Objects & Relationships

Prolog programs deal with

- objects, and
- relationships between objects

English: “Christian likes the record”

Prolog: likes(christian, record).

Record Database

is_record(planet_waves).
is_record(desire).
is_record(slow_train).

recorded_by(planet_waves, bob_dylan).
recorded_by(desire, bob_dylan).
recorded_by(slow_train, bob_dylan).

recording_year(planet_waves, 1974).
recording_year(desire, 1975).
recording_year(slow_train, 1979).

What is Prolog?

Algorithm = Logic + Control

Robert A. Kowalski

Prescriptive Languages:
- Describe how to solve problem
- Pascal, C, Ada,...
- Also: Imperative, Procedural

Descriptive Languages:
- Describe what should be done
- Also: Declarative
Conditional Relationships

Prolog programs deal with

- conditional relationships between objects.

“C. likes Bob Dylan records recorded before 1979”

Prolog:

\[\text{likes(christian, X)} \leftarrow \text{is_record(X)}, \text{recorded_by}(X, \text{bob_dylan}), \text{recording_year}(X, \text{Year}), \text{Year} < 1979. \]

Asking Questions

Prolog programs

- solve problems by asking questions.

“Does Christian like the albums Planet Waves & Slow Train?”

Prolog:

\[\text{likes(christian, X)} \leftarrow \text{is_record(X)}, \text{recorded_by}(X, \text{bob_dylan}), \text{recording_year}(X, \text{Year}), \text{Year} < 1979. \]

\[\text{?- likes(christian, planet_waves)}. \text{yes} \]

\[\text{?- likes(christian, slow_train)}. \text{no} \]

Asking Questions...

In Prolog

- "." (a comma), means "and"

“Did Bob Dylan record an album in 1974?”

Prolog:

\[\text{?- recording_year(X, 1974)}. \text{X} = \text{planet_waves} \]

\[\text{?- recorded_by(planet_waves, bob_d)}. \text{yes} \]

…”Was Planet Waves recorded by Bob Dylan?”

“When was Planet Waves recorded?”

“Which album was recorded in 1974?”
Recursive Rules

“People are influenced by the music they listen to.
People are influenced by the music listened to by the people they listen to.

listens_to(bob_dylan, woody_guthrie).
listens_to(arlo_guthrie, woody_guthrie).
listens_to(van_morrison, bob_dylan).
listens_to(dire_straits, bob_dylan).
listens_to(bruce_springsteen, bob_dylan).
listens_to(björk, bruce_springsteen).

inf_by(X, Y) :- listens_to(X, Y).
inf_by(X, Y) :- listens_to(X, Z), inf_by(Z, Y).

Asking Questions...

Sometimes a query has more than one answer:

- Use ";" to get all answers.

<table>
<thead>
<tr>
<th>English:</th>
<th>Prolog:</th>
</tr>
</thead>
<tbody>
<tr>
<td>“What does Christian like?”</td>
<td>:- likes(christian, X).</td>
</tr>
<tr>
<td>X = planet_waves ;</td>
<td>X = desire ;</td>
</tr>
<tr>
<td>X = desire ;</td>
<td>no</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>English:</th>
<th>Prolog:</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Is Björk influenced by Bob Dylan?”</td>
<td>:- inf_by(bjork, bob_dylan).</td>
</tr>
<tr>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>“Is Bob Dylan influenced by Bruce Springsteen?”</td>
<td>:- inf_by(bob_dylan, bruce_s).</td>
</tr>
<tr>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>English:</th>
<th>Prolog:</th>
</tr>
</thead>
<tbody>
<tr>
<td>“List the albums and their artists!”</td>
<td>:- is_record(X), recorded_by(X, Y).</td>
</tr>
<tr>
<td>X = planet_waves,</td>
<td>X = desire,</td>
</tr>
<tr>
<td>Y = bob_dylan ;</td>
<td>Y = bob_dylan ;</td>
</tr>
<tr>
<td>X = slow_train,</td>
<td>no</td>
</tr>
</tbody>
</table>
Answering Questions...

\[\text{logician}(X), \text{american}(X). \]

\[\text{logician}(X) \]
\[\text{american}(X) \]
\[X = \text{ron} \]
\[\text{scientist}(X), \text{american}(\text{helder}), \text{fail} \]
\[\text{scientist}(\text{helder}), \text{scientist}(\text{ron}) \]

is_record(planet_waves). is_record(desire).
is_record(slow_train).

recorded_by(planet_waves, bob_dylan).
recorded_by(desire, bob_dylan).
recorded_by(slow_train, bob_dylan).

recording_year(planet_waves, 1974).
recording_year(desire, 1975).
recording_year(slow_train, 1979).

likes(christian, X) :-
is_record(X), recorded_by(X, bob_dylan),
recording_year(X, Year), Year < 1979.

Answering Questions

(1) scientist(leader).
(2) scientist(ron).
(3) portuguese(leader).
(4) american(ron).
(5) logician(X) :- scientist(X).
(6) ?- logician(X), american(X).

Answering Questions...

?- logician(X), american(X).

logician(X) american(X)

american(held)

X = ron

scientist(ron)

scientist(leader)
Answering Questions...

?- inf_by(bjork, bob_d).

(1) l_to(bjork, bob_d) fail
(2) l_to(bjork, Z) inf_by(Z, bob_d) Z=bruce_s

l_to(bjork, bob_d) fail

(1) l_to(bjork, woody_g) fail
(2) l_to(bjork, Z) inf_by(Z, woody_g) Z=bruce_s

l_to(bjork, woody_g) fail

(1) inf_by(X, Y) :- l_to(X, Y).
(2) inf_by(X, Y) :-
 l_to(X, Z),
 inf_by(Z, Y).

?- inf_by(bjork, bob_d).

succeed

Yes, I understand that the predicate \(\text{inf}_\text{by} \) is defined with two clauses:

1. \(\text{inf}_\text{by}(X, Y) \) if \(\text{l}_\text{to}(X, Y) \) fails;
2. \(\text{inf}_\text{by}(X, Y) \) if \(\text{l}_\text{to}(X, Z), \text{inf}_\text{by}(Z, Y) \) succeeds.

The example queries use these definitions to answer questions about the artist and year of a recording.

Answering Questions...

?- likes(christian, X).

is_record(X) artist(X, bob_d) recording_year(X, Y) \(Y<1979 \)

\(X = \text{planet_waves} \) \(Y=1979 \) succeed
\(X = \text{desire} \) \(Y=1975 \) succeed
\(X = \text{slow_train} \) \(Y=1974 \) fail

?- inf_by(bjork, woody_g).

listens_to(bob_dylan, woody_g).
listens_to(arlo_guthrie, woody_g).
listens_to(van_morrison, bob_d).
listens_to(dire_straits, bob_d).
listens_to(bruce_springsteen, bob_d).
listens_to(björk, bruce_s).

?– inf_by(bjork, bob_d).

succeed

?– inf_by(bjork, woody_g).
Color a planar map with at most four colors, so that contiguous regions are colored differently.

?- color(R1, R2, R3, R4, R5, R6).
R1 = R4 = red, R2 = blue, R3 = R5 = green, R6 = yellow ;
R1 = red, R2 = blue, R3 = R5 = green, R4 = R6 = yellow.

Map Coloring

Map Coloring V – Backtracking

A coloring is OK iff
1. The color of Region 1 ≠ the color of Region 2, and
2. The color of Region 1 ≠ the color of Region 3, ...

color(R1, R2, R3, R4, R5, R6) :-
 diff(R1, R2), diff(R1, R3), diff(R1, R5), diff(R1, R6),
 diff(R2, R3), diff(R2, R4), diff(R2, R5), diff(R2, R6),
 diff(R3, R4), diff(R3, R6), diff(R5, R6).

diff(red,blue). diff(red,green). diff(red,yellow).
diff(blue,red). diff(blue,green). diff(blue,yellow).
diff(green,red). diff(green,blue). diff(green,yellow).
diff(yellow, red).diff(yellow,blue). diff(yellow,green).
Readings and References...

<table>
<thead>
<tr>
<th>Computing with Logic</th>
<th>Maier & Warren</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge Systems Through Prolog</td>
<td>Steven H. Kim</td>
</tr>
<tr>
<td>Natural Language Processing in Prolog</td>
<td>Gazdar & Mellish</td>
</tr>
<tr>
<td>Language as a Cognitive Process</td>
<td>Winograd</td>
</tr>
<tr>
<td>Prolog and Natural Language Analysis</td>
<td>Pereira and Shieber</td>
</tr>
<tr>
<td>Computers and Human Language</td>
<td>George W. Smith</td>
</tr>
<tr>
<td>Introduction to Logic</td>
<td>Irving M. Copi</td>
</tr>
<tr>
<td>Beginning Logic</td>
<td>E.J. Lemmon</td>
</tr>
</tbody>
</table>

Map Coloring VI – Backtracking

A Prolog program consists of a number of clauses:

Rules – Have head + body:

- head
- body
- Can be recursive

Facts – Head but no body.
- Always true.

Readings and References

- Read Scott, pp. 624–641.

<table>
<thead>
<tr>
<th>Prolog by Example</th>
<th>Coelho & Cotta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prolog: Programming for AI</td>
<td>Bratko</td>
</tr>
<tr>
<td>Programming in Prolog</td>
<td>Clocksin & Mellish</td>
</tr>
<tr>
<td>The Craft of Prolog</td>
<td>O'Keefe</td>
</tr>
<tr>
<td>Prolog for Programmers</td>
<td>Kluzniak & Szpakowicz</td>
</tr>
<tr>
<td>Prolog</td>
<td>Alan G. Hamilton</td>
</tr>
<tr>
<td>The Art of Prolog</td>
<td>Sterling & Shapiro</td>
</tr>
</tbody>
</table>
Prolog So Far...

- A clause consists of
 - atoms Start with lower-case letter.
 - variables Start with upper-case letter.
- Prolog programs have a
 - Declarative meaning
 * The relations defined by the program
 - Procedural meaning
 * The order in which goals are tried

Prolog So Far...

- A question consists of one or more goals:
 - `?- likes(chris, X), smart(X).`
 - `"," means and`
 - Use ";" to get all answers
 - Questions are either
 * Satisfiable (the goal succeeds)
 * Unsatisfiable (the goal fails)
 - Prolog answers questions (satisfies goals) by:
 * instantiating variables
 * searching the database sequentially
 * backtracking when a goal fails