CSc 466/566

Computer Security

14: Cryptography — Digital Signatures

Version: 2014/10/30 15:27:25

Department of Computer Science University of Arizona

collberg@gmail.co

Copyright © 2014 Christian Collberg

Christian Collberg

Outline

- Introduction
- 2 RSA Signature Scheme
- 3 Elgamal Signature Scheme
- 4 Cryptographic Hash Functions
- Birthday attacks
- Summary

- In this lecture we are going to talk about cryptographic hash functions (checksums) and digital signatures.
- We want to be able to
 - Detect tampering: is the message we received the same as the message that was sent?
 - Authenticate: did the message come from who we think it came from?

- More specifically, we want to ensure:
 - Nonforgeability: Eve should not be able to create a message that appears to come from Alice.
 - Nonmutability: Eve should not be able to take a valid signature for one message from Alice, and apply it to another one.
 - Nonrepudiation: Alice should not be able to claim she didn't sign a document that she did sign.

• In the non-digital world, Alice would sign the document. We can do the same with digital signatures.

- In the non-digital world, Alice would sign the document. We can do the same with digital signatures.
- ① Alice encrypts her document M with her private key S_A , thereby creating a signature $S_{Alice}(M)$.

- In the non-digital world, Alice would sign the document. We can do the same with digital signatures.
- ① Alice encrypts her document M with her private key S_A , thereby creating a signature $S_{Alice}(M)$.
- ② Alice sends M and the signature $S_{Alice}(M)$ to Bob.

- In the non-digital world, Alice would sign the document. We can do the same with digital signatures.
- **1** Alice encrypts her document M with her private key S_A , thereby creating a signature $S_{Alice}(M)$.
- 2 Alice sends M and the signature $S_{Alice}(M)$ to Bob.
- Bob decrypts the document using Alice's public key, thereby verifying her signature.

This works because for many public key ciphers

$$D_{S_B}(E_{P_B}(M)) = M$$

$$E_{P_B}(D_{S_B}(M)) = M$$

i.e. we can reverse the encryption/decryption operations.

• That is, Bob can apply the decryption function to a message with his private key S_B , yielding the signature sig:

$$sig \leftarrow D_{S_B}(M)$$

• Then, anyone else can apply the encryption function to sig to get the message back. Only Bob (who has his secret key) could have generated the signature:

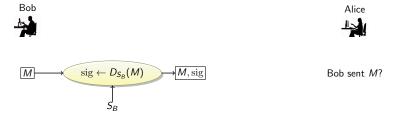
$$E_{P_B}(\text{sig}) = M$$

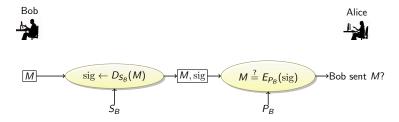
Bob

Alice

Μ

Bob sent M?





Outline

- Introduction
- RSA Signature Scheme
- 3 Elgamal Signature Scheme
- 4 Cryptographic Hash Functions
- Birthday attacks
- 6 Summary

① Alice applies the decryption function to her document M with her private key S_A , thereby creating a signature $S_{Alice}(M)$.

- ① Alice applies the decryption function to her document M with her private key S_A , thereby creating a signature $S_{Alice}(M)$.
- ② Alice sends M and the signature $S_{Alice}(M)$ to Bob.

- ① Alice applies the decryption function to her document M with her private key S_A , thereby creating a signature $S_{Alice}(M)$.
- ② Alice sends M and the signature $S_{Alice}(M)$ to Bob.
- Bob applies the encryption function to the document using Alice's public key, thereby verifying her signature.

Bob (Key generation):

- Bob (Key generation):
 - **①** Generate two large random primes p and q.

- Bob (Key generation):
 - **1** Generate two large random primes p and q.
 - ② Compute n = pq.

- Bob (Key generation):
 - **1** Generate two large random primes *p* and *q*.
 - **2** Compute n = pq.
 - **3** Select a small odd integer *e* relatively prime with $\phi(n)$.

- Bob (Key generation):
 - **1** Generate two large random primes p and q.
 - ② Compute n = pq.
 - **3** Select a small odd integer e relatively prime with $\phi(n)$.
 - **4** Compute $\phi(n) = (p-1)(q-1)$.

- Bob (Key generation):
 - **1** Generate two large random primes p and q.
 - **2** Compute n = pq.
 - 3 Select a small odd integer e relatively prime with $\phi(n)$.
 - **4** Compute $\phi(n) = (p-1)(q-1)$.
 - **6** Compute $d = e^{-1} \mod \phi(n)$.

- Bob (Key generation):
 - **1** Generate two large random primes *p* and *q*.
 - **2** Compute n = pq.
 - 3 Select a small odd integer e relatively prime with $\phi(n)$.
 - **4** Compute $\phi(n) = (p-1)(q-1)$.
 - **5** Compute $d = e^{-1} \mod \phi(n)$.
 - $P_B = (e, n)$ is Bob's RSA public key.

- Bob (Key generation):
 - **1** Generate two large random primes *p* and *q*.
 - **2** Compute n = pq.
 - Select a small odd integer e relatively prime with $\phi(n)$.
 - **4** Compute $\phi(n) = (p-1)(q-1)$.
 - **5** Compute $d = e^{-1} \mod \phi(n)$.
 - $P_B = (e, n)$ is Bob's RSA public key.
 - $S_B = (d, n)$ is Bob' RSA private key.

- Bob (Key generation):
 - **1** Generate two large random primes p and q.
 - **2** Compute n = pq.
 - 3 Select a small odd integer e relatively prime with $\phi(n)$.
 - **4** Compute $\phi(n) = (p-1)(q-1)$.
 - **5** Compute $d = e^{-1} \mod \phi(n)$.
 - $P_B = (e, n)$ is Bob's RSA public key.
 - $S_B = (d, n)$ is Bob' RSA private key.
- Alice (encrypt and send a message M to Bob):

- Bob (Key generation):
 - **1** Generate two large random primes *p* and *q*.
 - **2** Compute n = pq.
 - **3** Select a small odd integer e relatively prime with $\phi(n)$.
 - **4** Compute $\phi(n) = (p-1)(q-1)$.
 - **5** Compute $d = e^{-1} \mod \phi(n)$.
 - $P_B = (e, n)$ is Bob's RSA public key.
 - $S_B = (d, n)$ is Bob' RSA private key.
- \bullet Alice (encrypt and send a message M to Bob):
 - Get Bob's public key $P_B = (e, n)$.

- Bob (Key generation):
 - Generate two large random primes p and q.
 - **2** Compute n = pq.
 - **3** Select a small odd integer e relatively prime with $\phi(n)$.
 - **4** Compute $\phi(n) = (p-1)(q-1)$.
 - **5** Compute $d = e^{-1} \mod \phi(n)$.
 - $P_B = (e, n)$ is Bob's RSA public key.
 - $S_B = (d, n)$ is Bob' RSA private key.
- Alice (encrypt and send a message M to Bob):
 - Get Bob's public key $P_B = (e, n)$.
 - **2** Compute $C = M^e \mod n$.

- Bob (Key generation):
 - \bigcirc Generate two large random primes p and q.
 - **2** Compute n = pq.
 - **3** Select a small odd integer e relatively prime with $\phi(n)$.
 - **4** Compute $\phi(n) = (p-1)(q-1)$.
 - **5** Compute $d = e^{-1} \mod \phi(n)$.
 - $P_B = (e, n)$ is Bob's RSA public key.
 - $S_B = (d, n)$ is Bob' RSA private key.
- \bullet Alice (encrypt and send a message M to Bob):
 - **1** Get Bob's public key $P_B = (e, n)$.
 - **2** Compute $C = M^e \mod n$.
- Bob (decrypt a message C received from Alice):

- Bob (Key generation):
 - **1** Generate two large random primes p and q.
 - **2** Compute n = pq.
 - **3** Select a small odd integer e relatively prime with $\phi(n)$.
 - **4** Compute $\phi(n) = (p-1)(q-1)$.
 - **5** Compute $d = e^{-1} \mod \phi(n)$.
 - $P_B = (e, n)$ is Bob's RSA public key.
 - $S_B = (d, n)$ is Bob' RSA private key.
- Alice (encrypt and send a message M to Bob):
 - **1** Get Bob's public key $P_B = (e, n)$.
 - **2** Compute $C = M^e \mod n$.
- Bob (decrypt a message C received from Alice):
 - **1** Compute $M = C^d \mod n$.

• Bob (Key generation): As before.

- Bob (Key generation): As before.
 - $P_B = (e, n)$ is Bob's RSA public key.

- Bob (Key generation): As before.
 - $P_B = (e, n)$ is Bob's RSA public key.
 - $S_B = (d, n)$ is Bob' RSA private key.

- Bob (Key generation): As before.
 - $P_B = (e, n)$ is Bob's RSA public key.
 - $S_B = (d, n)$ is Bob' RSA private key.
- Bob (sign a secret message M):

- Bob (Key generation): As before.
 - $P_B = (e, n)$ is Bob's RSA public key.
 - $S_B = (d, n)$ is Bob' RSA private key.
- Bob (sign a secret message M):
 - ① Compute $S = M^d \mod n$.

- Bob (Key generation): As before.
 - $P_B = (e, n)$ is Bob's RSA public key.
 - $S_B = (d, n)$ is Bob' RSA private key.
- Bob (sign a secret message *M*):
 - **1** Compute $S = M^d \mod n$.
 - ② Send M, S to Alice.

- Bob (Key generation): As before.
 - $P_B = (e, n)$ is Bob's RSA public key.
 - $S_B = (d, n)$ is Bob' RSA private key.
- Bob (sign a secret message *M*):
 - ① Compute $S = M^d \mod n$.
 - \bigcirc Send M, S to Alice.
- Alice (verify signature S received from Bob):

- Bob (Key generation): As before.
 - $P_B = (e, n)$ is Bob's RSA public key.
 - $S_B = (d, n)$ is Bob' RSA private key.
- Bob (sign a secret message *M*):
 - ① Compute $S = M^d \mod n$.
 - \bigcirc Send M, S to Alice.
- Alice (verify signature *S* received from Bob):
 - Receive *M*, *S* from Alice.

- Bob (Key generation): As before.
 - $P_B = (e, n)$ is Bob's RSA public key.
 - $S_B = (d, n)$ is Bob' RSA private key.
- Bob (sign a secret message *M*):
 - ① Compute $S = M^d \mod n$.
 - Send M, S to Alice.
- Alice (verify signature *S* received from Bob):
 - Receive *M*, *S* from Alice.
 - 2 Verify that $M \stackrel{?}{=} S^e \mod n$.

• We have:

- We have:
 - $P_B = (e, n)$ is Bob's RSA public key.

- We have:
 - $P_B = (e, n)$ is Bob's RSA public key.
 - $S_B = (d, n)$ is Bob' RSA private key.

- We have:
 - $P_B = (e, n)$ is Bob's RSA public key.
 - $S_B = (d, n)$ is Bob' RSA private key.
 - $S = M^d \mod n$.

- We have:
 - $P_B = (e, n)$ is Bob's RSA public key.
 - $S_B = (d, n)$ is Bob' RSA private key.
 - $S = M^d \mod n$.
 - $d = e^{-1} \mod \phi(n) \Rightarrow de = 1 \mod \phi(n)$.

- We have:
 - $P_B = (e, n)$ is Bob's RSA public key.
 - $S_B = (d, n)$ is Bob' RSA private key.
 - $S = M^d \mod n$.
 - $d = e^{-1} \mod \phi(n) \Rightarrow de = 1 \mod \phi(n)$.

Theorem (Corollary to Euler's theorem)

Let x be any positive integer that's relatively prime to the integer n > 0, and let k be any positive integer, then

$$x^k \mod n = x^{k \mod \phi(n)} \mod n$$

- We have:
 - $P_B = (e, n)$ is Bob's RSA public key.
 - $S_B = (d, n)$ is Bob' RSA private key.
 - $S = M^d \mod n$.
 - $d = e^{-1} \mod \phi(n) \Rightarrow de = 1 \mod \phi(n)$.

Theorem (Corollary to Euler's theorem)

Let x be any positive integer that's relatively prime to the integer n > 0, and let k be any positive integer, then

$$x^k \mod n = x^{k \mod \phi(n)} \mod n$$

• Alice wants to verify that $M \stackrel{?}{=} S^e \mod n$.

$$S^e \mod n = M^{de} \mod n$$

- We have:
 - $P_B = (e, n)$ is Bob's RSA public key.
 - $S_B = (d, n)$ is Bob' RSA private key.
 - $S = M^d \mod n$.
 - $d = e^{-1} \mod \phi(n) \Rightarrow de = 1 \mod \phi(n)$.

Theorem (Corollary to Euler's theorem)

Let x be any positive integer that's relatively prime to the integer n > 0, and let k be any positive integer, then

$$x^k \mod n = x^{k \mod \phi(n)} \mod n$$

• Alice wants to verify that $M \stackrel{?}{=} S^e \mod n$.

$$S^e \mod n = M^{de} \mod n$$

- We have:
 - $P_B = (e, n)$ is Bob's RSA public key.
 - $S_B = (d, n)$ is Bob' RSA private key.
 - $S = M^d \mod n$.
 - $d = e^{-1} \mod \phi(n) \Rightarrow de = 1 \mod \phi(n)$.

Theorem (Corollary to Euler's theorem)

Let x be any positive integer that's relatively prime to the integer n > 0, and let k be any positive integer, then

$$x^k \mod n = x^{k \mod \phi(n)} \mod n$$

• Alice wants to verify that $M \stackrel{?}{=} S^e \mod n$.

$$S^e \mod n = M^{de} \mod n$$

= $M^{de \mod \phi(n)} \mod n$

- We have:
 - $P_B = (e, n)$ is Bob's RSA public key.
 - $S_B = (d, n)$ is Bob' RSA private key.
 - $S = M^d \mod n$.
 - $d = e^{-1} \mod \phi(n) \Rightarrow de = 1 \mod \phi(n)$.

Theorem (Corollary to Euler's theorem)

Let x be any positive integer that's relatively prime to the integer n > 0, and let k be any positive integer, then

$$x^k \mod n = x^{k \mod \phi(n)} \mod n$$

• Alice wants to verify that $M \stackrel{?}{=} S^e \mod n$.

$$S^e \mod n = M^{de} \mod n$$

= $M^{de \mod \phi(n)} \mod n$
= $M^1 \mod n = M$

RSA signature: Nonforgeability

 Nonforgeability: Eve should not be able to create a message that appears to come from Alice.

RSA signature: Nonforgeability

- Nonforgeability: Eve should not be able to create a message that appears to come from Alice.
- To forge a message M from Alice, Eve would have to produce

 $M^d \mod n$

without knowing Alice's private key d.

RSA signature: Nonforgeability

- Nonforgeability: Eve should not be able to create a message that appears to come from Alice.
- To forge a message M from Alice, Eve would have to produce

 $M^d \mod n$

without knowing Alice's private key d.

• This is equivalent to being able to break RSA encryption.

 Nonmutability: Eve should not be able to take a valid signature for one message from Alice, and apply it to another message.

- Nonmutability: Eve should not be able to take a valid signature for one message from Alice, and apply it to another message.
- RSA does not achieve nonmutability.

- Nonmutability: Eve should not be able to take a valid signature for one message from Alice, and apply it to another message.
- RSA does not achieve nonmutability.
- Assume Eve has two valid signatures from Alice, on two messages M₁ and M₂:

$$S_1 = M_1^d \mod n$$

$$S_2 = M_2^d \mod n$$

- Nonmutability: Eve should not be able to take a valid signature for one message from Alice, and apply it to another message.
- RSA does not achieve nonmutability.
- Assume Eve has two valid signatures from Alice, on two messages M₁ and M₂:

$$S_1 = M_1^d \mod n$$

$$S_2 = M_2^d \mod n$$

• Eve can then produce a new signature

$$S_1 \cdot S_2 = (M_1^d \mod n) \cdot (M_2^d \mod n)$$
$$= (M_1 \cdot M_2)^d \mod n$$

This is a valid signature for the message $M_1 \cdot M_2$!

- Nonmutability: Eve should not be able to take a valid signature for one message from Alice, and apply it to another message.
- RSA does not achieve nonmutability.
- Assume Eve has two valid signatures from Alice, on two messages M_1 and M_2 :

$$S_1 = M_1^d \mod n$$

$$S_2 = M_2^d \mod n$$

• Eve can then produce a new signature

$$S_1 \cdot S_2 = (M_1^d \mod n) \cdot (M_2^d \mod n)$$
$$= (M_1 \cdot M_2)^d \mod n$$

This is a valid signature for the message $M_1 \cdot M_2$!

Not usually a problem since we normally sign hashes.

Outline

- Introduction
- RSA Signature Scheme
- 3 Elgamal Signature Scheme
- 4 Cryptographic Hash Functions
- Birthday attacks
- 6 Summary

Bob (Key generation):

- Bob (Key generation):
 - ① Pick a prime p.

- Bob (Key generation):
 - \bigcirc Pick a prime p.
 - 2 Find a generator g for Z_p .

- Bob (Key generation):
 - ① Pick a prime p.
 - 2 Find a generator g for Z_p .
 - 3 Pick a random number x between 1 and p-2.

- Bob (Key generation):
 - \bigcirc Pick a prime p.
 - 2 Find a generator g for Z_p .
 - **3** Pick a random number x between 1 and p-2.
 - **4** Compute $y = g^x \mod p$.

- Bob (Key generation):
 - \bigcirc Pick a prime p.
 - 2 Find a generator g for Z_p .
 - 3 Pick a random number x between 1 and p-2.
 - 4 Compute $y = g^x \mod p$.
 - $P_B = (p, g, y)$ is Bob's Elgamal public key.

- Bob (Key generation):
 - \bigcirc Pick a prime p.
 - 2 Find a generator g for Z_p .
 - **3** Pick a random number x between 1 and p-2.
 - 4 Compute $y = g^x \mod p$.
 - $P_B = (p, g, y)$ is Bob's Elgamal public key.
 - $S_B = x$ is Bob' Elgamal private key.

- Bob (Key generation):
 - Pick a prime p.
 - 2 Find a generator g for Z_p .
 - **3** Pick a random number x between 1 and p-2.
 - **4** Compute $y = g^x \mod p$.
 - $P_B = (p, g, y)$ is Bob's Elgamal public key.
 - $S_B = x$ is Bob' Elgamal private key.
- Alice (encrypt and send a message M to Bob):

- Bob (Key generation):
 - Pick a prime p.
 - 2 Find a generator g for Z_p .
 - **3** Pick a random number x between 1 and p-2.
 - **4** Compute $y = g^x \mod p$.
 - $P_B = (p, g, y)$ is Bob's Elgamal public key.
 - $S_B = x$ is Bob' Elgamal private key.
- Alice (encrypt and send a message M to Bob):
 - **1** Get Bob's public key $P_B = (p, g, y)$.

- Bob (Key generation):
 - Pick a prime p.
 - 2 Find a generator g for Z_p .
 - Solution Pick a random number x between 1 and p-2.
 - 4 Compute $y = g^x \mod p$.
 - $P_B = (p, g, y)$ is Bob's Elgamal public key.
 - $S_B = x$ is Bob' Elgamal private key.
- Alice (encrypt and send a message M to Bob):
 - Get Bob's public key $P_B = (p, g, y)$.
 - 2 Pick a random number k between 1 and p-2.

- Bob (Key generation):
 - ① Pick a prime p.
 - 2 Find a generator g for Z_p .
 - Solution Pick a random number x between 1 and p-2.
 - 4 Compute $y = g^x \mod p$.
 - $P_B = (p, g, y)$ is Bob's Elgamal public key.
 - $S_B = x$ is Bob' Elgamal private key.
- Alice (encrypt and send a message M to Bob):
 - Get Bob's public key $P_B = (p, g, y)$.
 - ② Pick a random number k between 1 and p-2.
 - **3** Compute the ciphertext C = (a, b):

$$a = g^k \mod p$$

$$b = My^k \mod p$$

- Bob (Key generation):
 - \bigcirc Pick a prime p.
 - 2 Find a generator g for Z_p .
 - **3** Pick a random number x between 1 and p-2.
 - **4** Compute $y = g^x \mod p$.
 - $P_B = (p, g, y)$ is Bob's Elgamal public key.
 - $S_B = x$ is Bob' Elgamal private key.
- Alice (encrypt and send a message M to Bob):
 - **1** Get Bob's public key $P_B = (p, g, y)$.
 - ② Pick a random number k between 1 and p-2.
 - **3** Compute the ciphertext C = (a, b):

$$a = g^k \mod p$$

 $b = My^k \mod p$

• Bob (decrypt a message C = (a, b) received from Alice):

- Bob (Key generation):
 - \bigcirc Pick a prime p.
 - 2 Find a generator g for Z_p .
 - Solution Pick a random number x between 1 and p-2.
 - **4** Compute $y = g^x \mod p$.
 - $P_B = (p, g, y)$ is Bob's Elgamal public key.
 - $S_B = x$ is Bob' Elgamal private key.
- Alice (encrypt and send a message M to Bob):
 - **1** Get Bob's public key $P_B = (p, g, y)$.
 - ② Pick a random number k between 1 and p-2.
 - **3** Compute the ciphertext C = (a, b):

$$a = g^k \bmod p$$
$$b = My^k \bmod p$$

- Bob (decrypt a message C = (a, b) received from Alice):
 - ① Compute $M = b(a^x)^{-1} \mod p$.

• Alice (Key generation): As before.

- Alice (Key generation): As before.
 - ① Pick a prime p.

- Alice (Key generation): As before.
 - \bigcirc Pick a prime p.
 - 2 Find a generator g for Z_p .

- Alice (Key generation): As before.
 - \bigcirc Pick a prime p.
 - 2 Find a generator g for Z_p .
 - **3** Pick a random number x between 1 and p-2.

- Alice (Key generation): As before.
 - ① Pick a prime p.
 - 2 Find a generator g for Z_p .
 - Solution Pick a random number x between 1 and p-2.

- Alice (Key generation): As before.
 - Pick a prime p.
 - ② Find a generator g for Z_p .
 - **3** Pick a random number x between 1 and p-2.
 - **4** Compute $y = g^x \mod p$.
 - $P_A = (p, g, y)$ is Alice's Elgamal public key.

- Alice (Key generation): As before.
 - Pick a prime p.
 - 2 Find a generator g for Z_p .
 - 3 Pick a random number x between 1 and p-2.
 - 4 Compute $y = g^x \mod p$.
 - $P_A = (p, g, y)$ is Alice's Elgamal public key.
 - $S_A = x$ is Alice' Elgamal private key.

- Alice (Key generation): As before.
 - Pick a prime p.
 - ② Find a generator g for Z_p .
 - Solution Pick a random number x between 1 and p-2.
 - 4 Compute $y = g^x \mod p$.
 - $P_A = (p, g, y)$ is Alice's Elgamal public key.
 - $S_A = x$ is Alice' Elgamal private key.
- Alice (sign message M and send to Bob):

- Alice (Key generation): As before.
 - Pick a prime p.
 - 2 Find a generator g for Z_p .
 - Solution Pick a random number x between 1 and p-2.
 - **4** Compute $y = g^x \mod p$.
 - $P_A = (p, g, y)$ is Alice's Elgamal public key.
 - $S_A = x$ is Alice' Elgamal private key.
- Alice (sign message *M* and send to Bob):
 - ① Pick a random number k.

- Alice (Key generation): As before.
 - \bigcirc Pick a prime p.
 - 2 Find a generator g for Z_p .
 - Solution Pick a random number x between 1 and p-2.
 - 4 Compute $y = g^x \mod p$.
 - $P_A = (p, g, y)$ is Alice's Elgamal public key.
 - $S_A = x$ is Alice' Elgamal private key.
- \bullet Alice (sign message M and send to Bob):
 - \bigcirc Pick a random number k.
 - **2** Compute the signature S = (a, b):

$$a = g^k \mod p$$

$$b = k^{-1}(M - xa) \mod (p - 1)$$

- Alice (Key generation): As before.
 - \bigcirc Pick a prime p.
 - 2 Find a generator g for Z_p .
 - Solution Pick a random number x between 1 and p-2.
 - 4 Compute $y = g^x \mod p$.
 - $P_A = (p, g, y)$ is Alice's Elgamal public key.
 - $S_A = x$ is Alice' Elgamal private key.
- \bullet Alice (sign message M and send to Bob):
 - \bigcirc Pick a random number k.
 - **2** Compute the signature S = (a, b):

$$a = g^k \mod p$$

$$b = k^{-1}(M - xa) \mod (p - 1)$$

• Bob (verify the signature S = (a, b) received from Alice):

- Alice (Key generation): As before.
 - Pick a prime p.
 - 2 Find a generator g for Z_p .
 - **3** Pick a random number x between 1 and p-2.
 - **4** Compute $y = g^x \mod p$.
 - $P_A = (p, g, y)$ is Alice's Elgamal public key.
 - $S_A = x$ is Alice' Elgamal private key.
- Alice (sign message M and send to Bob):
 - \bigcirc Pick a random number k.
 - **2** Compute the signature S = (a, b):

$$a = g^k \mod p$$

$$b = k^{-1}(M - xa) \mod (p - 1)$$

- Bob (verify the signature S = (a, b) received from Alice):
 - ① Verify $y^a \cdot a^b \mod p \stackrel{?}{=} g^M \mod p$.

Elgamal Signature Algorithm: Correctness

We have:

$$y = g^x \mod p$$

 $a = g^k \mod p$
 $b = k^{-1}(M - xa) \mod (p-1)$

• Show that $y^a \cdot a^b \mod p = g^M \mod p$.

$$y^{a}a^{b} \bmod p = (g^{x} \bmod p)^{a}((g^{k} \bmod p)^{(k-1)}(M-xa) \bmod (p-1)) \bmod p$$

$$= g^{xa}g^{kk-1}(M-xa) \bmod (p-1) \bmod p$$

$$= g^{xa}g^{(M-xa) \bmod (p-1)} \bmod p$$

$$= g^{xa}g^{M-xa} \bmod p$$

$$= g^{xa+M-xa} \bmod p$$

$$= g^{M} \bmod p$$

Elgamal Signature Algorithm: Security

We have:

$$y = g^x \mod p$$

 $a = g^k \mod p$
 $b = k^{-1}(M - xa) \mod (p-1)$

- k is random $\Rightarrow b$ is random!
- To the adversary, b looks completely random.
- The adversary must compute k from $a = g^k \mod p \Leftrightarrow$ compute discrete log!
- If Alice reuses $k \Rightarrow$ The adversary can compute the secret key.

Outline

- Introduction
- RSA Signature Scheme
- 3 Elgamal Signature Scheme
- 4 Cryptographic Hash Functions
- Birthday attacks
- 6 Summary

Cryptographic Hash Functions

- Public key algorithms are too slow to sign large documents. A
 better protocol is to use a one way hash function also known
 as a cryptographic hash function (CHF).
- CHFs are checksums or compression functions: they take an arbitrary block of data and generate a unique, short, fixed-size, bitstring.

```
> echo "hello" | sha1sum
f572d396fae9206628714fb2ce00f72e94f2258f —
> echo "hella" | sha1sum
1519ca327399f9d699afb0f8a3b7e1ea9d1edd0c —
> echo "can't believe it's not butter!"|sha1sum
34e780e19b07b003b7cf1babba8ef7399b7f81dd —
```

1 Bob computes a one-way hash of his document.

$$\begin{array}{rcl} \operatorname{hash} & \leftarrow & h(M) \\ & \operatorname{sig} & \leftarrow & E_{S_B}(\operatorname{hash}) \\ D_{P_B}(\operatorname{sig}) & \stackrel{?}{=} & h(M) \end{array}$$

- 1 Bob computes a one-way hash of his document.
- 2 Bob decrypts the hash with his private key, thereby signing it.

$$\begin{array}{rcl} \operatorname{hash} & \leftarrow & h(M) \\ & \operatorname{sig} & \leftarrow & E_{S_B}(\operatorname{hash}) \\ D_{P_B}(\operatorname{sig}) & \stackrel{?}{=} & h(M) \end{array}$$

- 1 Bob computes a one-way hash of his document.
- 2 Bob decrypts the hash with his private key, thereby signing it.
- 3 Bob sends the decrypted hash and the document to Alice.

$$\begin{array}{rcl} \operatorname{hash} & \leftarrow & h(M) \\ \operatorname{sig} & \leftarrow & E_{S_B}(\operatorname{hash}) \\ D_{P_B}(\operatorname{sig}) & \stackrel{?}{=} & h(M) \end{array}$$

- 1 Bob computes a one-way hash of his document.
- 2 Bob decrypts the hash with his private key, thereby signing it.
- Sob sends the decrypted hash and the document to Alice.
- 4 Alice decrypts the hash Bob sent him, and compares it against a hash she computes herself of the document. If they are the same, the signature is valid.

$$\begin{array}{rcl} \operatorname{hash} & \leftarrow & h(M) \\ \operatorname{sig} & \leftarrow & E_{S_B}(\operatorname{hash}) \\ D_{P_B}(\operatorname{sig}) & \stackrel{?}{=} & h(M) \end{array}$$

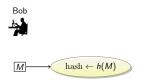
Signature Protocol. . .

Alice

M

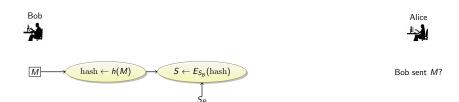
Bob sent M?

Signature Protocol. . .

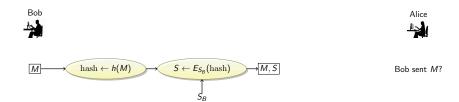


Alice

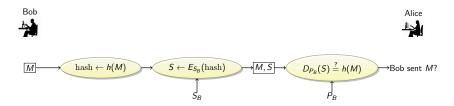
Bob sent M?



Signature Protocol. . .



Signature Protocol. . .



Cryptographic Hash Functions...

- CHFs should be
 - deterministic
 - one-way
 - collision-resistant

i.e., easy to compute, but hard to invert.

- I.e.
 - given message M, it's easy to compute $y \leftarrow h(M)$;
 - given a value y it's hard to compute an M such that y = h(M).

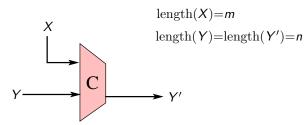
This is what we mean by CHFs being one-way.

Weak vs. Strong Collision Resistance

- CHFs also have the property to be collision resistant.
- Weak collision resistance:
 - Assume you have a message M with hash value h(M).
 - Then it should be hard to find a different message M' such that h(M) = h(M').
- Strong collision resistance:
 - It should be hard to find two different message M_1 and M_2 such that $h(M_1) = h(M_2)$.
- Strong collisions resistance is hard to prove.

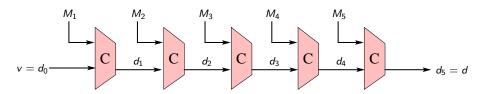
Merkle-Damgøard Construction

• Hash functions are often built on a compression function C(X,Y):



- X is (a piece of) the message we're hashing.
- \bullet Y and Y' is the hash value we're computing.

Merkle-Damgård Construction...



- For long messages M we break it into pieces M_1, \ldots, M_k , each of size m.
- Our initial hash value is an initialization vector v.
- We then compress one M_i at a time, chaining it together on the previous hash value.

Outline

- Introduction
- RSA Signature Scheme
- 3 Elgamal Signature Scheme
- 4 Cryptographic Hash Functions
- Birthday attacks
- 6 Summary

Birthday attacks 28/36

- Given a group of n people, what is the probability that two share a birthday?
- Examine the probability that no two share a birthday: (let B_i be person i's birthday)
 - n = 1:1
 - n = 2:364/365
 - n=3: probability that B_3 differs from both B_1 and B_2 and that none of the first two share a birthday: 363/365 * 364/365
 - n = 4:, probability that B_4 differs from all of $B_{1...3}$ and that none of the first three share a birthday: 362/365 * (363/365 * 364/365)
 - and so on . . .

Birthday attacks 29/36

This generalizes to

$$\frac{365!}{365^n(365-n)!}$$

- It takes only 23 people to give greater than .5 probability that two people share a birthday in a domain with cardinality 365.
- For a domain with cardinality c, .5 probability is reached with approximately $1.2\sqrt{c}$ numbers.
- So what does this have to do with checksums?

• Assume our hash function *H* has *b*-bit output.

- Assume our hash function *H* has *b*-bit output.
- The number of possible hash values is 2^b .

- Assume our hash function *H* has *b*-bit output.
- The number of possible hash values is 2^b .
- Attack:

- Assume our hash function *H* has *b*-bit output.
- The number of possible hash values is 2^b .
- Attack:
 - **1** Eve generates large number of messages m_1, m_2, \ldots

- Assume our hash function H has b-bit output.
- The number of possible hash values is 2^b .
- Attack:
 - **1** Eve generates large number of messages m_1, m_2, \ldots
 - ② She computes their hash values $H(m_1), H(m_2), \ldots$

- Assume our hash function H has b-bit output.
- The number of possible hash values is 2^b .
- Attack:
 - **1** Eve generates large number of messages m_1, m_2, \ldots
 - ② She computes their hash values $H(m_1), H(m_2), \ldots$
 - She waits for two messages m_i and m_j such that $H(m_i) = H(m_j)$.

- Assume our hash function H has b-bit output.
- The number of possible hash values is 2^b .
- Attack:
 - **1** Eve generates large number of messages m_1, m_2, \ldots
 - ② She computes their hash values $H(m_1), H(m_2), \ldots$
 - She waits for two messages m_i and m_j such that $H(m_i) = H(m_j)$.
- Eve needs to generate $\approx 2^b$ inputs to find a collision, right?

- Assume our hash function H has b-bit output.
- The number of possible hash values is 2^b .
- Attack:
 - ① Eve generates large number of messages m_1, m_2, \ldots
 - ② She computes their hash values $H(m_1), H(m_2), \ldots$
 - She waits for two messages m_i and m_j such that $H(m_i) = H(m_j)$.
- Eve needs to generate $\approx 2^b$ inputs to find a collision, right?
- Wrong! By the birthday paradox, it is likely that two messages will have the same hash value!

- Assume our hash function H has b-bit output.
- The number of possible hash values is 2^b .
- Attack:
 - ① Eve generates large number of messages m_1, m_2, \ldots
 - ② She computes their hash values $H(m_1), H(m_2), \ldots$
 - She waits for two messages m_i and m_j such that $H(m_i) = H(m_j)$.
- Eve needs to generate $\approx 2^b$ inputs to find a collision, right?
- Wrong! By the birthday paradox, it is likely that two messages will have the same hash value!
- Security is $\approx 2^{b/2}$ not 2^b .

- Assume our hash function H has b-bit output.
- The number of possible hash values is 2^b .
- Attack:
 - ① Eve generates large number of messages m_1, m_2, \ldots
 - ② She computes their hash values $H(m_1), H(m_2), \ldots$
 - She waits for two messages m_i and m_j such that $H(m_i) = H(m_j)$.
- Eve needs to generate $\approx 2^b$ inputs to find a collision, right?
- Wrong! By the birthday paradox, it is likely that two messages will have the same hash value!
- Security is $\approx 2^{b/2}$ not 2^b .
- Thus, a hash-function with 256-bit output has 128-bit security.

Birthday Attacks

- Little Billy wants to be the sole beneficiary of Grandma's will
- He prepares two message templates, like the one Charlie made, one being a field trip permission slip, and the other being a will in which Grandma bequeaths everything to her sweet grandson.
- Little Billy finds a pair of messages, one generated from each template, with equal checksums
- Little Billy has Grandma sign the field trip permission slip
- Little Billy now has a signature that checks out against the will he created

Profit!!

Outline

- Introduction
- 2 RSA Signature Scheme
- 3 Elgamal Signature Scheme
- 4 Cryptographic Hash Functions
- Birthday attacks
- 6 Summary

Summary 33/36

Summary

- Digital signatures make a message tamper-proof and give us authentication and nonrepudiation
- They only show that it was signed by a specific key, however
- It's cheaper to sign a checksum of the message rather than the whole message
 - Cryptographic checksums are necessary to do this securely

Summary 34/36

Readings and References

• Chapter 8.1.7, 8.2.1, 8.5.2 in *Introduction to Computer Security*, by Goodrich and Tamassia.

Summary 35/36

Acknowledgments

Additional material and exercises have also been collected from these sources:

• Matthew Landis, 620—Fall 2003—Cryptographic Checksums and Digital Signatures.

PFC1321 (MD5), www.ietf.org/rfc/rfc1321.txt

Summary 36/36