Introduction

Loop Invariants

Let C be a computation in a loop body. C is invariant if it computes the same value during all iterations. C can sometimes be moved out of the loop.

```plaintext
K := 1; I := 2;
REPEAT
    A := K + 1; I := I + A;
UNTIL I <= 10;
K := K + A;
```

How do we know what is a loop???
Loop Terminology

- Head
- Loop Body
- Entry edge
- Exit edge
- Tail
- Preheader

Preheaders

- A preheader is useful, for example if we want to move out loop-invariant computations.
- Not all loops have preheaders — but we can always add one.

Dominators

- To detect what the loops are in a program we first have to perform a *dominator analysis*.
- Definition:
 A node d dominates a node n if every path from the entry node to n must go through d.

- Entry
 - d
 - n
Dominators

- **Notation**: \(d \text{ dom } n \rightarrow d \) strictly dominates \(n \).
- **Intuition**: Given a node \(n \), which blocks are guaranteed to have executed prior to executing \(n \).

- Every node dominates itself: \(d \text{ dom } d \).

Strict Dominator

- **Definition**: A node \(d \) strictly dominates a node \(n \) if \(d \) dominates \(n \) and \(d \neq n \).
- **Notation**: \(d \text{ sdom } n \rightarrow d \) strictly dominates \(n \).

Immediate Dominator

- **Definition**: The immediate dominator \(d \) of a node \(n \) is the unique node that strictly dominates \(n \) but does not strictly dominate any other node that strictly dominates \(n \).
- **Entry nodes don’t have an immediate dominator.**
- **Notation**: \(d \text{ idom } n \rightarrow d \) immediately dominates \(n \).

Post dominator

- **Definition**: A node \(d \) post dominates a node \(n \) if every path from \(n \) to the exit node must go through \(d \).
- **Notation**: \(d \text{ pdom } n \rightarrow d \) post dominates \(n \).
- **Intuition**: Given a node \(n \), which blocks are guaranteed to execute after executing \(n \).
Definition:
A back edge \(b \rightarrow h \), where \(h \text{dom} b \), induces a natural loop consisting of all nodes \(x \), where \(h \text{dom} x \) and there is a path from \(x \) to \(b \) not containing \(b \).

Example — Not a Natural Loop

Back edge \(b \rightarrow h \) since there is a path to \(b \) from the Entry node that does not go through \(h \).

\(h \) does not dominate \(H \)ence, \(b \rightarrow h \) does not induce a natural loop.

Computing Dominators

The dominators of a node \(n \) are given by

\[
\text{dom}(\text{entry node}) = \{\text{entry node}\}
\]

\[
\text{dom}(n) = \{n\} \cup \left(\bigcap_{\text{preds } p \text{ of } n} \text{dom}(p) \right)
\]

- The dominator of the entry node is the entry node itself.
- The set of dominators for a node \(n \) is the intersection of the set of dominators for all predecessors of \(n \).
- \(n \) is also in the set of dominators for \(n \).
Dataflow Equations — Intuition

\[\text{dom}(n) = \{n\} \cup \bigcap_{\text{preds } p \text{ of } n} \text{dom}(p) \]

- If \(d \) dominates all predecessors of \(n \), then it also dominates \(n \)

Algorithm

- \(N \) is the set of all nodes.
- \(n_0 \) is the entry node.

\[
\begin{align*}
\text{dom}(n_0) &:= \{n_0\}; \\
\text{dom}(n) &:= N; \\
\text{dom}(n) &:= \{n\} \cup \left(\bigcap_{\text{preds } p \text{ of } n} \text{dom}(p) \right)
\end{align*}
\]

Example 1

```
K:=1;
I:=2;
REPEAT
A:=K+1;
I:=I+A;
UNTIL I<=10;
K:=K+A;
```

Example 1 — Initialization
Example 1 — First Iteration

Example 1 — Final Result

- A back edge \(b \rightarrow h \), where \(h \text{dom} b \), induces a natural loop consisting of all nodes \(x \), where \(h \text{dom} x \) and there is a path from \(x \) to \(b \) not containing \(b \).

Example 2
Example 2 — Initialization

Example 2 — First iteration

Example 2 — Identifying loops

Back edge $b \rightarrow h$, $h \text{dom } b$, induces a loop with all nodes x, where $h \text{dom } x$ and there there is a path $x \sim b$ not containing b.

Summary
Each node dominates itself.
If \(x \) dominates \(y \), and \(y \) dominates \(z \), then \(x \) dominates \(z \).
If \(x \) dominates \(z \) and \(y \) dominates \(z \), then either \(x \) dominates \(y \) or \(y \) dominates \(x \).