
CSc 520

Principles of Programming Languages

35: Procedures — Closures

Christian Collberg

Department of Computer Science

University of Arizona

collberg@cs.arizona.edu

Copyright c© 2005 Christian Collberg

April 22, 2005

1 Subroutine Closures

• A closure is a structure

(procedure addr,environment).

• To pass C() to A we construct a closure consisting of C’s address and the static link that would have
been used if C would have been called directly:

program M;

procedure A(procedure P)

P();

end

procedure C(); begin end;

begin

A(C);

end

2 Deep Binding

• When a reference to a procedure is created (for example by passing it as a reference to another
procedure), when are scope rules applied?

1. When the reference is first created?

2. When the routine is first called?

• Early binding of a referencing environment (what Pascal uses) is called deep binding.

1



3 Subroutine Closures. . .

procedure A(I:integer; procedure P)

procedure B(); begin write(I); end;

begin

if I > 1 then P() else A(2,B);

end

procedure C(); begin end;

begin

A(1,C);

end

• There are two I:s when B is called.

4 Subroutine Closures. . .

I=1

P={C,*}

static link

I=2

P={B,*}

static link

static link

B()

A(2,B)

A(1,C)

main

• A closure was created for B when A(2,B) was closed, hence B will print 1.

5 First-Class Subroutines

• A language construct is first-class if it can be passed as a parameter, returned from a subroutine, or
assigned to a variable.

• A language construct is second-class if it can be passed as a parameter but not be returned from a
subroutine, or assigned to a variable.

• A language construct is third-class if it can’t even be passed as a parameter.

• Procedures are second-class in most imperative languages.

6 First-Class Subroutines. . .

• If a procedure can be returned as the result of a function we could reference an environment that has
gone out of scope:

2



procedure A() : procedure;

var x : integer := 5;

procedure B();

write(x);

end

begin

return B;

end;

begin

var X : procedure := A();

X();

end

7 First-Class Subroutines. . .

• In functional languages functions are first-class.

• Functional languages specify that local variables have unlimited extent — they exist for as long as
someone references them.

• Algol-like languages specify that local variables have limited extent — they exist until the scope in
which they are declared is exited.

• Objects with limited extent can be stored on a stack. Objects with unlimited extent must be stored
on the heap.

8 First-Class Subroutines. . .

• C and C++ do not have nested scope — no problem.

• Modula-2 — global procedures are first-class (can be stored), local procedures are third-class.

• Modula-3 — global procedures are first-class, local procedures are second-class (can be passed as
parameters).

• Ada 83 — procedures are third class.

• Ada 95 — nested procedures can be returned if the scope in which it was declared is at least as wide
as that of the declared return type. I.e. a procedure can only be propagated to an area of the program
where the referencing environment is active.

9 Call-With-Current-Continuation

• The Scheme built-in function call-with-current-continuation (also called call/cc) takes a func-
tion as argument:

call-with-current-continuation (foo)

(foo cont)

foo takes a continuation as argument.

• (call/cc foo) calls foo, passing it the current continuation.

• A continuation is a closure that holds the current program counter and environment.

3



10 Call-With-Current-Continuation. . .

• foo can invoke the continuation and immediately return to the situation as it was when the call was
made.

• Any intermediate stack frames are popped off.

• Continuations are first-class: you can store them in variables, return them from functions, etc.

• call/cc can be used as a general building-block to construct a variety of control structures, such as
iterators and coroutines.

• Continuations can, for example, be used to quickly exit a tree-search procedure once the node we’re
looking for has been found.

11 Call-With-Current-Continuation. . .

• The function throws the continuation the value 99 which makes it pop out of the current evaluation
and return 99:

> (call/cc (lambda (c) (c 99)))

99

• The expression (* [] 76) is never executed. Rather, the function pops out and returns 99:

> (call/cc (lambda (c) (* (c 99) 76)))

99

12 Call-With-Current-Continuation. . .

• Continuations can be stored in variables and invoked later:

> (let ((cont #f))

(call/cc (lambda (k) (set! cont k)))

(cont #f))

99

• Or, like this:

> (define cont #f)

> (+ 5 (call/cc

(lambda (e) (set! cont e) (* 4 3))))

17

> (cont 10)

15

13 Readings and References

• Read Scott, pp. 141–143

4


