Manipulating the Database

- So far we have assumed that the Prolog database is static, i.e. that it is loaded once with the program and never changes thereafter.
- This is not necessarily true; we can add or remove facts and rules from the database at will.
- This is not necessarily good programming practice, but sometimes it is necessary and sometimes it makes for elegant programs.
- In a nutshell:
 1. Allows us to program with side effects.
 2. Justified under some circumstances.
 3. Often inefficient.

Assert

- \texttt{assert(X)} adds a clause to the database.
- \texttt{asserta(X)} adds a clause to the \textit{beginning} of the database.
- \texttt{assertz(X)} adds a clause to the \textit{end} of the database.
- \texttt{assert} always succeeds, and backtracking does not undo the assertion.

Assert...

- \texttt{assert} can be used in \textit{machine learning} programs, programs which learn new facts as they progress.
- In some Prolog implementations you have to specify whether a certain clause is \texttt{dynamic} (new clauses can be added to the database during execution) or \texttt{static}:
 \begin{verbatim}
 ?- dynamic hanoi/5.
 \end{verbatim}
Write a program that learns the addresses of places in a city.

This program assumes a Manhattan-style city layout: locations are given as the intersection of streets and avenues.

?- loc(whitehorse, Ave, St).
Ave = 8, St = 11
?- loc(airport, Ave, St).
-- this airport
what avenue? 5.
what street? 32.
Ave = 5, St = 32
?- loc(airport, Ave, St).
Ave = 5, St = 32

location(whitehorse, 8, 11). location(microsoft, 8, 42).
location(condomeria, 8, 43). location(plunket, 7, 32).

% Do we know the location of X?
loc(X, Ave, Str) :- location(X, Ave, Str), !.

% if not, learn it!
loc(X, Ave, Street) :-
 nonvar(X), var(Ave), var(Str),
 write('-- this '), write(X), nl,
 write('what avenue? '), read(Ave),
 write('what street? '), read(Street),
 assert(location(X, Ave, Str)).
Clause...

List all the clauses whose head matches X.

```
list(X) :- clause(X, Y),
     print(X, Y),
     write('.'), nl, fail.
list(.).
```

print(X, true) :- !, write(X).
print(X, Y) :- write((X :- Y))).

?- list(append(X, Y, Z)).
 append([], ,4, 4).
 append([5|6], ,7,[5|8]) :-
 append(_6, _8, _8).

Clause

- `clause(X, Y)` finds all clauses in the database with head X and body Y.

```
append([], X, X).
append([A|B],C,[A|D]) :-
    append(B, C, D).
```

?- clause(append(X, Y, Z), T).
 X=[], Y=3, Z=3, Y=true ;
 X=[4|5], Y=6, Z=[4|7],
 Y=append(_5, _6, _7) ;
no

Clausal Representation of Data Structures

- Normally we represent a data structure using a combination of Prolog lists and structures.
- A graph can for example be represented as a list of edges, where each edge is represented by a binary structure:
  ```
  [edge(a, b), edge(c, b), edge(a, d), edge(c, d)]
  ```
- However, it is also possible to use clauses to represent data structures such as lists, trees, and graphs.
- It is usually not a good idea to do this, but sometimes it is useful, particularly when we are faced with a static data structure (one which does not change, or changes very little).

Clause...

- The goal `clause(X, Y)` instantiates X to the head of a goal (the left side of `-`) and Y to the body.
- X can be just a variable (in which case it will match all the clauses in the database), a fully instantiated (ground) term, or a term which contains some uninstantiated variables.
- The semantics of `clause`

Clause

- Note that a fact has a body `true`.
Clauses as Data Structures – Lists

```
list(c).
list(h).
list(r).
list(i).
list(s).
```

```
process_list :- list(X), process_item(X), fail.
process_list.
```

Clauses as Data Structures – Trees

```
inorder(nil).
inorder(Node) :-
    t(Node, Left, P, Right),
inorder(Left),
write(P), nl,
inorder(Right).

?- inorder(node1).
phone(adams, 5488)
phone(mcbride, 1781)
phone(thompson, 2432)
phone(white, 2432)
```

Clauses as Data Structures – Trees

```
t(node1, node2, phone(thompson, 2432), node3).
t(node2, nil, phone(adams, 5488), node4).
t(node3, nil, phone(white, 2432), nil).
t(node4, nil, phone(mcbride, 1781), nil).
```
Clausal Representation of Data Structures...

- In general it is a bad idea to represent data in this way.
- Inserting and removing data has to be done using `assert` and `retract`, which are fairly expensive operations.
- However, in Prolog implementations which support clause indexing, storing data in clauses gives us a way to access information directly, rather than through sequential search.
- The reason for this is that indexing uses hash tables to access clauses.

Switches...

```
turnon(Switch) :-
    call(Switch), !.
turnon(Switch) :-
    assert(Switch).

turnoff(Switch) :-
    retract(Switch).
turnoff(.)

flip(Switch) :-
    retract(Switch), !.
flip(Switch) :-
    assert(Switch).
```

Switches...

```
turnon(terse_mess).

......

flip(terse_mess).

message(C) :-
    terse_mess, write ('Error!'), nl, !.
message(C) :-
    write ('We are sorry to...'),
    write ('error has occurred near the symbol '),
    write(C), write('. Please accept our...'),
    nl, !.
```

Switches

- From *Prolog by Example*, Coelho & Cotta.
- In some cases it is a good idea to use global data rather than passing it around as a parameter.
- Assume we want to be able to switch between short and long error messages. Instead of extending every clause by an extra parameter (clumsy and inefficient) we use a global switch.
- The first clause in `turnon` will fire if the switch is already turned on.
- The first clause in `turnoff` fails if `Switch` was already off.
- The first clause in `flip` fails if `Switch` was turned off, in which case the second clause fires and the switch is turned on.
Many recursive programs are extremely inefficient because they solve the same subproblem several times.

In dynamic programming, the idea is simply to store the results of a computation in a table, and when we try to solve the same problem again we retrieve the value from the table rather than computing the value once more.

There is a variation of dynamic programming known as memoization.

The Towers of Hanoi problem is a classic problem in computer science. It involves moving a stack of disks from one peg to another, using a third peg for intermediate storage. The rules are:

1. Only one disk can be moved at a time.
2. A disk can only be moved if it is the top disk on a peg.
3. A larger disk cannot be placed on top of a smaller disk.

Here is a recursive solution to the problem:

1. Move the top N-1 disks from A to C.
2. Move the remaining (largest) disk from A to B.
3. Move the N-1 disks from C to B.

Here is the code for the Towers of Hanoi problem:

```prolog
:- op(100, xfx, to).

hanoi(1, A, B, C, [A to B]).
hanoi(N, A, B, C, Ms) :-
    N > 1,
    N1 is N-1,
    hanoi(N1, A, C, B, M1),
    hanoi(N1, C, B, A, M2),
    append(M1, [A to B|M2], Ms).
go(N, Moves) :-
    hanoi(N, a, b, c, Moves).
```
Memoization – Towers of Hanoi...

?- go(2,M).
 M = [a to c, a to b, c to b]

?- go(3,M).
 M = [a to b, a to c, b to c, a to b, c to a, c to b, c to a, b to a, c to b, a to c, a to b, c to b]

?- go(4,M).
 M = [a to c, a to b, c to b, a to c, b to a, b to c, a to c, a to b, c to b, c to a, b to a, c to b, a to c, a to b, c to b]

Example – Gensym

- If we want to store data between different top-level queries, then using the database is our only option.
- In the following example we want to generate new atoms.
- In order to make this work, gensym has to store the number of atoms with a given prefix that it has generated so far. The clause current_num(Root, Num) is used for this purpose. There is one current_num clause for each kind of atom that we generate.

Memoization – Towers of Hanoi...

hanoi(1, _3, _5, _4, [_3 to _5]) :- !.

hanoi(2, _3, _4, _5,
 [_3 to _5, _3 to _4, _5 to _4]) :- !.

hanoi(3, _3, _5, _4,
 [_3 to _5, _3 to _4, _5 to _4,
 _3 to _5, _4 to _3, _4 to _5,
 _3 to _5]) :- !.

hanoi(1, 3, 5, 4, [3 to 5]) :- !.

hanoi(2, 3, 4, 5,
 [3 to 5, 3 to 4, 5 to 4]) :- !.

hanoi(3, 3, 5, 4,
 [3 to 5, 3 to 4, 5 to 4,
 3 to 5, 4 to 3, 4 to 5,
 3 to 5]) :- !.

?- go(1,M).
 M = [A to B, C to A, B to A, A to C, C to B, B to C, A to C, C to A, B to C, A to B, C to B, B to A, A to B, C to A, B to C, A to A]

?- go(2,M).
 M = [A to B, A to C, B to C, A to B, C to A, C to B, A to C, A to B, C to B, C to A, B to A, C to B, A to C, A to B, C to A, B to C, A to A]

?- go(3,M).
 M = [A to B, A to C, B to C, A to B, C to A, C to B, A to C, A to B, C to B, C to A, B to A, C to B, A to C, A to B, C to A, B to C, A to A]

?- go(4,M).
 M = [A to B, A to C, B to C, A to B, C to A, C to B, A to C, A to B, C to B, C to A, B to A, C to B, A to C, A to B, C to A, B to C, A to A]

hanoi(1, A, B, C, [A to B]).
hanoi(N, A, B, C, Ms) :-
 N > 1, R is N-1,
 lemma(hanoi(R, A, C, B, M1)),
 hanoi(N1, C, B, A, M2),
 append(M1, [A to B|M2], Ms).

lemma(P) :- call(P),
 asserta((P :- !)).

go(N, Pegs, Moves) :-
 hanoi(N, A, B, C, Moves),
 Pegs=[A, B, C].
Example – Gensym...

gensym(Root, Atom) :-
 get_num(Root, Num),
 name(Root, Name1),
 int_name(Num, Name2),
 append(Name1, Name2, Name),
 name(Atom, Name).

get_num(Root, Num) :-
 retract(current_num(Root, Num1)),
 !, Num is Num1 + 1,
 asserta(current_num(Root, Num)).

get_num(Root, 1) :-
 asserta(current_num(Root, 1)).

int_name(Int, List) :- int_name(Int, [], List).
int_name(I, Sofar, [C|Sofar]) :-
 I<10, !, C is I+48.
int_name(I, Sofar, List) :-
 Tophalf is I/10, Bothalf is I mod 10,
 C is Bothalf + 48,
 int_name(Tophalf, [C|Sofar], List).

?- gensym(chris, A).
A = chris1
?- gensym(chris, A).
A = chris2
?- gensym(chris, A).
A = chris3