
520—Spring 2004—20

520 — Principles of Programming
Languages
20: Modula-2

Christian Collberg

collberg@cs.arizona.edu

Department of Computer Science

University of Arizona

– p. 1 520—Spring 2004—20

History

Modula-2 is a descendant of Pascal, also designed by
Niklaus Wirth. There was an intermediate language
called “Modula” but it never caught on. Modula-3 was
not designed by Wirth but by a committee from Olivetti
and DEC.

Modula-2 also traces its ancestry from Mesa, a
language designed at Xerox. The joke is that Modula-2
is what Wirth remembered of Mesa after he returned
from a sabbatical at Xerox, slightly drunk and jet-lagged
from the trans-atlantic flight.

– p. 2

520—Spring 2004—20

Modula-2 vs. Pascal

Unlike Pascal, Modula-2 is case sensitive. All keywords
are in CAPITALS.

Unlike Pascal, all control structures have matching
ENDs.

Comments can be nested, like this:

(* (* Hi! *) Bye! *)

There are no gotos.

There’s no automatic conversion between integers and
reals.

Boolean expressions are short-circuit.

– p. 3 520—Spring 2004—20

Control Structures

IF boolean expression THEN
statement-sequence

ELSIF boolean expression THEN
statement-sequence

ELSIF boolean expression THEN
statement-sequence

ELSE
statement-sequence

END

WHILE boolean expression DO
statement-sequence

END

– p. 4

520—Spring 2004—20

Control Structures. . .

LOOP
statement-sequence (* EXIT can occur here. *)

END

designator := expression;

REPEAT
statement-sequence

UNTIL boolean expression

(* The BY-part is optional.
step must be a constant.*)

FOR i := from TO to [BY step] DO
statement-sequence

END
– p. 5 520—Spring 2004—20

Control Structures. . .

designator(actual parameters);

(* The ELSE-part is optional.
CASE expression OF

case list: statement-sequence |
case list: statement-sequence |
case list: statement-sequence |
ELSE statement-sequence END

(* To return a value from a function: *)
RETURN expression;

– p. 6

520—Spring 2004—20

Declarations

Modula-2 has a less strict declaration order than
Pascal. Declarations can be given in any order as long
as names are declared before use. The exception is
procedures which can be declared in any order.

There is a new equivalence type introduced which gives
a new name to a type.

Records can have arbitrarily many variant parts (CASE).

There is no special FUNCTION keyword.

There is a special function type.

– p. 7 520—Spring 2004—20

Declarations. . .

TYPE equivalence = type;
TYPE subrange = [from..to];
TYPE enumeration = (id,id,...);
TYPE array = ARRAY range OF type;
TYPE record = RECORD

field : type;
field : type;
CASE tag:type OF
...;
END;
CASE tag:type OF
...;
END;

END;

– p. 8

520—Spring 2004—20

Declarations. . .

TYPE func = PROCEDURE (INTEGER):REAL;
TYPE set = SET OF type;
TYPE ptr = POINTER TO type;

VAR name : type;
CONST name = value;

PROCEDURE name (formal-list) [: type];
BEGIN

...
END name

– p. 9 520—Spring 2004—20

Open Array Parameters

Unlike Pascal, Modula-2 has open array parameters
which allows you to pass arrays of any size to a
procedure:

PROCEDURE P (w : ARRAY OF INTEGER);

An open array of SYSTEM.WORD matches any
argument:

PROCEDURE P (w : ARRAY OF WORD); ...

VAR x : RECORD a:INTEGER; b:CHAR; END;
BEGIN

P(x);
END

– p. 10

520—Spring 2004—20

Open Array Parameters. . .

PROCEDURE P (w : ARRAY OF INTEGER);
BEGIN
FOR i := 0 HIGH(w)-1 DO

...w[i]...
END P;

VAR x : ARRAY [1..10] OF INTEGER;
VAR y : ARRAY [1..100] OF INTEGER;
BEGIN

P(x);
P(y);

END

– p. 11 520—Spring 2004—20

Types

CARDINAL is an unsigned integer type, which Pascal
doesn’t have.

BITSET is a special set the exact size of a machine
word.

SYSTEM.WORD is a type the exact size of a machine
word which is compatible with all other types of this size.

– p. 12

520—Spring 2004—20

Types. . .

You can do arbitrary type conversions, as long as the
types are the same size. Conversions convert static
types only, no bits actually change.

VAR x : ARRAY [1..1] OF INTEGER;
VAR y : INTEGER;
VAR z : CARDINAL;
BEGIN

z := (CARDINAL)x;
y := (INTEGER)z + 6;

END

– p. 13 520—Spring 2004—20

Separate Compilation

From the very beginning of language design history, it
was realized that monolithic languages (the entire
program is stored in one file and compiled all at once)
were no good.

Monlithic languages made compilation slow and made it
difficult for several programmers to work on the same
problem.

As early as 1958, FORTRAN II had separately compiled
procedures!

– p. 14

520—Spring 2004—20

Separate Compilation. . .

Eventually it was realized that a more formal approach
had to be taken to the definition of separately compiled
modules. A number of languages (Mesa, Modula-2,
Ada, . . .) constructed module systems built on the
ideas of David Parnas:

The specification must provide

1. to the intended user all the information that he will need
to use the program, and nothing more.

2. to the implementer all the information about the
intended use that he needs to complete the program,
and no additional information.

– p. 15 520—Spring 2004—20

Separate Compilation. . .

Each module has two parts, the specification and the
implementation. Much like .h and .c files in C, only
each part is separately compiled.

IMPORT PartDiffEqn;

SPEC TelescopicLens; SPEC SolarPanel;

MODULE Hubble;

IMPORT TelescopicLens;

IMPORT SolarPanel;

– p. 16

520—Spring 2004—20

Definition Module

DEFINITION MODULE IntStack;
TYPE Stack;

PROCEDURE Create () : Stack;
PROCEDURE Destroy (VAR S : Stack);

PROCEDURE Push (S : Stack; E : INTEGER);
PROCEDURE Pop (S : Stack; VAR E : INTEGER);

END IntStack.

– p. 17 520—Spring 2004—20

Modula-2 Modules

The information that the stack uses an array
implementation is hidden within the module’s
implementation unit, which is available only to the
module’s implementer.

Note that the Stack type is implemented as a pointer.
This is in contrast to an Ada implementation which used
a static representation.

Note that – since Modula-2 does not support garbage
collection – we need explicit procedures for memory
allocation and deallocation.

– p. 18

520—Spring 2004—20

Implementation Module

IMPLEMENTATION MODULE IntStack;
TYPE Stack = POINTER TO RECORD

space : ARRAY [1..100] OF INTEGER;
index : CARDINAL;

END;
PROCEDURE Create () : Stack;
BEGIN ... END Create;
PROCEDURE Destroy (VAR S : Stack);
BEGIN ... END Destroy;
PROCEDURE Push (S : Stack; E : INTEGER);
BEGIN ... END Push;
PROCEDURE Pop (S : Stack; VAR E : INTEGER);
BEGIN ... END Pop;

END IntStack.

– p. 19 520—Spring 2004—20

Using a Module

MODULE Main;
IMPORT IntStack, Storage;
VAR S : IntStack.Stack;

BEGIN
S := IntStack.Create ();
IntStack.Push (S, 314);
IntStack.Destroy (S);

END Main.

– p. 20

520—Spring 2004—20

Generic Modules

Modula-2 does not support Generic modules, but much
like in C, this can be simulated using untyped pointers.

SYSTEM.ADDRESS is equivalent to C’s void*.

– p. 21 520—Spring 2004—20

Generic Definition Module

DEFINITION MODULE GenStack;
IMPORT SYSTEM;

TYPE Stack;

PROCEDURE Create () : Stack;
PROCEDURE Destroy (VAR S : Stack);

PROCEDURE Push (S : Stack; E : SYSTEM.ADDRESS);
PROCEDURE Pop (S:Stack; VAR E:SYSTEM.ADDRESS);

END GenStack.

– p. 22

520—Spring 2004—20

Generic Implementation Module

IMPLEMENTATION MODULE GenStack;
IMPORT SYSTEM, Storage;
TYPE Stack = POINTER TO RECORD

space : ARRAY [1..100] OF SYSTEM.ADDRESS;
index : CARDINAL; END;

PROCEDURE Create () : Stack;
BEGIN ... END Create;
PROCEDURE Destroy (VAR S : Stack);
BEGIN ... END Destroy;
PROCEDURE Push (S : Stack; E : SYSTEM.ADDRESS);
BEGIN ... END Push;
PROCEDURE Pop (S:Stack; VAR E:SYSTEM.ADDRESS);
BEGIN ... END Pop;

END GenStack.

– p. 23 520—Spring 2004—20

Using a Generic Module

MODULE Main;
IMPORT GenStack, Storage;
VAR S : GenStack.Stack;

E : POINTER TO INTEGER;
BEGIN

S := GenStack.Create ();
NEW (E); Eˆ := 314;
GenStack.Push (S, E);
GenStack.Destroy (S);

END Main.

– p. 24

520—Spring 2004—20

Local Modules

Modula-2 also has
local modules.

Local modules can be
nested within ech
other, within
procedures, etc.

No sane person ever
used them.

MODULE P;
IMPORT ...;
EXPORT ...;
MODULE Q;

IMPORT ...;
EXPORT ...;
MODULE R;

IMPORT ...;
EXPORT ...;

END R;
MODULE S;

IMPORT ...;
EXPORT ...;

END S;
END Q;

END P. – p. 25 520—Spring 2004—20

IO

Modula-2 has no defined IO procedures like Pascal’s
read and write.

Instead, each implementation was supposed to define
its own set of standard modules to do IO and related
systems functions.

There were some standard modules for IO, but even
them were’t always compatible.

This made porting a Modula-2 program much harder
than it should have been.

– p. 26

520—Spring 2004—20

Dynamic Allocation

There is a special module Storage that exports two
procedures ALLOCATE and DEALLOCATE.

The two built-in procedures NEW and DISPOSE are
translated into calls to ALLOCATE and DEALLOCATE.

This allows us, at least in theory, to write our own
storage allocators.

Modula-2 does not support garbage collection.

– p. 27 520—Spring 2004—20

Module SYSTEM

Modula-2 has a special SYSTEM module that contains any
system-specific definitions.
DEFINITION MODULE SYSTEM;

CONST BITSPERLOC = 8;

TYPE LOC; (* Smallest addressable unit of storage *)

ADDRESS = POINTER TO LOC;

PROCEDURE ADDADR (addr: ADDRESS; offset: CARDINAL): ADDRESS;

(* The address given by (offset + addr). *)

PROCEDURE ADR (VAR v: <anytype>): ADDRESS;

(* The address of variable v *)

PROCEDURE TSIZE (<type>; ...): CARDINAL;

(* Number of LOCS used to store a value of type <type>. *)

END SYSTEM.

– p. 28

520—Spring 2004—20

Facilities for Systems Programming

The SYSTEM module also has functions for constructing
co-routines (NEWPROCESS and TRANSFER).

The SYSTEM module also has a function IOTRANSFER
for handling interrupts. Modules can be given an
interrupt priority:

MODULE Printer[2];
...

BEGIN
...

END Printer;

– p. 29 520—Spring 2004—20

Readings and References

http://murray.newcastle.edu.au/users/staff/peter/m2/Modula2.html

http://www.modulaware.com/m2wr

http://floppsie.comp.glam.ac.uk/Glamorgan/gaius/web/GNUModula2.html

A Modula-2-to-C translator is available on lectura:
/home/cs520/2003/bin/m2c. It can also be downloaded from
here: http://www.mathematik.uni-ulm.de/modula.

– p. 30

http://murray.newcastle.edu.au/users/staff/peter/m2/Modula2.html
http://www.modulaware.com/m2wr
http://floppsie.comp.glam.ac.uk/Glamorgan/gaius/web/GNUModula2.html
/home/cs520/2003/bin/m2c
http://www.mathematik.uni-ulm.de/modula

	History
	Modula-2 vs. Pascal
	Control Structures
	Control Structuresldots
	Control Structuresldots
	Declarations
	Declarationsldots
	Declarationsldots
	Open Array Parameters
	Open Array Parametersldots
	Types
	Typesldots
	Separate Compilation
	Separate Compilationldots
	Separate Compilationldots
	Definition Module
	Modula-2 Modules
	Implementation Module
	Using a Module
	Generic Modules
	Generic Definition Module
	Generic Implementation Module
	Using a Generic Module
	Local Modules
	IO
	Dynamic Allocation
	Module SYSTEM
	Facilities for Systems Programming
	Readings and References

