Block Ciphers

- **Block ciphers** work on one block of data at a time. Different ciphers use different block size and key length:

 - **DES**:
 - Input (64 bits)
 - Key (56 bits)
 - Output (64 bits)

 - **AES**:
 - Input (128 bits)
 - Key (128/192/256 bits)
 - Output (128 bits)

Misuses of Cryptosystem

- Cryptographic systems are sensitive to the environment.
- The strength of a cryptosystem depends on how it is used.
- Just because a cryptosystem is mathematically strong doesn’t mean it’s secure – it can be vulnerable to various attacks when used incorrectly.
- Attacks can be carried out in many ways besides guessing the key.
Precomputing the Possible Message: If the plaintexts is drawn from a small set, attacker can just encipher all the plaintexts using the public key and search the intercepted ciphertext in database to find the corresponding plaintext (dictionary attack).

Misordered Blocks: If different parts of ciphertext are not bound together, the attacker can delete, replay and reorder the ciphertext without being detected.

Statistical Regularities: If each part of a message is enciphered separately the ciphertext can give away information about the structure of the message, even if the message itself is unintelligible.

Key size – decides the upper bound of security using exhaustive search.

Block size – larger block is harder to crack but more costly to implement.

Complexity of cryptographic mapping – affect the implementation cost and real-time performance

Data expansion – it is desirable not to increase the size of the data.

Outline

1. Introduction
2. Modes of Operations
3. Attacks on Block Ciphers
4. Modular Arithmetic
 - Modular Inverses
 - Modular Exponentiation
5. Number-Theoretic Theorems
 - Euler’s Totient Function
 - Euler’s theorem
6. Number-Theoretic Algorithms
 - Bezout’s identity
 - Modular Multiplicative Inverses
 - Modular Exponentiation
 - Primality Testing
7. Discrete Logarithms
8. Summary

Modes of operation deal with how to encrypt a message of arbitrary length using a block cipher.

To be useful, a mode must be at least as secure and as efficient as the underlying cipher.

The most common modes for block ciphers are:

- Electronic Code Book (ECB)
- Cipher Block Chaining (CBC)
- Cipher Feedback (CFB)
- Output Feedback (OFB)
- Counter (CTR)
ECB Mode

- **Electronic Codebook**
 - In ECB mode, each plaintext block is encrypted independently with the block cipher.
 - Encryption: \(C_i \leftarrow E_K(B_i) \)
 - Decryption: \(B_i \leftarrow D_K(C_i) \)
 - Notation:
 - \(B_i \) is the \(i \):th plaintext block.
 - \(C_i \) is the \(i \):th ciphertext block.

ECB Mode: Analysis

- **Pros:**
 - Simple.
 - Tolerates blocks lost in transit.
 - Easy to parallelize.
- **Cons:**
 - Identical plaintext blocks (e.g., blocks of sky in a jpg) result in identical ciphertext ⇒ data patterns aren’t hidden.
 - Not suitable for encrypting message longer than one block.
- **Example**

 the Phantasy Star Online: Blue Burst online video game uses Blowfish in ECB mode. Before the key exchange system was cracked leading to even easier methods, cheaters repeated encrypted monster killed message packets, each an encrypted Blowfish block, to illegitimately gain experience points quickly. [citation needed]

Message Padding

- What happens if the last plaintext block is not completely full?
- The message must be padded to a multiple of the cipher block size.
- One way to do this is to pad with 0:s and make the last byte be the number of bytes to remove from the last block:

 \[
 \begin{array}{c}
 n \\
 8 \text{ bytes/64 bits}
 \end{array}
 \quad \leftrightarrow
 \begin{array}{c}
 n \quad 0 \quad 0 \quad 0 \quad 0 \quad 5 \\
 3 \text{ bytes/24 bits}
 \end{array}
 \]

 Delete this # of bytes after decrypting
Message Padding...

- With this method you have to pad every message, even if it ends on a block boundary:

\[
\begin{array}{cccccccc}
 n: & & & & & & & 0 \\
 n+1: & & & & & 0 & 0 & 0 & 8
\end{array}
\]

- Another method called ciphertext stealing doesn’t add any extra blocks.

CBC Mode

- **Cipher-Block Chaining**
 - In CBC mode, each plaintext block is XORed with the previous ciphertext block and then encrypted. An initialization vector IV is used as a seed for encrypting the first block.

 Initialization:

 \[C_0 \leftarrow IV \]

 Encryption:

 \[C_i \leftarrow E_K(B_i \oplus C_{i-1}) \]

 Decryption:

 \[B_i \leftarrow D_K(C_i) \oplus C_{i-1} \]

CBC Mode: Analysis

- **Pros:**
 - Identical plaintext blocks will yield different ciphertext blocks.
 - Decryption can be parallelized if all ciphertext blocks are available.
 - If block \(C_i \) is lost, \(C_{i+1} \) can’t be decrypted, but \(C_{i+2} \) can.

- **Cons:**
 - Encryption can’t be parallelized.
 - Most commonly used mode of operation.
 - A one-bit change in a plaintext or IV affects all following ciphertext blocks.
CFB Mode

- **Cipher-FeedBack**
 - In CFB mode, the previous ciphertext block is encrypted and the output produced is combined with the plaintext block using XOR to produce the current ciphertext block.
 - CFB can use feedback that is less than one full data block.
 - An initialization vector IV is used as a seed for the first block.

Initialization:

\[C_0 \leftarrow IV \]

Encryption:

\[C_i \leftarrow E_K(C_{i-1}) \oplus B_i \]

Decryption:

\[B_i \leftarrow E_K(C_{i-1}) \oplus C_i \]

CFB Mode: Analysis

- **Pros:**
 - CFB mode is self-synchronizing similar to CBC.
 - Decryption can be parallelized.
 - Decryptor is never used.

- **Cons:**
 - Encryption cannot be parallelized.
 - When decrypting, a one-bit change in the ciphertext corrupts the following 2 plaintext blocks.
 - When decrypting, a one-bit change in the plaintext block, corrupts 1 following plaintext block.

OFB Mode

- **Output-FeedBack Mode**
 - OFB mode is similar to CFB mode except that the quantity XORed with each plaintext block are vectors generated independently of both the plaintext and ciphertext.

- **Stream cipher**

Initialization:

\[V_0 \leftarrow IV \]

Create vectors:

\[V_i \leftarrow E_K(V_{i-1}) \]

Encryption:

\[C_i \leftarrow V_i \oplus B_i \]

Decryption:

\[B_i \leftarrow V_i \oplus C_i \]
OFB Mode: Analysis

- **Pros:**
 - Encryption and decryption can be done in parallel if the vectors have been precomputed.
 - If i:th ciphertext bit is flipped, the i:th plaintext bit is also flipped. This property helps with many error correcting codes.
 - The keystream is plaintext independent.

CTR Mode

- **Counter Mode**

CTR mode is similar to OFB: encryption is performed by XORing with a pad.
- Vectors are generated by encrypting $seed + 0$, $seed + 1$, $seed + 1$, ... given a random seed.
- Create vectors:
 $$V_i \leftarrow E_K(\text{seed} + i - 1);$$
- Encryption:
 $$C_i \leftarrow V_i \oplus B_i;$$
- Decryption:
 $$B_i \leftarrow V_i \oplus C_i;$$
CTR Mode: Analysis

- **Pros:**
 - Vector generation, encryption, decryption can be all be done in parallel.
 - We can recover from dropped blocks.

- **Cons:**
 - There are attacks (Hardware Fault Attack) that are based on the use of simple counter function.

Attacks on Block Ciphers

Differential cryptanalysis: By careful analysis of the ciphertext of two related plaintexts encrypted under the same key, probabilities can be assigned to each of the possible keys, and eventually the most probable key is identified as the correct one.

Linear cryptanalysis: Use a linear approximation to describe the behavior of the block cipher. Given sufficient pairs of plaintext and corresponding ciphertext, bits of information about the key can be obtained.

Weak keys: Weak keys are secret keys with a certain value for which the block cipher in question will exhibit certain regularities in encryption or, in other cases, a poor level of encryption. For instance, with DES there are four keys for which encryption is exactly the same as decryption.
Block ciphers operate on blocks as large numbers.
We can’t deal with overflow: the output has to fit in the same size block as the input.
We therefore perform arithmetic modulo n.
After each arithmetic operation return the remainder after dividing by n.
We’re performing arithmetic in \mathbb{Z}_n:

$$\mathbb{Z}_n = \{0, 1, 2, \ldots, n-1\}$$

Addition, subtraction, multiplication are done by reducing the result to values in \mathbb{Z}_n:

\[
\begin{align*}
(a + b) \mod n &= ((a \mod n) + (b \mod n)) \mod n \\
(a - b) \mod n &= ((a \mod n) - (b \mod n)) \mod n \\
(a \times b) \mod n &= ((a \mod n) \times (b \mod n)) \mod n
\end{align*}
\]

$$23 \equiv 11 \mod 12$$
$$23 \equiv 2 \mod 7$$
\[(10 + 13) \mod 7 = ((10 \mod 7) + (13 \mod 7)) \mod 7 = (3 + 6) \mod 7 = 2\]

Addition table for \mathbb{Z}_{10}. $(x + y) \mod 10$.

<table>
<thead>
<tr>
<th>+</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>9</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

y is the **modular inverse** of x, modulo n, if

$$xy \mod n = 1$$

Not every number in \mathbb{Z}_n has an inverse.
If n is prime then every number in \mathbb{Z}_n has an inverse.
Examples:

- $4 \times 3 \mod 11 = 12 \mod 11 = 1 \Rightarrow 4$ is the inverse of 3 in \mathbb{Z}_{11}.
- $9 \times 5 \mod 11 = 45 \mod 11 = 1 \Rightarrow 5$ is the inverse of 9 in \mathbb{Z}_{11}.

\[9 \times 5 = 45 = 4 \times 11 + 1 = 4 \mod 11\]
Modular Inverses...

- The inverse of 4 is $\frac{1}{4}$. Modular inverses are harder.
- To find the inverse of 4 modulo 7 we want to compute:

 $4 \times x = 1 \mod 7$

 which is the same as finding integers x and k such that

 $4x = 7k + 1$

- This is also written: $4^{-1} = x \mod n$.
- Sometimes inverses exist, sometimes not:

 $5^{-1} = 3 \mod 14$
 $2^{-1} = ? \mod 14$

In-Class Exercise

- Multiplication table for Z_{11}, $xy \mod 11$.

<table>
<thead>
<tr>
<th>\times</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>1</td>
<td>4</td>
<td>7</td>
<td>10</td>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>4</td>
<td>8</td>
<td>1</td>
<td>5</td>
<td>9</td>
<td>2</td>
<td>6</td>
<td>10</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>5</td>
<td>10</td>
<td>4</td>
<td>9</td>
<td>3</td>
<td>8</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>6</td>
<td>1</td>
<td>7</td>
<td>2</td>
<td>8</td>
<td>3</td>
<td>9</td>
<td>4</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>7</td>
<td>3</td>
<td>10</td>
<td>6</td>
<td>2</td>
<td>9</td>
<td>5</td>
<td>1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>8</td>
<td>5</td>
<td>2</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>1</td>
<td>9</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>9</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>10</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Elements that have a modular inverse have been highlighted.

Modular Inverses

- Multiplication table for Z_{10}, $xy \mod 10$.

<table>
<thead>
<tr>
<th>\times</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>2</td>
<td>5</td>
<td>8</td>
<td>1</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>4</td>
<td>8</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td>4</td>
<td>8</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>6</td>
<td>2</td>
<td>8</td>
<td>4</td>
<td>0</td>
<td>6</td>
<td>2</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>7</td>
<td>4</td>
<td>1</td>
<td>8</td>
<td>5</td>
<td>2</td>
<td>9</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Create the modular multiplication table for Z_5, $xy \mod 5$.

Elements that have a modular inverse have been highlighted.
Modular Exponentiation

- Modular exponentiation is an important operation in cryptography:
 \[x^y \mod n = \underbrace{x \times x \times \cdots \times x} \mod n \]

- For which \(x \) and \(n \) do there exist modular powers equal to 1?
 \[x^y \mod n = 1 \]
 - If \(n \) is prime then every non-zero element of \(Z_n \) has a power \(= 1 \).
 - If \(n \) is not prime, only \(x \) for which \(\gcd(x, n) = 1 \) (\(x \) and \(n \) are relatively prime) have a power \(= 1 \).

- Example: For \(Z_{13}^* \)
 \[
 \begin{align*}
 1^1 \mod 13 &= 1 \\
 2^{12} \mod 13 &= 1 \\
 3^3 \mod 13 &= 1 \\
 4^6 \mod 13 &= 1 \\
 5^4 \mod 13 &= 1 \\
 6^{12} \mod 13 &= 1 \\
 \cdots &= \cdots
 \end{align*}
 \]

- \(Z_n^* \) is the subset of \(Z_n \) of elements relatively prime with \(n \):
 \[Z_n^* = \{ x \in Z_n \text{ such that } \gcd(x, n) = 1 \} \]
 - Examples:
 - \(Z_{10}^* = \{ 1, 3, 7, 9 \} \)
 - \(Z_{13}^* = \{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 \} \)
 - In general, \(Z_n^* = \{ 1, 2, \ldots, n - 1 \} \) if \(n \) is prime
Modular Exponentiation: \(Z_{13}, x^y \mod 13 \)

<table>
<thead>
<tr>
<th>(y)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(^y)</td>
<td>1</td>
</tr>
<tr>
<td>2(^y)</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>3</td>
<td>6</td>
<td>12</td>
<td>11</td>
<td>9</td>
<td>5</td>
<td>10</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>3(^y)</td>
<td>3</td>
<td>9</td>
<td>6</td>
<td>10</td>
<td>1</td>
<td>3</td>
<td>9</td>
<td>6</td>
<td>10</td>
<td>1</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>4(^y)</td>
<td>4</td>
<td>3</td>
<td>12</td>
<td>9</td>
<td>4</td>
<td>3</td>
<td>12</td>
<td>9</td>
<td>4</td>
<td>3</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>5(^y)</td>
<td>5</td>
<td>12</td>
<td>8</td>
<td>1</td>
<td>5</td>
<td>12</td>
<td>8</td>
<td>1</td>
<td>5</td>
<td>12</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>6(^y)</td>
<td>6</td>
<td>10</td>
<td>8</td>
<td>9</td>
<td>2</td>
<td>12</td>
<td>7</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>7(^y)</td>
<td>7</td>
<td>10</td>
<td>9</td>
<td>11</td>
<td>12</td>
<td>6</td>
<td>3</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8(^y)</td>
<td>8</td>
<td>12</td>
<td>5</td>
<td>1</td>
<td>8</td>
<td>12</td>
<td>5</td>
<td>1</td>
<td>8</td>
<td>12</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>9(^y)</td>
<td>9</td>
<td>3</td>
<td>1</td>
<td>9</td>
<td>3</td>
<td>1</td>
<td>9</td>
<td>3</td>
<td>1</td>
<td>9</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>10(^y)</td>
<td>10</td>
<td>9</td>
<td>12</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>10</td>
<td>9</td>
<td>12</td>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>11(^y)</td>
<td>11</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>7</td>
<td>12</td>
<td>2</td>
<td>9</td>
<td>8</td>
<td>10</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>12(^y)</td>
<td>12</td>
<td>1</td>
<td>12</td>
<td>1</td>
<td>12</td>
<td>1</td>
<td>12</td>
<td>1</td>
<td>12</td>
<td>1</td>
<td>12</td>
<td>1</td>
</tr>
</tbody>
</table>

In-Class Exercise: Modular Exponentiation

- Create the modular exponentiation table for \(Z_5, x^y \mod 5 \).

Outline

1. Introduction
2. Modes of Operations
3. Attacks on Block Ciphers
4. Modular Arithmetic
 - Modular Inverses
 - Modular Exponentiation
5. Number-Theoretic Theorems
 - Euler’s Totient Function
 - Euler’s theorem
6. Number-Theoretic Algorithms
 - Bezout’s identity
 - Modular Multiplicative Inverses
 - Modular Exponentiation
 - Primality Testing
7. Discrete Logarithms
8. Summary

Euler’s Totient Function

- \(\phi(n) \) is the **totient** of \(n \), the number of elements of \(Z_n^* \):
 \[
 \phi(n) = |Z_n^*|
 \]
- Examples:
 1. \(Z_{10}^* = \{1, 3, 7, 9\} \Rightarrow \phi(10) = 4 \)
 2. \(Z_{13}^* = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\} \Rightarrow \phi(13) = 12 \)
- In general, if \(n \) is prime,
 \[Z_n^* = \{1, 2, \ldots, n - 1\} \Rightarrow \phi(n) = n - 1. \]
Euler’s Totient Function Values

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\phi(n))</th>
<th>List of Divisors</th>
<th>(n)</th>
<th>(\phi(n))</th>
<th>List of Divisors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>19</td>
<td>18</td>
<td>1, 19</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1, 2</td>
<td>20</td>
<td>8</td>
<td>1, 2, 4, 5, 10, 20</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1, 3</td>
<td>21</td>
<td>12</td>
<td>1, 3, 7, 21</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1, 2, 4</td>
<td>22</td>
<td>10</td>
<td>1, 2, 11, 22</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>1, 5</td>
<td>23</td>
<td>22</td>
<td>1, 23</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>1, 2, 3, 6</td>
<td>24</td>
<td>8</td>
<td>1, 2, 3, 4, 6, 8, 12, 24</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>1, 7</td>
<td>25</td>
<td>20</td>
<td>1, 5, 25</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>1, 2, 4, 8</td>
<td>26</td>
<td>12</td>
<td>1, 2, 13, 26</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>1, 3, 9</td>
<td>27</td>
<td>18</td>
<td>1, 3, 9, 27</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>1, 2, 5, 10</td>
<td>28</td>
<td>12</td>
<td>1, 2, 4, 7, 14, 28</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>1, 11</td>
<td>29</td>
<td>28</td>
<td>1, 29</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>1, 2, 3, 4, 6, 12</td>
<td>30</td>
<td>8</td>
<td>1, 2, 3, 5, 6, 10, 15, 30</td>
</tr>
<tr>
<td>13</td>
<td>12</td>
<td>1, 13</td>
<td>31</td>
<td>30</td>
<td>1, 31</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>1, 2, 7, 14</td>
<td>32</td>
<td>16</td>
<td>1, 2, 4, 8, 16, 32</td>
</tr>
<tr>
<td>15</td>
<td>8</td>
<td>1, 3, 5, 15</td>
<td>33</td>
<td>20</td>
<td>1, 3, 11, 33</td>
</tr>
<tr>
<td>16</td>
<td>8</td>
<td>1, 2, 4, 8, 16</td>
<td>34</td>
<td>16</td>
<td>1, 2, 17, 34</td>
</tr>
<tr>
<td>17</td>
<td>16</td>
<td>1, 17</td>
<td>35</td>
<td>24</td>
<td>1, 5, 7, 35</td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td>1, 2, 3, 6, 9, 18</td>
<td>36</td>
<td>12</td>
<td>1, 2, 3, 4, 6, 9, 12, 18, 36</td>
</tr>
</tbody>
</table>

You can calculate \(\phi(n) \) as

\[
\phi(n) = n \left(1 - \frac{1}{p_1}\right) \cdots \left(1 - \frac{1}{p_m}\right)
\]

where \(p_1, \ldots, p_m \) are the prime factors of \(n \).

Example:

\[
\phi(35) = 35 \left(1 - \frac{1}{5}\right) \left(1 - \frac{1}{7}\right) = 35 \cdot \frac{4}{5} \cdot \frac{6}{7} = 24
\]

In-Class Exercise

1. What’s \(\phi(37) \)?
2. What’s \(\phi(38) \)?

Euler’s Theorem

- \(\phi(n) \) is the number of positive integers relatively prime with \(n \).
- If \(p \) is prime, \(\phi(p) = p - 1 \).
- If \(n = pq \) is the product of two primes \(p \) and \(q \), then
 \[
 \phi(n) = (p - 1)(q - 1).
 \]

Theorem (Euler)

Let \(x \) be any positive integer that’s relatively prime to the integer \(n > 0 \), then

\[
x^{\phi(n)} \mod n = 1
\]
Euler’s Theorem. . .

- **Euler’s theorem** holds for each element x of \mathbb{Z}_n^*:

 $$x^{\phi(n)} \mod n = 1$$

- **Examples:**

 1. $7^{\phi(10)} \mod 10 \equiv 7^4 \mod 10 = 1$ since $\text{GCD}(7, 10) = 1$ and $7 \in \mathbb{Z}_{10}^*$

 $$7^4 \mod 10 \equiv 2401 \mod 10 = 1$$

Euler’s Theorem. . .

Theorem (Corollary to Euler’s theorem)

Let x be any positive integer that’s relatively prime to the integer $n > 0$, and let k be any positive integer, then

$$x^k \mod n = x^{k \mod \phi(n)} \mod n$$

- Euler’s theorem allows us to reduce the exponent modulo $\phi(n)$:

 $$x^y \mod n = x^{y \mod \phi(n)} \mod n$$

- **Examples:**

 1. $7^{27} \mod 13 \equiv 7^{27 \mod \phi(13)} \mod 13 \equiv 7^{27 \mod 12} \mod 13 \equiv 7^{3 \mod 12} = 5$

In-Class Exercise: Goodrich & Tamassia R-8.17

1. What’s $\phi(143)$?
2. What’s $7^{120} \mod 143$?

In-Class Exercise: Goodrich & Tamassia C-8.8

1. What are the prime factors of 10403?
2. What’s $\phi(10403)$?
3. Use Euler’s theorem to compute $20^{10203} \mod 10403$.
Theorem (Corollary to Euler’s theorem)

Given two prime numbers \(p \) and \(q \), integers \(n = pq \) and \(0 < m < n \), and an arbitrary integer \(k \), then

\[
m^{\phi(n)+1} \mod n = m^{k(p-1)(q-1)+1} \mod n = m \mod n
\]

- This relationship will be useful in the proof of correctness of the RSA algorithm.

Euler’s theorem is a generalization of Fermat’s little theorem.

Examples:
- \(10^{13-1} \mod 13 = 10^{12} \mod 13 = 1 \)

Euler’s GCD Algorithm

- GCD\((a, b)\) is the largest number \(d \) that divides \(a \) and \(b \) evenly.
- Euler’s algorithm GCD\((a, b)\) returns a triple \((d, i, j)\).
- Based on the observation that if \(x \) divides \(a \) and \(b \), it also divides \(a - b \). We need to find the largest such \(x \).
- Key observation: If

\[
d = \text{GCD}(a, b) \text{ and } b > 0
\]

then

\[
d = \text{GCD}(b, a \mod b)
\]
Euler’s GCD Algorithm...

```plaintext
function gcd(int a, int b) : (int, int, int) =
if b = 0 then
  return (a, 1, 0)
q ← ⌊a/b⌋
(d, k, l) ← gcd(b, a mod b)
return (d, l, k − lq)
```

Example:

\[
\begin{align*}
\text{GCD}(546, 198) &= \text{GCD}(198, 546 \mod 198) = \text{GCD}(198, 150) \\
&= \text{GCD}(150, 198 \mod 150) = \text{GCD}(150, 48) \\
&= \text{GCD}(48, 150 \mod 48) = \text{GCD}(48, 6) \\
&= \text{GCD}(6, 48 \mod 6) = \text{GCD}(6, 0) \\
&= 6
\end{align*}
\]

Euler’s GCD Algorithm...

Compute GCD by hand:
1. divide the larger one by the smaller;
2. write an equation of the form
 \[
 \text{larger} = \text{smaller} \times \text{quotient} + \text{remainder};
 \]
3. repeat using the two numbers smaller and remainder;
4. when you get a 0 remainder, the previous line will be the gcd
 of the original two numbers.

Find GCD(421, 111).

\[
\begin{align*}
421 &= 111 \times 3 + 88 \\
111 &= 88 \times 1 + 23 \\
88 &= 23 \times 3 + 19 \\
23 &= 19 \times 1 + 4 \\
19 &= 4 \times 4 + 3 \\
4 &= 3 \times 1 + 1 \\
3 &= 1 \times 3 + 0
\end{align*}
\]

The last non-zero remainder is 1 ⇒ GCD(421, 111) = 1.
In-Class Exercise

- Compute GCD(196, 42). Show your work.

Bezout’s identity

Theorem (Bezout’s identity)
Given any integers \(a\) and \(b\), not both zero, there exist integers \(i\) and \(j\) such that \(\text{GCD}(a, b) = ia + jb\).

Example:
\[
\text{GCD}(819, 462) = (-9) \times 819 + 16 \times 462 = 21.
\]

We use the **Extended GCD Algorithm** to compute \(i\) and \(j\).

Bezout’s identity: Extended GCD Algorithm

- Start by finding \(\text{GCD}(819, 462) = 21\):

 - Step 3:
 - \(3 : 105 = 42 \times 2 + 21\)
 - \(3a : 1 \times 105 + (-2) \times 42 = 21\)

- Now work backwards, substituting one equation into the previous one.

 - Step 2:
 - \(2 : 357 = 105 \times 3 + 42\)
 - \(2a : 357 + (-3) \times 105 = 42\)
 - \(2b[2a \times (-2)] = (-2) \times 357 + (-2)(-3) \times 105 = (-2) \times 42\)
 - \(2c[2b \text{ in } 3a] : (-2) \times 357 + (-2)(-3) \times 105 = 21 - 1 \times 105\)
 - \(2d[\text{simplify } 2c] : (-2) \times 357 + 7 \times 105 = 21\)
Bezout's identity: Extended GCD Algorithm...

Step 1:

1 : 462 = 357 * 1 + 105
1a : 462 + (-1) * 357 = 105
1b[1a x 7] : 7 * 462 + 7(-1) * 357 = 7 * 105
1c[1b in 2d] : (-2) * 357 + 7 * 462 = 21
1d[simplify 1c] : (-9) * 357 + 7 * 462 = 21

Step 0:

0 : 819 = 462 * 1 + 357
0a : 819 + (-1) * 462 = 357
0b[0a x (-9)] : (-9) * 819 + (-9)(-1) * 462 = 357
0c[0b in 1d] : (-9) * 819 + (-9)(-1) * 462 + 7 * 462 = 21
0d[simplify 0c] : (-9) * 819 + 16 * 462 = 21

In-Class Exercise

- Compute i and j such that at
 \[\text{GCD}(196, 42) = i \times 196 + j \times 42. \]
 Show your work.

Computing Modular Multiplicative Inverses

- We can use the GCD routine to compute modular multiplicative inverses.
- Given \(x < n \), we want to compute \(y = x^{-1} \mod n \), i.e.
 \[y \cdot x \mod n = 1 \]
- The inverse of \(x \) in \(\mathbb{Z}_n \) exists when \(\text{GCD}(n, x) = 1 \).
- Cal \(\text{GCD}(n, x) \) which returns
 \((1, i, j) \)
 such that
 \[1 = ix + jn \]
- Then
 \((ix + jn) \mod n = ix \mod n = 1 \)
- and \(i \) is \(x \)'s multiplicative inverse in \(\mathbb{Z}_n \).
- If \(\text{GCD}(n, x) \neq 1 \) then we know that the inverse doesn’t exist.

Modular Exponentiation by Repeated Squaring

- Modular exponentiation is an important operation in cryptography.
 \[g^n \mod p = \underbrace{g \ast g \ast \cdots \ast g}_{n} \mod p \]
- Simply iteratively multiplying the \(g \)'s together is too slow.
- Instead, we compute
 \[g \]
 \[g^2 = g \cdot g \]
 \[g^4 = g^2 \cdot g^2 \]
 \[g^8 = g^4 \cdot g^4 \]
- We can then use these powers to compute \(g^n \):
 \[g^{25} = g^{16+8+1} = g^{16} \cdot g^{8} \cdot g^{1} \]
 \[g^{46} = g^{32+8+4+2} = g^{32} \cdot g^{8} \cdot g^{4} \cdot g^{2} \]
Modular Exponentiation by Repeated Squaring...

- Compute $g^n \mod p$:

```plaintext
function modexp(int g, int n, int p)
    int q ← 1
    int m ← n
    int square ← g
    while m ≥ 1 do
        if odd(m) then
            g ← q · square mod p
        square ← square · square mod p
        m ← ⌊m/2⌋
    end while
    return g
end function
```

Primality Testing

- We are given an integer n and want to test if it’s prime or not.
- There exists efficient methods for primality testing.
- The number of primes between 1 and n is at least $n / \ln(n)$, for $n ≥ 4$.
- To generate a prime number q between $n/2$ and n:
 1. Let $q ←$ a random number between $n/2$ and n;
 2. q is prime with a probability of at least $1 / \ln(n)$;
 3. If isPrime(q) then return q;
 4. Repeat from 1.

We need to repeat approximately a logarithmic number of times to find a prime.

In-Class Exercise: Goodrich & Tamassia R-8.16

- Roughly how many times would you have to call a primality tester to find a prime number between 1,000,000 and 2,000,000?

Outline

- Introduction
- Modes of Operations
- Attacks on Block Ciphers
- Modular Arithmetic
 - Modular Inverses
 - Modular Exponentiation
- Number-Theoretic Theorems
 - Euler’s Totient Function
 - Euler’s theorem
- Number-Theoretic Algorithms
 - Bezout’s identity
 - Modular Multiplicative Inverses
 - Modular Exponentiation
 - Primality Testing
- Discrete Logarithms
- Summary
Euler’s Theorem

Theorem (Euler)

Let \(x \) be any positive integer that’s relatively prime to the integer \(n > 0 \), then

\[x^{\phi(n)} \mod n = 1 \]

- Now consider (where \(a \) and \(n \) are relatively prime)

\[a^m \mod n = 1. \]

We know, by Euler’s theorem, that there’s at least one number \(m \) that satisfies this equation: \(\phi(n) \)!
- The smallest positive \(m \) for which the equation holds is called
 - the order of \(a \mod n \)
 - the length of the period generated by \(a \).

Powers of Integers, Modulo 19

- All the powers of \(a \), modulo 19.
- The length of the sequence is highlighted.

\begin{array}{ccccccccccccccc}
1^{19} & 2^{19} & 3^{19} & 4^{19} & 5^{19} & 6^{19} & 7^{19} & 8^{19} & 9^{19} & 10^{19} & 11^{19} & 12^{19} & 13^{19} & 14^{19} & 15^{19} & 16^{19} & 17^{19} & 18^{19} & 19^{19} \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 \\
\end{array}

The Order of a \(m \) mod \(n \)

- Consider the powers of \(7 \) \(\mod 19 \):

\[
\begin{align*}
7^1 &= 7 \mod 19 \\
7^2 &= 11 \mod 19 \\
7^3 &= 1 \mod 19 \\
7^4 &= 7 \mod 19 \\
7^5 &= 11 \mod 19 \\
7^6 &= 1 \mod 19 \\
\end{align*}
\]

- The sequence repeats.

Primitive Roots

- All sequences end with 1.
- Some sequences have length 18. Then we say
 - a \textbf{generates} the set of nonzero integers, modulo 19.
 - \(a \) is a \textbf{primitive root} of the modulus 19.
- If \(a \) is a primitive root of \(n \) then all its powers

\[a, a^2, \ldots, a^{\phi(n)} \]

are distinct.
- If \(a \) is a primitive root of \(p \), and \(p \) is prime, then

\[a, a^2, \ldots, a^p \]

are distinct \(\mod p \).
The only integers with primitive roots are of the form \((p \text{ prime, } \alpha > 0)\)
\[
2, 4, p^\alpha, 2p^\alpha
\]
• For 19 (a prime), the primitive roots are 2, 3, 10, 13, 14, 15.
• \(g\) is a primitive root modulo \(p\) if, for each integer \(i\) in \(\mathbb{Z}_p\), there exists an integer \(k\) such that
\[
i = g^k \mod p.
\]

For example, looking at the table above, we see that 2 is a primitive root modulo 19:

<table>
<thead>
<tr>
<th>(2^1)</th>
<th>(2^2)</th>
<th>(2^3)</th>
<th>(2^4)</th>
<th>(2^5)</th>
<th>(2^6)</th>
<th>(2^7)</th>
<th>(2^8)</th>
<th>(2^{10})</th>
<th>(2^{11})</th>
<th>(2^{12})</th>
<th>(2^{13})</th>
<th>(2^{14})</th>
<th>(2^{15})</th>
<th>(2^{16})</th>
<th>(2^{17})</th>
<th>(2^{18})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>13</td>
<td>7</td>
<td>14</td>
<td>9</td>
<td>18</td>
<td>17</td>
<td>15</td>
<td>11</td>
<td>3</td>
<td>6</td>
<td>12</td>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>

because for each integer \(i \in \mathbb{Z}_{19} = \{1, 2, 3, \ldots, 18\}\) there’s an integer \(k\), such that \(i = 2^k \mod 19\).
• There are \(\phi(p - 1)\) generators for \(\mathbb{Z}_p\).

In-Class Exercise

1. Compute the table of powers of \(a\), modulo 5, for all positive integers \(a < 5\).
2. What are the primitive roots of 5?

1. Compute the table of powers of \(a\), modulo 7, for all positive integers \(a < 7\).
2. What are the primitive roots of 7?
Computing Primitive Roots

- Consider the equation
 \[y = g^x \mod p \]

 If we have \(g, x, \) and \(p \) it’s easy to calculate \(y \).

- What if, instead, we’re given \(y, g, \) and \(p \)?
 \- it’s hard to take the discrete logarithm, i.e. to compute \(x \).
 \- The fastest known algorithm is
 \[O(e^{((\ln p)^{1/3}(\ln(\ln p))^{2/3}}) \]

 which is infeasible for large primes \(p \).

Outline

1. Introduction
2. Modes of Operations
3. Attacks on Block Ciphers
4. Modular Arithmetic
 - Modular Inverses
 - Modular Exponentiation
5. Number-Theoretic Theorems
 - Euler’s Totient Function
 - Euler’s theorem
6. Number-Theoretic Algorithms
 - Bezout’s identity
 - Modular Multiplicative Inverses
 - Modular Exponentiation
 - Primality Testing
7. Discrete Logarithms
8. Summary

Readings and References

\- Chapter 8.1.7, 8.2.1, 8.5.2 in Introduction to Computer Security, by Goodrich and Tamassia.

Additional material and exercises have also been collected from these sources:

\- Igor Crk and Scott Baker, 620—Fall 2003—Basic Cryptography.
\- Bruce Schneier, Applied Cryptography.
\- Euler’s Totient Function Values For \(n = 1 \) to 500, with Divisor Lists, http://primefan.tripod.com/Phi500.html.