Introduction

Starting with intermediate code in tree form, we generate the cheapest instruction sequence for each tree, using no more than \(r \) registers (\(R_0 \cdots R_{r-1} \)).

We will show an algorithm that integrates instruction selection and register allocation and generates optimal code for a large class of architectures.

Intermediate Code Example

```plaintext
WHILE i < 10 DO
  X := X + 5*Y;
  i := i + 2;
END
```
Machine Model

We will assume the existence of these types of instructions:

- **$R_i := E$**
 - E is any expression containing operators, registers, and memory locations. R_i must be one of the registers of E (if any). I.e., we assume 2-address instructions:
 - **2-address** $R_1 := R_1 + R_2$.
 - **3-address** $R_1 := R_2 + R_3$.

- **$R_i := M$**
 - A load instruction.

- **$M := R_i$**
 - A store instruction.

- **$R_i := R_j$**
 - A register copy instruction.

- **$R_i := R_i + \text{ind } R_j$**
 - A register indirect instruction.

- All instructions have equal cost.

Optimal Code Generation

To generate optimal code for an expression $E \equiv E_1 \text{ op } E_2$ we generate optimal code for E_1, optimal code for E_2, and then code for the operator.

- We have to consider every instruction that can evaluate op.
- If E_1 and E_2 can be computed in an arbitrary order, we have to consider both of them.
- We may not have enough registers available, so some temporary results may have to be stored in memory.
Basic (Naïve) Algorithm I

1. Compute the optimal cost for each node in the tree, assuming there are $1, 2, \cdots, r$ registers available. Also compute the optimal cost of computing the result into memory.
 - The cost of a node n includes the cost of the code for n’s sub-trees and the cost of the operator at n.

2. Store the result for each node n in a **cost vector** $C_n[i]$:
 - $C[1] = \text{Cost of computing } n \text{ into a register, with 1 (one) register available.}$
 - $C[2] = \text{As above, but with 2 available registers.}$
 - $C[3] = \cdots$
 - $C[0] = \text{Cost of computing } n \text{ into memory.}$

Basic (Naïve) Algorithm II

3. Traverse the tree and (using the cost vectors) decide which subtrees have to be computed into memory.

4. Traverse the tree and (again using the cost vectors) generate the final code:
 - First code for subtrees that have to be computed into memory.
 - Then code for other subtrees.
 - Then code for the root.

As we shall see, naïvely computing the costs recursively will result in us recomputing the same cost several times.

(Naïvely) Computing the Costs

FOR EACH instruction I that matches op DO
 - If the instruction requires the left operand to be in a register, then (recursively) compute the optimal cost $C_L[i]$ of evaluating the left subtree with i registers available.
 - If the instruction requires the right operand to be in a register, compute the cost $C_R[i-1]$ of eval. the right subtree with $i-1$ regs.
 - Compute the cost of evaluating the subtree at n: $C_L[i] + C_R[i-1] + 1$.

ENDFOR

\[\begin{align*}
R_i &:= R_i + R_j \\
R_i &:= R_i - R_j \\
R_i &:= R_i + M_j \\
R_i &:= R_i - M_j \\
M_i &:= R_j
\end{align*} \]
Some recursive algorithms are very inefficient, because they solve the same subproblem several times. That, for example, is the case with the Fibonacci function in the next slide.

A rather obvious solution is to store the results in a table as they are computed, and then check the table before solving a subproblem to make sure that it’s value hasn’t already been computed. This is known as memoization.

Even more efficient is to try to find a linear (topological) order in which the subproblems can be solved, and then solve them in that order, knowing that when we need the result of a specific subproblem, it has already been computed. This is dynamic programming.

 recurrence relations

\[
R_i := M_j
\]
\[
R_i := R_i \oplus R_j
\]
\[
R_i := R_i \ominus M_j
\]
\[
R_i := R_i \ominus R_j
\]
\[
R_i := M_j
\]
\[
R_i := R_i \oplus M_j
\]
\[
R_i := R_i \ominus R_j
\]
\[
R_i := M_j
\]

\[
R_i := R_i \ominus R_j
\]

\[
R_i := M_j
\]

\[
R_i := R_i \ominus M_j
\]

\[
R_i := R_i \ominus R_j
\]

\[
R_i := M_j
\]

\[
R_i := R_i \ominus M_j
\]

\[
R_i := R_i \ominus R_j
\]

\[
R_i := M_j
\]

\[
R_i := R_i \ominus M_j
\]

\[
R_i := R_i \ominus R_j
\]

\[
R_i := M_j
\]

\[
R_i := R_i \ominus M_j
\]

\[
R_i := R_i \ominus R_j
\]

\[
R_i := M_j
\]

\[
R_i := R_i \ominus M_j
\]

\[
R_i := R_i \ominus R_j
\]

\[
R_i := M_j
\]

\[
R_i := R_i \ominus M_j
\]

\[
R_i := R_i \ominus R_j
\]

\[
R_i := M_j
\]

\[
R_i := R_i \ominus M_j
\]

\[
R_i := R_i \ominus R_j
\]

\[
R_i := M_j
\]

\[
R_i := R_i \ominus M_j
\]

\[
R_i := R_i \ominus R_j
\]

\[
R_i := M_j
\]

\[
R_i := R_i \ominus M_j
\]

\[
R_i := R_i \ominus R_j
\]

\[
R_i := M_j
\]

\[
R_i := R_i \ominus M_j
\]

\[
R_i := R_i \ominus R_j
\]

\[
R_i := M_j
\]

\[
R_i := R_i \ominus M_j
\]

\[
R_i := R_i \ominus R_j
\]

\[
R_i := M_j
\]

\[
R_i := R_i \ominus M_j
\]

\[
R_i := R_i \ominus R_j
\]

\[
R_i := M_j
\]

\[
R_i := R_i \ominus M_j
\]

\[
R_i := R_i \ominus R_j
\]

\[
R_i := M_j
\]

\[
R_i := R_i \ominus M_j
\]

\[
R_i := R_i \ominus R_j
\]

\[
R_i := M_j
\]

\[
R_i := R_i \ominus M_j
\]

\[
R_i := R_i \ominus R_j
\]

\[
R_i := M_j
\]

\[
R_i := R_i \ominus M_j
\]

\[
R_i := R_i \ominus R_j
\]

\[
R_i := M_j
\]

\[
R_i := R_i \ominus M_j
\]

\[
R_i := R_i \ominus R_j
\]
Dynamic Programming Fibonacci

function Fib (n)
for i := 2 to n do

The Dynamic Programming Algorithm

Computing Costs

- There is a linear-time, dynamic programming, bottom-up algorithm for computing the costs.

 Compute C[i] at node n

- Consider each instruction $R_k := E$ where E matches the subtree, and choose the minimum $C[i]$, where $C[i]$ is the sum of
 1. $C[i]$ of n's left subtree
 2. $C[i − 1]$ of n's right subtree
 3. the cost of the instruction at n

$$
R_i := R_i \text{ op } R_j \\
R_i := R_i \text{ op } M_j \\
R_i := M_j \\
M_i := R_j
$$

Computing Costs – Example I (a)
Computing Costs – Example I (b)

1. E_1 into R_0 (2 regs avail); E_2 into R_1 (1 reg avail); Use $R_0 := R_0 - R_1$ at E; Cost $= E_2[2] + E_1[2] + 1 = 2 + 5 + 1 = 8$

2. E_2 into R_1 (2 regs); E_1 into R_0 (1 reg avail); Use $R_0 := R_0 + R_1$ at E; Cost $= E_2[2] + E_1[1] + 1 = 4 + 2 + 1 = 7$

3. E_2 into Memory (1 reg available); E_1 into R_0 (1 reg available); Use $R_0 := R_0 - M$ at E; Cost $= E_2[0] + E_1[1] + 1 = 0 + 1 + 1 = 2$

- Only one instruction to choose from.
- The min cost of computing E into memory is the min cost of computing E into a register ($= \min(2,2)$) plus 1 ($=3$).

Computing Costs – Example I (c)

- E_1 into R_0 (2 regs avail); E_2 into R_1 (1 reg avail); Use $R_0 := R_0 + R_1$ at E; Cost $= E_2[2] + E_1[2] + 1 = 5 + 2 + 1 = 8$

- E_2 into R_1 (2 regs); E_1 into R_0 (1 reg); Use $R_0 := R_0 + R_1$ at E; Cost $= E_2[2] + E_1[1] + 1 = 4 + 2 + 1 = 7$

- E_2 into Memory (2 regs); E_1 into R_0 (2 regs); Use $R_0 := R_0 + M$ at E; Cost $= E_2[0] + E_1[2] + 1 = 5 + 2 + 1 = 8$

- $C[2] = \min(8,7,8) = 7$.

Generating Code – Example I (e)

- E_3 into R_1 (2 regs); E_2 into R_1 (1 reg); Use $R_0 := R_0 + R_1$ at E; Cost $= E_2[2] + E_1[1] + 1 = 4 + 2 + 1 = 7$

- E_2 into R_1 (2 regs); E_1 into R_0 (1 reg); Use $R_0 := R_0 + R_1$ at E; Cost $= E_2[2] + E_1[1] + 1 = 4 + 2 + 1 = 7$

- E_1 into R_0 (2 regs avail); E_2 into R_1 (1 reg avail); Use $R_0 := R_0 + R_1$ at E; Cost $= E_2[2] + E_1[2] + 1 = 5 + 2 + 1 = 8$
Dynamic Programming – Example II

\[
\begin{align*}
&+ (10, 9) \\
&9 : R_0 := R_0 + M \\
&\quad \quad (3, 2) \\
&\quad \quad 8 : R_0 := R_0 - a \\
&\quad \quad (0, 1) \\
&\quad \quad 7 : R_0 := a \\
&\quad \quad - (3, 2) \\
&\quad \quad (0, 1) \\
&\quad \quad 4 : R_0 := c \\
&\quad \quad (0, 1) \\
&\quad \quad \quad \quad / \\
&\quad \quad \quad \quad (0, 1) \\
&\quad \quad \quad \quad 2 : R_0 := R_0/e \\
&\quad \quad \quad \quad (3, 2) \\
&\quad \quad \quad \quad 3 : M := R_0 \\
&\quad \quad \quad \quad (0, 1) \\
&\quad \quad \quad \quad d \quad (0, 1) \\
&\quad \quad \quad \quad (0, 1) \\
&\quad \quad \quad \quad 1 : R_0 := d \\
&\quad \quad \quad \quad (6, 5) \\
&\quad \quad \quad \quad 5 : R_0 := R_0 \times M \\
&\quad \quad \quad \quad 6 : M := R_0 \\
&\quad \quad \quad \quad (0, 1) \\
&\quad \quad \quad \quad e \quad (0, 1) \\
&\quad \quad \quad \quad (0, 1) \\
&\quad \quad \quad \quad a \quad (0, 1) \\
&\quad (0, 1) \\
&b \quad (0, 1) \\
&c \quad (0, 1) \\
&\end{align*}
\]

Summary

Readings and References

- This lecture is taken from the Dragon book: 567–580.
- For information on Dynamic Programming: see “Algorithms”, by Cormen, Leiserson, Rivest, p. 310.
Homework I

- Use the dynamic programming algorithm to generate optimal code for the assignment

\[g := a \times (b + c) + d \times (e - f). \]

- Assume that two registers (R0, R1) are available.

Machine Model

\[
\begin{align*}
R_i &:= M_j \\
R_i &:= R_i \text{ op } R_j \\
R_i &:= R_i \text{ op } M_j \\
R_i &:= R_j \\
M_i &:= R_j
\end{align*}
\]

Homework II

- Use the dynamic programming algorithm to generate code for the expression tree below using (a) 1 and (b) 2 registers. For each node show the cost vector and the instruction(s) generated.

```
/  \
  \\
  +
  \\
  -
  \\
  d
  \\
  a
  \\
  b
```

```
\[
\begin{align*}
R_i &:= M_j \\
R_i &:= R_i \text{ op } R_j \\
R_i &:= R_i \text{ op } M_j \\
R_i &:= R_j \\
M_i &:= R_j
\end{align*}
\]```