CSc 520 — Principles of Programming Languages

31 : Control Structures — Iterators

Christian Collberg
Department of Computer Science
University of Arizona
collberg+5200gmail . com

Copyright (© 2008 Christian Collberg

April 7, 2008

1 Iterators

e FOR-loops are typically used to iterate over some range of enumerable values.

e Iterators are used to iterate over an abstraction, such as the elements of a list, the nodes of a tree,
the edges of a graph, etc.

e For example,

for n := tree_nodes_in_inorder(T) do
print n
end

Iterators in Java

2 Iterators in Java

e In object-oriented languages it is typical to create an enumeration object i which contains the
current state of the iteration:

LinkedList<String> L = new LinkedList<String>();
L.add("Bebe");

L.add("Wendy") ;

L.add("Nelly");

Iterator<String> i = L.iterator();
while (i.hasNext()) {
String ¢ = i.next();
System.out.println(c);
}

e This is not as clean as in languages with built-in support for iterators.

3 Java 1.5 extended for-loop

e As of Java 1.5, the for-loop has been augmented so you can say

LinkedList<String> L = new LinkedList<String>();
L.add("Bebe");
L.add("Wendy") ;
L.add("Nelly");
for (String c : L)
System.out.println(c);

e However, this is just syntactic sugar for calls to the Iterator class.

4 Java 1.5 extended for-loop

e You can tell that this is just syntactic sugar by looking at the bytecode the compiler generates (use
javap -c Iter):

29: aload_1

30: invokevirtual #8; // LinkedList.iterator:

33: astore_2

34: aload_2

35: invokeinterface #9,1; // java/util/Iterator.hasNext
40: ifeq 63

43: aload_2

44: invokeinterface #10,1; // java/util/Iterator.next
49: checkcast #11; // java/lang/String

52: astore_3

53: getstatic #12; // java/lang/System.out

56: aload_3

57: invokevirtual #13; // java/io/PrintStream.println
60: goto 34

Ruby iterators

5 Blocks

e Let’s write a simple Ruby for loop to search through an array looking for a particular value:
$flock = ["huey","dewey","louie"]

def isDuck?(name)
for i in 0...$flock.length
if $flock[i] == name then
return true
end
end
return false
end

puts isDuck?("dewey"), isDuck?("donald")

6 Iterators

e Ruby’s iterators are an easier way to do this.

e The Array class implements a method find that iterates through the array.

def isDuck?(name)
$flock.find do |x|
X == name
end
end

puts isDuck?("dewey")
puts isDuck?("donald")

7 Yield

A Dblock is enclosed within { } or do...end. Arguments to the block (there can be more than one) are
given within |...[.

A block is passed to a method by giving it after the list of “normal” parameters.

The method invokes the block by using yield.

e yield can take an argument which the method passed back to the block.

8 Yield...

def triplets()
yield "huey"
yield "dewey"
yield "louie"
end

triplets() {ld| puts d}

triplets() do |dl
puts d
end

9 Factorial
e Here’s the factorial function, as an iterator.

def fac(n)
f=1
for i in 1..n
f %=1
yield £
end
end

fac(5) {If| puts £}

10 Passing arguments
e yield can pass more than one value to the block.

def fac(n)
f=1
for i in 1..n
f x=1
yield i,f
end
end

fac(5) do |i,xl|
puts "#{i}! = #{x}"
end

11 Nesting iterators

e Iterators can be nested.

fac(3) do |i,xl|
fac(3) do 1j,yl
puts "#{i}! * #{j}! = #{xxy}"

end
end

12 Scope

e A local variable which is active when the block is started up, can be accessed (and modified) within
the block.

def sumfac(n)
y=0
fac(n) do |i,xl|
y=yt+tx
end
return y
end

puts sumfac(5)

13 Implementing Array#find

e We can implement our own find method:

def find(arr)
for i in O..arr.length
if yield arr[i] then return true end
end
return false
end

puts find($flock) {lx| x=="dewey"}
puts find($flock) {lx| x=="donald"}

14 Array#collect

e collect applies the block to every element of an array, creating a new array. This is similar to Haskell’s
map.

$flock = ["huey","dewey","louie"]
$flock.each {lx| puts x}

puts $flock.collect {l|x| x.length}
puts $flock.collect do |x]|

"junior woodchuck, General " + x
end

15 Array#inject

e inject(init) is similar to Haskell’'s foldl

e inject() without an argument is like Haskell’s f0ld11, i.e. it uses the first element of the array as
the starting value.

x = $flock.inject("") do |elmt,totall
total = elmt + " " + total

end

puts x

x = $flock.inject() do |elmt,totall
total = elmt + " " + total

end

puts x

Icon Generators

16 Icon Generators

Procedures are really generators; they can return 0, 1, or a sequence of results. There are three cases
fail The procedure fails and generates no value.
return e The procedure generates one value, e.

suspend e The procedure generates the value e, and makes itself ready to possibly generate more values.

procedure To(i,j)
while i <= j do {

suspend i
i+:= 1
b
end
17 Example

procedure To(i,j)
while i <= j do {
suspend i
it:=1
3

end

procedure main()
every k := To(1,3) do
write (k)
end

18 simple.icn

procedure P()
suspend 3
suspend 4
suspend 5

end

procedure main()
every k := P() do
write (k)
end

19

> setenv TRACE 100
> simple

simple.
simple.

3

simple.
simple.

4

simple.
simple.

5

simple.
simple.
simple.

icn
icn
icn
icn
icn
icn
icn
icn
icn

9
5

simple.icn. ..

main()

| PO
| P suspended 3

P
P

P
P

P
P

resumed
suspended 4

resumed
suspended 5

resumed
failed

10 main failed

Iterators in CLU

20 CLU-Style Iterators

e Iterators were pioneered by CLU, a (dead) class-based language from MIT.

setsum = proc(s:intset) returns(int)
sum : int := 0
for e:int in intset$elmts(s) do
sum := sum + e
end
return sum
end setsum

21 CLU-style Iterators...

e Procedure setsum computes the sum of the elements in a set of integers.
e setsum iterates over an instance of the abstract type intset using the intset$elmts iterator.

e Each time around the loop, intset$elmts yields a new element, suspends itself, and returns control
to the loop body.

22 CLU-style Iterators. ..

intset = cluster is create,elmts,...
rep = arrayl[int]
elmts = iter(s:cvt) yields(int)
i : int := rep$low(s)
while i <= rep$high(s) do
yield (s[i])
i=1+1
end
end elmts
end intset

23 CLU-style Iterators...

e A CLU cluster is a typed module; a C++ class, but without inheritance.

e CLU makes a clear distinction between the abstract type (the cluster as seen from the outside), and
its representation (the cluster from the inside). The rep clause defines the relationship between the
two.

24 CLU-style Iterators...

elmts = iter(s:cvt) yields(int)
i : int := rep$low(s)
while i <= rep$high(s) do
yield (s[i])
i=1+1
end
end elmts

25 CLU-style Iterators...

e s:cvt says that the operation converts its argument from the abstract to the representation type.
e rep$low and rep$high are the bounds of the array representation.
e yield returns the next element of the set, and then suspends the iterator until the next iteration.

e Iterators may be nested and recursive.

26 CLU-style Iterators...

array = cluster [t: type] is ...
elmts = iter(s:array[t]) yields(t)
for i:int in int$from to(
array[t]$low(a),
array[t]$high(a)) do
yield (alil)
end
end elmts
end array
elmts = iter(s:cvt) yields(int)
for i:int in array$elmts(s) do
yield (i)
end
end elmts

27 CLU-style Iterators...

e Iterators may invoke other iterators.

e CLU supports constrained generic clusters (like Ada’s generic packages, only better).

28 CLU Iterators — Example A

e Here’s an example of a CLU iterator that generates all the integers in a range:
for i in from_to_by(first,last,step) do

end

10

29 CLU Iterators — Example A...

from_to_by = iter(from,to,by:int) yields(int)
i : int := from
if by> O then
while i <= to do
yield i
i +:= by
end
else
while i >= to do
yield i
i +:= by
end
end

30 CLU Iterators — Example B
e Here’s an example of a CLU iterator that generates all the binary trees of n nodes.

for t: bin_tree in bin_tree$tree_gen(n) do
bin_tree$print (t)
end

31 CLU Iterators — Example B...

bin_tree = cluster ...
node = record [left,right : bin_tree]
rep = variant [some : node, empty : null]

tree_gen = iter (k : int) yields (cvt)
if k=0 then
yield red$make_empty(nil)
else
for i:int in from_to(1,k) do
for 1 : bin_tree in tree_gen(i-1) do
for r : bin_tree in tree_gen(k-i) do
yield rep$make_some(node${l,r})
end
end
end
end tree_gen

end

11

Implementing Iterators

32 Iterator Implementation

Iterl = iter (...)
yield x
(@D)
end
end Iterl
P =proc (...)
for i in Iteri1(...) do
S
end
end P

33 Iterator Implementation

e Calling an iterator is the same as calling a procedure. Arguments are transferred, an activation record
is constructed, etc.

e Returning from an iterator is also the same as returning from a procedure call.

34 Iterator Implementation. ..

Activation | |_____________________
record for P resume |ink:]

Activation
Record for {
Iter 1

Resume frame
for Iterl

35 Iterator Implementation. ..

e When an iterator yields an item, its activation record remains on the stack. A new activation record
(called a resume frame) is added to the stack.

e The resume frame contains information on how to resume the iterator. The return address-entry in
the resume frame contains the address in the iterator body where execution should continue when the
iterator is resumed.

36 Nested Iterators

for i in Iter1(...) do
for j in Iter2(...) do
S

12

end
end

37 Nested Iterators...

e Since iterators may be nested, a procedure may have several resume-frames on the stack.
e A new resume frame is inserted first in the procedure’s iterator chain.
e At the end of the for-loop body we resume the first iterator on the iterator chain:

1. The first resume frame is unlinked.

2. We jump to the address contained in the removed frame’s return address entry.

38 Nested Iterators...

AR for P AR for P
resunme |ink: 7;975;;97\];;:”7””/
AR for Iterl AR for Iterl

AR for lter2

Resurme AR for Iter2

Wien we get to the end
of Iter2's body we
return as froma normal
call.

Iterl may generate a
new i tem and P may
again start up lter2.

39 Simpler Iterator Implementation

Iter = iter (
while ...
yield x

end
end

begin

for i in Iter(...
print(i);

end
end

4

40 Simpler Iterator Implementation. ..

PROCEDURE Iter (
Success, Fail : LABEL;

13

VAR Resume : LABEL; VAR Result : T);
BEGIN
WHILE ... DO
Resumelabel:
Result := x;
Resume := ADDR(Resumelabel);
GOTO Success
END;
GOTO Fail;
END

41 Simpler Iterator Implementation. ..

VAR Result : T;
VAR Resume : LABEL;
BEGIN
Iter (ADDR(SuccesLabel), ADDR(FaillLabel),
Resume, Result);
SuccessLabel:
WRITE Result;
GOTO Resume;
FaillLabel:
END;

14

42

43

Summary

Readings and References

. Read Scott, pp. 278284, 135CD-136CD.

. Russell R. Atkinson, Barbara H. Liskov, and Robert W. Scheifler: Aspects of Implementing CLU,

Proceedings ACM National Conference, pp. 123-129, Dec, 1978.

Murer, Omohundro, Szyperski: Sather Iters: Object-Oriented Iteration AbStraction: tw://sp.ics: verkeley.can/

pub/techreports/1993/tr-93-045.ps.gz

Todd A. Proebsting: Simple Translation of Goal-Directed Evaluation, PLDI’97, pp. 1-6. This paper
describes an efficient implementation of Icon iterators.

Summary

Sather (a mini-Eiffel) has adopted an iterator concept similar to CLU’s; but tailored to OO languages.

Iterators function (and can be implemented as) coroutines. Smart compilers should, however, take care
to implement “simple” iterators in a more direct way (See the Sather paper).

Inline expansion of iterators may of course be helpful, but the same caveats as for expansion of proce-
dures apply: code explosion, cache overflow, extra compilation dependencies.

15

