

Data Dependence Analysis I

Data dependence analysis determines what the constraints are on how a piece of code can be reorganized.

- If we can determine that no data dependencies exist between the different iterations of a loop we may be able to run the loop in parallel or transform it to make better use of the cache.
- For the code below, a compiler could determine that statement S₁ must execute before S₂, and S₃ before S₄. S₂ and S₃ can be executed in any order:

Dependence Graphs I

• There can be three kinds of dependencies between statements:

_		flow dependence
٠	Also, true c	lependence or definition-use dependence.
(i)	Х ::	=
(j)	::	- X
•	Statement (statement ((i) generates (defines) a value which is used by (j). We write (i) \longrightarrow (j).
		anti-dependence
٠	Also, use-de	efinition dependence.
(i)	:	= X
(i)	¥	

Dependence Graphs II

Data Dependence Analysis I

• Statement (i) uses a value overwritten by statement (j). We write (i) $\rightarrow\rightarrow$ (j).

Output-dependence

- Also, definition-definition dependence.
- (i) X := ···
 (j) X := ···
 - Statements (i) and (j) both assign to (define) the same variable. We write $(i) \rightarrow (j)$.
 - Regardless of the type of dependence, if statement (j) depends on (i), then (i) has to be executed before (j).

Loop Fundamentals

The Dependence Graph: _____

 $\begin{array}{c} S_1: \quad A := 0; \\ S_2: \quad B := A; \\ S_3: \quad C := A + D; \\ S_4: \quad D := 2; \\ \end{array}$

- In any program without loops, the dependence graph will be acyclic.
- · Other common notations are

Flow	\longrightarrow	≡	δ	≡	δ^{f}			
Anti	\rightarrow	=	δ	=	δ^a			
Output	\rightarrow	Ξ	δ°	≡,	_δ°	 81	z	00

Loop Fundamentals I

• We'll consider only perfect loop nests, where the only non-loop code is within the innermost loop:

 The iteration-space of a loop nest is the set of iteration vectors (k-tuples): ⟨1, 1, 1, · · · ⟩, · · · , ⟨n₁, n₂, · · · , n_k⟩.

Loop Fundamentals III

		I ne iteration-space is often	rectangular, but in this case it s
FOR i :=	1 TO 3 DO	trapezoidal:	
FOR j stat ENDFOR ENDFOR	:= 1 TO 4 DO ement	FOR i := 1 FOR j := statem ENDFOR	TO 3 DO 1 TO <i>i</i> + 1 DO ent
Iteration-space:	$\{\langle 1,1\rangle,\langle 1,2\rangle,\langle 1,3\rangle,\langle 1,4\rangle,\langle 2,1\rangle,\langle 2,2\rangle,\langle 2,3\rangle,\langle 2,4\rangle,$	ENDFOR	$\{(1,1),(1,2),(1,2)\}$
	$\langle 3,1 \rangle$, $\langle 3,2 \rangle$, $\langle 3,3 \rangle$, $\langle 3,4 \rangle$ }.		$\langle 2,1\rangle$, $\langle 2,2\rangle$, $\langle 2,3\rangle$, $\langle 3,1\rangle$, $\langle 3,2\rangle$, $\langle 3,3\rangle$, $\langle 3,4\rangle$ }
Represented graphically:	1 2 - 4 1 = 0 = 0 2 = 0 - = 0 3 = 0 - = 0	Represented graphically:	i 1 − 2 3 4 1 − 2 3 4 1 − 2 0 i 2 − 0 0 i 2 − 0 0 3 − 0 0 - 0 0
	(a) (#) (2) (2) (3) (3) (3)		101110010010000000000000000000000000000

Loop Fundamentals IV

- The index vectors can be lexicographically ordered.
 - $\langle 1,1\rangle {\prec} \langle 1,2\rangle \text{ means that iteration } \langle 1,1\rangle \text{ precedes } \langle 1,2\rangle.$
- In the loop

```
FOR i := 1 TO 3 DO
FOR j := 1 TO 4 DO
statement
ENDFOR
ENDFOR
```

the following relations hold: $\langle 1,1 \rangle \prec \langle 1,2 \rangle$, $\langle 1,2 \rangle \prec \langle 1,3 \rangle$, $\langle 1,3 \rangle \prec \langle 1,4 \rangle$, $\langle 1,4 \rangle \prec \langle 2,1 \rangle$, $\langle 2,1 \rangle \prec \langle 2,2 \rangle$, \cdots , $\langle 3,3 \rangle \prec \langle 3,4 \rangle$.

 The iteration-space, then, is the lexicographic enumeration of the index vectors. Confused yet?

Loop Transformations

Loop Transformations I

Loop Transformations II

- The reason that we want to determine loop dependencies is to make sure that loop transformations that we want to perform are legal.
- For example, (for whatever reason) we might want to run a loop backwards:

The original array is:

[1]	[2]	[3]	[4]	[5]
0	0	0	0	0

Loop Transformations III

. The dependencies are easy to spot if we unroll the loop:

• After the original loop the array holds:

	[1]	[2]	[3]	[4]	[5]	
	5	5	5	5	0	
. 1						

After the transformed loop the array holds:

[1]	[2]	[3]	[4]	[5]
20	15	10	5	0

- It is clear that, in this case, reversing the loop is not a legal transformation. The reason is that there is a data dependence between the loop iterations.
- In the original loop A[i] is read before it's assigned to, in the transformed loop A[i] is assigned to before it's read.

Loop Dependencies I

• Hence, in this loop FOR i := 1 TO 4 DO $S_1: \cdots := A[i + 1]$ $S_2: A[i] := \cdots$ ENDFOR there's an anti-dependence from S_1 to S_2 : (5)++(5) • In this loop FOR i := 1 TO 4 DO $S_1: A[i] := \cdots$ $S_2: \cdots := A[i - 1]$ ENDFOR there's a flow-dependence from S_1 to S_2 : (5)-+(5)

1011121121121 2 020

Loop Dependence Analysis I

Loop Dependence Analysis

 Are there dependencies between the statements in a loop, that stop us from transforming it? A general, 1-dim loop:

```
FOR i := From TO To DO

S_1: A[f(i)] := \cdots

S_2: \cdots := A[g(i)]

ENDFOR
```

- f(i) and g(i) are the expressions that index the array A. They're often of the form c₁ * i + c₂ (c_i are constants).
- There's a flow dependence S₁ → S₂, if, for some values of I^d and I^u, From ≤ I^d, I^u ≤ To, I^d < I^u, f(I^d) = g(I^u), i.e. the two index expressions are the same.
- I^d is the index for the definition (A[I^d]:=···) and I^u the index for the use (···:=A[I^u]).

Loop Dependence Analysis II

- Does there exist $1 \le I^d \le 10$, $1 \le I^u \le 10$, $I^d < I^u$, such that $8 * I^d + 3 = 2 * I^u + 1$? If that's the case, then $S_1 \longrightarrow S_2$.
- Yes, I^d = 1, I^u = 5 ⇒ 8 ∗ I^d + 3 = 11 = 2 ∗ I^u + 1.
- There is a loop carried dependence between statement S_1 and S_2 .

Simple Dependence Tests

The GCD Test

The GCD Test – Example I

 Does there exist a dependence in this loop? I.e., do there exist integers I^d and I^u, such that c * I^d + j = d * I^u + k?

```
FOR I := 1 TO n DO

S_1: A[c * I + j] := \cdots

S_2: \cdots := A[d * I + k]

ENDFOR
```

- c ∗ I^d + j = d ∗ I^u + k only if gcd(c, d) evenly divides k − j, i.e. if (k − j) mod gcd(c, d) = 0.
- This is a very simple and coarse test. For example, it doesn't check the conditions $1 \le I^d \le n$, $1 \le I^u \le n$, $I^d < I^u$.
- There are many other much more exact (and complicated!) tests.

Does there exist a dependence in this loop?

```
FOR I := 1 TO 10 DO

S_1: A[2*I] := \cdots

S_2: \cdots := A[2*I+1]

ENDFOR
```

 c ∗ I^d + j = d ∗ I^u + k only if gcd(c, d) evenly divides k − j, i.e. if (k − j) mod gcd(c, d) = 0.

- (1 − 0) mod gcd(2, 2) = 1 mod 2 = 1
- \Rightarrow S_1 and S_2 are data independent! This should be obvious to us, since S_1 accesses even elements of A, and S_2 odd elements.

The GCD Test – Example II

FOR
$$I := 1$$
 TO 10 DO
 $S_1: A[19*I+3] := \cdots$
 $S_2: \cdots := A[2*I+21]$
ENDFOR

- $c * I^d + j = d * I^u + k$ only if gcd(c, d) evenly divides k j, i.e. if $(k j) \mod gcd(c, d) = 0$.
- c = 19, j = 3, d = 2, k = 21.
- $(21 3) \mod \gcd(19, 2) = 18 \mod 1 = 0$
- \Rightarrow There's a flow dependence: $S_1 \longrightarrow S_2$.
- The only values that satisfy the dependence are $I^d = 2$ and $I^u = 10$: 19 * 2 + 3 = 41 = 2 * 10 + 21. If the loop had gone from 3 to 9, there would be no dependence! The gcd-test doesn't catch this.

The GCD Test - Example III

- FOR I := 1 TO 10 DO $S_1: A[8 * i + 3] := \cdots$ $S_2: \cdots := A[2 * i + 1]$ ENDFOR
- c ∗ I^d + j = d ∗ I^u + k only if gcd(c, d) evenly divides k − j, i.e. if (k − j) mod gcd(c, d) = 0.
- c = 8, j = 3, d = 2, k = 1.
- (1 − 3) mod gcd(8, 2) = −2 mod 2 = 0
- \Rightarrow There's a flow dependence: $S_1 \longrightarrow S_2$.
- We knew this already, from the example in a previous slide. $I^d = 1, I^u = 5 \Rightarrow 8 * I^d + 3 = 11 = 2 * I^u + 1.$

900 6 161 E

Dependence Directions I

Dependence Distance

FOR I := 2 TO 10 DO
S₁: A[I] := B[I] + C[I];
S₂: D[I] := A[I] + 10;
ENDFOR

- On each iteration, S₁ will assign a value to A[i], and S₂ will use it.
- Therefore, there's a flow dependence from S₁ to S₂: S₁ δ S₂.
- We say that the data-dependence direction for this dependence is , since the dependence stays within one iteration.
- We write: S₁ δ₌ S₂.

Dependence Directions II

Dependence Directions III

```
FOR I := 2 TO 10 DO

S<sub>1</sub>: A[I] := B[I] + C[I];

S<sub>2</sub>: D[I] := A[I-1] + 10;

ENDFOR
```

- On each iteration, S₁ will assign a value to A[i], and S₂ will use this value in the next iteration.
- E.g., in iteration 3, S₁ assigns a value to A[3]. This value is used by S₂ in iteration 4.
- Therefore, there's a flow dependence from S₁ to S₂: S₁ δ S₂.
- We say that the data-dependence direction for this dependence is $\boxed{<}$, since the dependence flows from i-1 to i.
- We write: S₁ δ_< S₂.

101 (B) (2) (2) (2) (2)

FOR I := 2 TO 10 DO S_1 : A[I] := B[I] + C[I]; S_2 : D[I] := A[I+1] + 10; ENDFOR

- On each iteration, S₂ will use a value that will be overwritten by S₁ in the next iteration.
- E.g., in iteration 3, S_2 uses the value in A[4]. This value is overwritten by S_1 in iteration 4.
- Therefore, there's a anti dependence from S₂ to S₁: S₂ o S₁.
- We say that the data-dependence direction for this dependence is <, since the dependence flows from i to i+1.
- We write: $S_2 \ \overline{\delta}_< \ S_1$.

Loop Nests I

```
FOR I := 0 TO 9 DO
FOR J := 1 TO 10 DO
S_1: \cdots := A[I, J-1]
S_2: A[I, J] := \cdots
ENDFOR
ENDFOR
```

- With nested loops the data-dependence directions become vectors. There is one element per loop in the nest.
- In the loop above there is a flow dependence S₂ → S₁ since the element being assigned by S₂ in iteration I (A[I, J]) will be used by S₁ in the next iteration.
- This dependence is carried by the J loop.
- We write: S₂ δ_{=,<} S₁.

Loop Nests

Model

A Model of Dependencies

A Model of Dependencies

· Suppose we have the following loop-nest:

```
for i:=1 to x do
for j := 1 to y do
s1: A[a*i+b*j+c,d*i+e*j+f] = ...
s2:...= A[g*i'+h*j'+k,1*i'+m*j'+n]
```

 Then there is a dependency between statements s₁ and s₂ if there exist iterations (i, j) and (i', j'), such that

$$a * i + b * j + c = g * i' + h * j' + k$$

 $d * i + e * j + f = I * i' + m * j' + n$

or

$$a * i - g * i' + b * j - h * j' = k - c$$

 $d * i - l * i' + e * j - m * j' = n - f$

Homework

101 (B) (2) (2) (2) 2 000

 This is equivalent to an integer programming problem (a system of linear equations with all integer variables and constants) in four variables:

$$\begin{bmatrix} a & -g & b & -h \\ d & -l & e & -m \end{bmatrix} \times \begin{bmatrix} i \\ i' \\ j \\ j' \end{bmatrix} = \begin{bmatrix} k-c \\ n-f \end{bmatrix}$$

 If the loop bounds are known we get some additional constraints:

 $\begin{array}{ll} 1\leq i\leq x, & 1\leq i'\leq x, \\ 1\leq j\leq y, & 1\leq j'\leq y \end{array}$

 In other words, to solve this dependency problem we look for integers i, i', j, j' such that the equation and constraints above are satisfied.

Exam I/a (415.730/96)

- What is the gcd-test? What do we mean when we say that the gcd-test is *conservative*?
- \bigcirc List the data dependencies (→, →, →) for the loops below.

```
 \begin{array}{l} {}^{} {}^{} {\rm FOR} \; i := 1 \; {\rm TO} \; 7 \; {\rm DO} \\ {\rm S}_1: & \cdots & := {\rm A}\left[2*i+1\right]; \\ {\rm S}_2: \; \cdots & := {\rm A}\left[4*i\right]; \\ {\rm S}_3: \; {\rm A}\left[8*i+3\right] \; := \cdots; \\ {\rm END}; \\ {\rm FOR} \; i := 1 \; {\rm TO} \; n \; {\rm DO} \\ {\rm S}_1: \; {\rm X} & := {\rm A}\left[2*i\right] + 5; \\ {\rm S}_2: \; {\rm A}\left[2*i+1\right] \; := {\rm X} + {\rm B}\left[i+7\right]; \\ {\rm S}_3: \; {\rm A}\left[i+5\right] \; := {\rm C}\left[10*i\right]; \\ {\rm S}_4: \; {\rm B}\left[i+10\right] \; := {\rm C}\left[12*i\right] + 13; \\ {\rm END}; \end{array} \right]
```

· Consider the following loop:

- ◆ List the data dependencies for the loop. For each dependence indicate whether it is a flow- (→), anti- (→+), or output-dependence (→→), and whether it is a loop-carried dependence or not.
- Show the data dependence graph for the loop.

Summary

Readings and References

Summary I

 Padua & Wolfe, Advanced Compiler Optimizations for Supercomputers, CACM, Dec 1996, Vol 29, No 12, pp. 1184–1187,

http://www.acm.org/pubs/citations/journals/cacm/1986-29-12/p1184-padua/.

- Dependence analysis is an important part of any parallelizing compiler. In general, it's a very difficult problem, but, fortunately, most programs have very simple index expressions that can be easily analyzed.
- Most compilers will try to do a good job on common loops, rather than a half-hearted job on all loops.
- Integer programming is NP-complete.

100 5 151 151 5 OQO

When faced with a loop

FOR i := From TO To DO $S_1: A[f(i)] := \cdots$ $S_2: \cdots := A[g(i)]$ ENDFOR

the compiler will try to determine if there are any index values I, J for which f(I) = g(J). A number of cases can occur:

- The compiler decides that f(i) and g(i) are too complicated to analyze. \Rightarrow Run the loop serially.
- The compiler decides that f(i) and g(i) are very simple (e.g. f(i)=i, f(i)-exi, f(i)=t+c, f(i)=c+i+d), and does the analysis using some built-in pattern matching rules. ⇒ Run the loop in parallel or serially, depending on the outcome.

1020 B. (B) (B) (B) (B)

- ontd.
 - O The compiler applies some advanced method to determine the dependence. \Rightarrow Run the loop in parallel or serially, depending on the outcome.
- Most compilers use pattern-matching techniques to look for important and common constructs, such as reductions (sums, products, min & max of vectors).
- The simplest analysis of all is a name analysis: If every identifier in the loop occurs only once, there are no dependencies, and the loop can be trivially parallelized:

```
FOR i := From TO To DO

S_1: A[f(i)] := B[g(i)]+C[h(i)];

S_2: D[j(i)] := E[k(i)]*F[m(i)];

ENDFOR
```

(D) (B) (2) (2) (2) (2) (0)