
CSc 520 — Principles of Programming Languages

31 : Control Structures — Iterators

Christian Collberg

Department of Computer Science

University of Arizona

collberg+520@gmail.com

Copyright c© 2008 Christian Collberg

April 7, 2008

1 Iterators

• FOR-loops are typically used to iterate over some range of enumerable values.

• Iterators are used to iterate over an abstraction, such as the elements of a list, the nodes of a tree,
the edges of a graph, etc.

• For example,

for n := tree_nodes_in_inorder(T) do

print n

end

Iterators in Java

2 Iterators in Java

• In object-oriented languages it is typical to create an enumeration object i which contains the
current state of the iteration:

LinkedList<String> L = new LinkedList<String>();

L.add("Bebe");

L.add("Wendy");

L.add("Nelly");

Iterator<String> i = L.iterator();

while (i.hasNext()) {

String c = i.next();

System.out.println(c);

}

• This is not as clean as in languages with built-in support for iterators.

1

3 Java 1.5 extended for-loop

• As of Java 1.5, the for-loop has been augmented so you can say

LinkedList<String> L = new LinkedList<String>();

L.add("Bebe");

L.add("Wendy");

L.add("Nelly");

for (String c : L)

System.out.println(c);

• However, this is just syntactic sugar for calls to the Iterator class.

4 Java 1.5 extended for-loop

• You can tell that this is just syntactic sugar by looking at the bytecode the compiler generates (use
javap -c Iter):

29: aload_1

30: invokevirtual #8; // LinkedList.iterator:

33: astore_2

34: aload_2

35: invokeinterface #9,1; // java/util/Iterator.hasNext

40: ifeq 63

43: aload_2

44: invokeinterface #10,1; // java/util/Iterator.next

49: checkcast #11; // java/lang/String

52: astore_3

53: getstatic #12; // java/lang/System.out

56: aload_3

57: invokevirtual #13; // java/io/PrintStream.println

60: goto 34

2

Ruby iterators

5 Blocks

• Let’s write a simple Ruby for loop to search through an array looking for a particular value:

$flock = ["huey","dewey","louie"]

def isDuck?(name)

for i in 0...$flock.length

if $flock[i] == name then

return true

end

end

return false

end

puts isDuck?("dewey"), isDuck?("donald")

6 Iterators

• Ruby’s iterators are an easier way to do this.

• The Array class implements a method find that iterates through the array.

def isDuck?(name)

$flock.find do |x|

x == name

end

end

puts isDuck?("dewey")

puts isDuck?("donald")

7 Yield

• A block is enclosed within { } or do...end. Arguments to the block (there can be more than one) are
given within |...|.

• A block is passed to a method by giving it after the list of “normal” parameters.

• The method invokes the block by using yield.

• yield can take an argument which the method passed back to the block.

3

8 Yield. . .

def triplets()

yield "huey"

yield "dewey"

yield "louie"

end

triplets() {|d| puts d}

triplets() do |d|

puts d

end

9 Factorial

• Here’s the factorial function, as an iterator.

def fac(n)

f = 1

for i in 1..n

f *= i

yield f

end

end

fac(5) {|f| puts f}

10 Passing arguments

• yield can pass more than one value to the block.

def fac(n)

f = 1

for i in 1..n

f *= i

yield i,f

end

end

fac(5) do |i,x|

puts "#{i}! = #{x}"

end

11 Nesting iterators

• Iterators can be nested.

fac(3) do |i,x|

fac(3) do |j,y|

puts "#{i}! * #{j}! = #{x*y}"

4

end

end

12 Scope

• A local variable which is active when the block is started up, can be accessed (and modified) within
the block.

def sumfac(n)

y = 0

fac(n) do |i,x|

y = y + x

end

return y

end

puts sumfac(5)

13 Implementing Array#find

• We can implement our own find method:

def find(arr)

for i in 0..arr.length

if yield arr[i] then return true end

end

return false

end

puts find($flock) {|x| x=="dewey"}

puts find($flock) {|x| x=="donald"}

14 Array#collect

• collect applies the block to every element of an array, creating a new array. This is similar to Haskell’s
map.

$flock = ["huey","dewey","louie"]

$flock.each {|x| puts x}

puts $flock.collect {|x| x.length}

puts $flock.collect do |x|

"junior woodchuck, General " + x

end

15 Array#inject

• inject(init) is similar to Haskell’s foldl.

• inject() without an argument is like Haskell’s foldl1, i.e. it uses the first element of the array as
the starting value.

5

x = $flock.inject("") do |elmt,total|

total = elmt + " " + total

end

puts x

x = $flock.inject() do |elmt,total|

total = elmt + " " + total

end

puts x

6

Icon Generators

16 Icon Generators

Procedures are really generators; they can return 0, 1, or a sequence of results. There are three cases

fail The procedure fails and generates no value.

return e The procedure generates one value, e.

suspend e The procedure generates the value e, and makes itself ready to possibly generate more values.

procedure To(i,j)

while i <= j do {

suspend i

i+:= 1

}

end

17 Example

procedure To(i,j)

while i <= j do {

suspend i

i+:= 1

}

end

procedure main()

every k := To(1,3) do

write(k)

end

18 simple.icn

procedure P()

suspend 3

suspend 4

suspend 5

end

procedure main()

every k := P() do

write(k)

end

7

19 simple.icn. . .

> setenv TRACE 100

> simple

: main()

simple.icn : 8 | P()

simple.icn : 2 | P suspended 3

3

simple.icn : 9 | P resumed

simple.icn : 3 | P suspended 4

4

simple.icn : 9 | P resumed

simple.icn : 4 | P suspended 5

5

simple.icn : 9 | P resumed

simple.icn : 5 | P failed

simple.icn : 10 main failed

8

Iterators in CLU

20 CLU-Style Iterators

• Iterators were pioneered by CLU, a (dead) class-based language from MIT.

setsum = proc(s:intset) returns(int)

sum : int := 0

for e:int in intset$elmts(s) do

sum := sum + e

end

return sum

end setsum

21 CLU-style Iterators. . .

• Procedure setsum computes the sum of the elements in a set of integers.

• setsum iterates over an instance of the abstract type intset using the intset$elmts iterator.

• Each time around the loop, intset$elmts yields a new element, suspends itself, and returns control
to the loop body.

22 CLU-style Iterators. . .

intset = cluster is create,elmts,...

rep = array[int]

elmts = iter(s:cvt) yields(int)

i : int := rep$low(s)

while i <= rep$high(s) do

yield (s[i])

i = i + 1

end

end elmts

end intset

23 CLU-style Iterators. . .

• A CLU cluster is a typed module; a C++ class, but without inheritance.

• CLU makes a clear distinction between the abstract type (the cluster as seen from the outside), and
its representation (the cluster from the inside). The rep clause defines the relationship between the
two.

9

24 CLU-style Iterators. . .

elmts = iter(s:cvt) yields(int)

i : int := rep$low(s)

while i <= rep$high(s) do

yield (s[i])

i = i + 1

end

end elmts

25 CLU-style Iterators. . .

• s:cvt says that the operation converts its argument from the abstract to the representation type.

• rep$low and rep$high are the bounds of the array representation.

• yield returns the next element of the set, and then suspends the iterator until the next iteration.

• Iterators may be nested and recursive.

26 CLU-style Iterators. . .

array = cluster [t: type] is ...

elmts = iter(s:array[t]) yields(t)

for i:int in int$from to(

array[t]$low(a),

array[t]$high(a)) do

yield (a[i])

end

end elmts

end array

elmts = iter(s:cvt) yields(int)

for i:int in array$elmts(s) do

yield (i)

end

end elmts

27 CLU-style Iterators. . .

• Iterators may invoke other iterators.

• CLU supports constrained generic clusters (like Ada’s generic packages, only better).

28 CLU Iterators — Example A

• Here’s an example of a CLU iterator that generates all the integers in a range:

for i in from_to_by(first,last,step) do

...

end

10

29 CLU Iterators — Example A. . .

from_to_by = iter(from,to,by:int) yields(int)

i : int := from

if by> 0 then

while i <= to do

yield i

i +:= by

end

else

while i >= to do

yield i

i +:= by

end

end

30 CLU Iterators — Example B

• Here’s an example of a CLU iterator that generates all the binary trees of n nodes.

for t: bin_tree in bin_tree$tree_gen(n) do

bin_tree$print(t)

end

31 CLU Iterators — Example B. . .

bin_tree = cluster ...

node = record [left,right : bin_tree]

rep = variant [some : node, empty : null]

...

tree_gen = iter (k : int) yields (cvt)

if k=0 then

yield red$make_empty(nil)

else

for i:int in from_to(1,k) do

for l : bin_tree in tree_gen(i-1) do

for r : bin_tree in tree_gen(k-i) do

yield rep$make_some(node${l,r})

end

end

end

end tree_gen

...

end

11

Implementing Iterators

32 Iterator Implementation

Iter1 = iter (...)

... yield x

(1) ...

end

end Iter1

P = proc (...)

for i in Iter1(...) do

S

end

end P

33 Iterator Implementation

• Calling an iterator is the same as calling a procedure. Arguments are transferred, an activation record
is constructed, etc.

• Returning from an iterator is also the same as returning from a procedure call.

34 Iterator Implementation. . .

Resume frame
for Iter1

Activation
Record for
Iter 1

Activation
record for P resume link:

return address: (1)

35 Iterator Implementation. . .

• When an iterator yields an item, its activation record remains on the stack. A new activation record
(called a resume frame) is added to the stack.

• The resume frame contains information on how to resume the iterator. The return address-entry in
the resume frame contains the address in the iterator body where execution should continue when the
iterator is resumed.

36 Nested Iterators

for i in Iter1(...) do

for j in Iter2(...) do

S

12

end

end

37 Nested Iterators. . .

• Since iterators may be nested, a procedure may have several resume-frames on the stack.

• A new resume frame is inserted first in the procedure’s iterator chain.

• At the end of the for-loop body we resume the first iterator on the iterator chain:

1. The first resume frame is unlinked.

2. We jump to the address contained in the removed frame’s return address entry.

38 Nested Iterators. . .

return address: (1)

resume link: /

resume link:

AR for P

return address: (2)

resume link:

Resume AR for Iter2

Resume AR for Iter1

AR for Iter2

AR for Iter1

return address: (1)

resume link: /

resume link:

AR for P

When we get to the end

of Iter2’s body we

return as from a normal
call.

Iter1 may generate a

new item and P may

again start up Iter2.

Resume AR for Iter1

AR for Iter1

39 Simpler Iterator Implementation

Iter = iter (...)

while ... do

yield x

end

end

begin

for i in Iter(...) do

print(i);

end

end

⇓

40 Simpler Iterator Implementation. . .

PROCEDURE Iter (

Success, Fail : LABEL;

13

VAR Resume : LABEL; VAR Result : T);

BEGIN

WHILE ... DO

ResumeLabel:

Result := x;

Resume := ADDR(ResumeLabel);

GOTO Success

END;

GOTO Fail;

END

41 Simpler Iterator Implementation. . .

VAR Result : T;

VAR Resume : LABEL;

BEGIN

Iter(ADDR(SuccesLabel), ADDR(FailLabel),

Resume, Result);

SuccessLabel:

WRITE Result;

GOTO Resume;

FailLabel:

END;

14

Summary

42 Readings and References

1. Read Scott, pp. 278–284, 135CD-136CD.

2. Russell R. Atkinson, Barbara H. Liskov, and Robert W. Scheifler: Aspects of Implementing CLU,
Proceedings ACM National Conference, pp. 123–129, Dec, 1978.

3. Murer, Omohundro, Szyperski: Sather Iters: Object-Oriented Iteration Abstraction: ftp://ftp.icsi.berkeley.edu/

pub/techreports/1993/tr-93-045.ps.gz

4. Todd A. Proebsting: Simple Translation of Goal-Directed Evaluation, PLDI’97, pp. 1–6. This paper
describes an efficient implementation of Icon iterators.

43 Summary

• Sather (a mini-Eiffel) has adopted an iterator concept similar to CLU’s, but tailored to OO languages.

• Iterators function (and can be implemented as) coroutines. Smart compilers should, however, take care
to implement “simple” iterators in a more direct way (See the Sather paper).

• Inline expansion of iterators may of course be helpful, but the same caveats as for expansion of proce-
dures apply: code explosion, cache overflow, extra compilation dependencies.

15

