Fuzz Testing Bluetooth Devices

Paul Shen

March 26, 2012
What is at stake?

- Bluetooth used in computers, mobile phones, handsfree equipment, and car audio systems, etc.
- Computers and mobile phones house a lot of personal information
- Bluebug exploit on handsets allowed remote access to text messages, call records and address books
- July 2011: Microsoft patched a Bluetooth vulnerability in Windows 7 and Vista that allowed an attacker to transmit packets to remotely execute code which allowed them to install programs; view, change, or delete data; or create new accounts with full user rights
Pairing Authentication in Bluetooth

- Pairing: a device receives a connection request from another unpaired device, user accepts request
- Requires and thus exposes the Service Discovery Protocol (SDP), in turn exposing core protocol L2CAP
- Bluetooth 2.0 and older: 4 digit pin used for verification, handsfree devices have hardcoded pin (usually 0000)
- Lacks robustness in protecting the protocol level against fuzzing – sending malformed packets to cause a crash – after pairing with a badly implemented device
Bluetooth stack

- A few Bluetooth stacks are used for many different Bluetooth products, so vulnerabilities in a specific stack apply to many different devices.
- Stacks are usually either already known or can be easily learned.
Fuzz Testing

- When a Bluetooth device receives an invalid message, software vulnerabilities often cause it to give an abnormal response:
 - crash
 - stop requiring pairing process
 - allow the installing and running of malware

- Invalid messages come from pairing with a non-conforming device or outside attacker

- Fuzz testing: invalid messages are fed to a system on purpose and the system’s behavior is monitored
Crash-testing Bluetooth Devices

- Codenomicon, a Finnish data security company, tested 15 car kits, 5 mobile phones, 3 headsets and a picture frame with intelligent fuzz testing tools.
- Bluetooth profiles specify general behavior that devices use to communicate with each other:
 - HFP: ability to conduct phone calls
 - A2DP: ability to play music located on a mobile device
- Device under test (DUT) setup: L2CAP – turn Bluetooth on and put into discoverable or pairing mode.
Test Results and Conclusions

- All devices tested failed at one point; Codenomicon also claims that about 80% of devices in their plugfests have crashed.
- L2CAP layer unreliable: most of the devices tested crashed within the first 100 cases of L2CAP protocol tests.
- L2CAP doesn’t require pairing, bypasses user acceptance and user may not even notice.
Any Questions?
http://bluecove.org/images/stack-diagram.png