x,i,n;

for (i=1; i<=n; i++) {
if (i<n) {
x = A[i];

} else {
while (x>4) {
x = x*2+A[i];

};
};
x = x+5;

}

(1) i := 1

(2) IF i>n GOTO (14)

(3) IF i>=n GOTO (6)

(4) x := A[i]

(5) GOTO (11)

(6) IF x<=4 GOTO (11)

(7) T1 := x*2

(8) T2 := A[i]

(9) x := T1+T2

(10) GOTO (6)

(11) x := x+5

(12) i := i+1

(13) GOTO (2)


