
CSc 553

Principles of Compilation

33 : Loop Dependence

Department of Computer Science
University of Arizona

collberg@gmail.com

Copyright c© 2011 Christian Collberg

Data Dependence Analysis

Data Dependence Analysis I

Data dependence analysis determines what the constraints are
on how a piece of code can be reorganized.

If we can determine that no data dependencies exist between
the different iterations of a loop we may be able to run the
loop in parallel or transform it to make better use of the cache.

For the code below, a compiler could determine that
statement S1 must execute before S2, and S3 before S4. S2

and S3 can be executed in any order:

S1: A := 0;

S2: B := A;

S3: C := A + D;

S4: D := 2;

Dependence Graphs I

There can be three kinds of dependencies between statements:

flow dependence

Also, true dependence or definition-use dependence.

(i) X := · · ·
.....

(j) · · · := X

Statement (i) generates (defines) a value which is used by
statement (j). We write (i) −→ (j).

anti-dependence

Also, use-definition dependence.

(i) · · · := X

.....

(j) X := · · ·

Dependence Graphs II

Statement (i) uses a value overwritten by statement (j).
We write (i)−→+ (j).

Output-dependence

Also, definition-definition dependence.

(i) X := · · ·

(j) X := · · ·

Statements (i) and (j) both assign to (define) the same
variable. We write (i)−→◦ (j).

Regardless of the type of dependence, if statement (j)
depends on (i), then (i) has to be executed before (j).

Data Dependence Analysis I

The Dependence Graph:

S1: A := 0;

S2: B := A;

S3: C := A + D;

S4: D := 2;

S3

S4

S1

S2

In any program without loops, the dependence graph will be
acyclic.
Other common notations are

Flow −→ ≡ δ ≡ δf

Anti −→+ ≡ δ ≡ δa

Output −→◦ ≡ δ◦ ≡ δo

Loop Fundamentals

Loop Fundamentals I

We’ll consider only perfect loop nests, where the only
non-loop code is within the innermost loop:

FOR i1 := 1 TO n1 DO

FOR i2 := 1 TO n2 DO

· · ·
FOR ik := 1 TO nk DO

statements

ENDFOR

· · ·
ENDFOR

ENDFOR

The iteration-space of a loop nest is the set of iteration

vectors (k-tuples): 〈1, 1, 1, · · · 〉,· · · ,〈n1, n2, · · · , nk〉.

Loop Fundamentals II

FOR i := 1 TO 3 DO

FOR j := 1 TO 4 DO

statement

ENDFOR

ENDFOR

Iteration-space: {〈1, 1〉,〈1, 2〉,〈1, 3〉,〈1, 4〉,
〈2, 1〉,〈2, 2〉,〈2, 3〉,〈2, 4〉,
〈3, 1〉,〈3, 2〉,〈3, 3〉,〈3, 4〉}.

Represented graphically:
2

431

i

j

1

3

2

Loop Fundamentals III

The iteration-space is often rectangular, but in this case it’s
trapezoidal:

FOR i := 1 TO 3 DO

FOR j := 1 TO i + 1 DO

statement

ENDFOR

ENDFOR

Iteration-space: {〈1, 1〉,〈1, 2〉,
〈2, 1〉,〈2, 2〉,〈2, 3〉,
〈3, 1〉,〈3, 2〉,〈3, 3〉,〈3, 4〉}

Represented graphically:
i

j

1

3

2

2 431

Loop Fundamentals IV

The index vectors can be lexicographically ordered.
〈1, 1〉≺〈1, 2〉 means that iteration 〈1, 1〉 precedes 〈1, 2〉.

In the loop

FOR i := 1 TO 3 DO

FOR j := 1 TO 4 DO

statement

ENDFOR

ENDFOR

the following relations hold: 〈1, 1〉≺〈1, 2〉, 〈1, 2〉≺〈1, 3〉,
〈1, 3〉≺〈1, 4〉, 〈1, 4〉≺〈2, 1〉, 〈2, 1〉≺〈2, 2〉, · · · , 〈3, 3〉≺〈3, 4〉.

The iteration-space, then, is the lexicographic enumeration of
the index vectors. Confused yet?

Loop Transformations

Loop Transformations I

The reason that we want to determine loop dependencies is to
make sure that loop transformations that we want to perform
are legal.

For example, (for whatever reason) we might want to run a
loop backwards:

FOR i := 1 TO 4 DO

A[i] := A[i + 1] + 5

ENDFOR

⇒ FOR i := 4 TO 1 BY -1 DO

A[i] := A[i + 1] + 5

ENDFOR

The original array is:

[1] [2] [3] [4] [5]

0 0 0 0 0

Loop Transformations II

After the original loop the array holds:

[1] [2] [3] [4] [5]

5 5 5 5 0

After the transformed loop the array holds:

[1] [2] [3] [4] [5]

20 15 10 5 0

It is clear that, in this case, reversing the loop is not a legal
transformation. The reason is that there is a data dependence
between the loop iterations.

In the original loop A[i] is read before it’s assigned to, in the
transformed loop A[i] is assigned to before it’s read.

Loop Transformations III

The dependencies are easy to spot if we unroll the loop:

S1: A[1] := A[2] + 5

S2: A[2] := A[3] + 5

S3: A[3] := A[4] + 5

S4: A[4] := A[5] + 5

⇑ Unroll

FOR i := 1 TO 4 DO

A[i] := A[i + 1] + 5

ENDFOR

⇓ Reverse & Unroll

S4: A[4] := A[5] + 5

S3: A[3] := A[4] + 5

S2: A[2] := A[3] + 5

S1: A[1] := A[2] + 5

Graphically: S4S1 S2 S3

Loop Dependencies I

Hence, in this loop

FOR i := 1 TO 4 DO

S1: · · · := A[i + 1]
S2: A[i] := · · ·

ENDFOR

there’s an anti-dependence from S1 to S2:
S1 S2

In this loop

FOR i := 1 TO 4 DO

S1: A[i] := · · ·
S2: · · · := A[i − 1]

ENDFOR

there’s a flow-dependence from S1 to S2:
S2S1

Loop Dependence Analysis

Loop Dependence Analysis I

Are there dependencies between the statements in a loop,
that stop us from transforming it? A general, 1-dim loop:

FOR i := From TO To DO

S1: A[f (i)] := · · ·
S2: · · · := A[g(i)]

ENDFOR

f (i) and g(i) are the expressions that index the array A.
They’re often of the form c1 ∗ i + c2 (ci are constants).

There’s a flow dependence S1 −→ S2, if, for some values of I d

and I u, From ≤ I d , I u ≤ To, I d < I u, f (I d) = g(I u), i.e. the
two index expressions are the same.

I d is the index for the definition (A[I d]:=· · ·) and I u the
index for the use (· · · :=A[I u]).

Loop Dependence Analysis II

Example

FOR i := 1 TO 10 DO

S1: A[8 ∗ i + 3] := · · ·
S2: · · · := A[2 ∗ i + 1]

ENDFOR

f (I d) = 8 ∗ I d + 3, g(I u) = 2 ∗ I u + 1

Does there exist 1 ≤ I d ≤ 10, 1 ≤ I u ≤ 10, I d < I u, such that
8 ∗ I d + 3 = 2 ∗ I u + 1? If that’s the case, then S1 −→ S2.

Yes, I d = 1, I u = 5 ⇒ 8 ∗ I d + 3 = 11 = 2 ∗ I u + 1.

There is a loop carried dependence between statement S1

and S2.

Simple Dependence Tests

The GCD Test

Does there exist a dependence in this loop? I.e., do there exist
integers I d and I u, such that c ∗ I d + j = d ∗ I u + k?

FOR I := 1 TO n DO

S1: A[c ∗ I + j] := · · ·
S2: · · · := A[d ∗ I + k]

ENDFOR

c ∗ I d + j = d ∗ I u + k only if gcd(c , d) evenly divides k − j ,
i.e. if (k − j) mod gcd(c , d) = 0.

This is a very simple and coarse test. For example, it doesn’t
check the conditions 1 ≤ I d ≤ n, 1 ≤ I u ≤ n, I d < I u.

There are many other much more exact (and complicated!)
tests.

The GCD Test – Example I

Does there exist a dependence in this loop?

FOR I := 1 TO 10 DO

S1: A[2*I] := · · ·
S2: · · · := A[2*I+1]

ENDFOR

c ∗ I d + j = d ∗ I u + k only if gcd(c , d) evenly divides k − j ,
i.e. if (k − j) mod gcd(c , d) = 0.

c = 2, j = 0, d = 2, k = 1.

(1 − 0) mod gcd(2, 2) = 1 mod 2 = 1

⇒ S1 and S2 are data independent! This should be obvious to
us, since S1 accesses even elements of A, and S2 odd elements.

The GCD Test – Example II

FOR I := 1 TO 10 DO

S1: A[19*I+3] := · · ·
S2: · · · := A[2*I+21]

ENDFOR

c ∗ I d + j = d ∗ I u + k only if gcd(c , d) evenly divides k − j ,
i.e. if (k − j) mod gcd(c , d) = 0.

c = 19, j = 3, d = 2, k = 21.

(21 − 3) mod gcd(19, 2) = 18 mod 1 = 0

⇒ There’s a flow dependence: S1 −→ S2.

The only values that satisfy the dependence are I d = 2 and
I u = 10: 19 ∗ 2 + 3 = 41 = 2 ∗ 10 + 21. If the loop had gone
from 3 to 9, there would be no dependence! The gcd-test
doesn’t catch this.

The GCD Test – Example III

FOR I := 1 TO 10 DO

S1: A[8 ∗ i + 3] := · · ·
S2: · · · := A[2 ∗ i + 1]

ENDFOR

c ∗ I d + j = d ∗ I u + k only if gcd(c , d) evenly divides k − j ,
i.e. if (k − j) mod gcd(c , d) = 0.

c = 8, j = 3, d = 2, k = 1.

(1 − 3) mod gcd(8, 2) = −2 mod 2 = 0

⇒ There’s a flow dependence: S1 −→ S2.

We knew this already, from the example in a previous slide.
I d = 1, I u = 5 ⇒ 8 ∗ I d + 3 = 11 = 2 ∗ I u + 1.

Dependence Distance

Dependence Directions I

FOR I := 2 TO 10 DO

S1: A[I] := B[I] + C[I];

S2: D[I] := A[I] + 10;

ENDFOR

On each iteration, S1 will assign a value to A[i], and S2 will
use it.

Therefore, there’s a flow dependence from S1 to S2: S1 δ S2.

We say that the data-dependence direction for this
dependence is = , since the dependence stays within one
iteration.

We write: S1 δ= S2.

Dependence Directions II

FOR I := 2 TO 10 DO

S1: A[I] := B[I] + C[I];

S2: D[I] := A[I-1] + 10;

ENDFOR

On each iteration, S1 will assign a value to A[i], and S2 will
use this value in the next iteration.

E.g., in iteration 3, S1 assigns a value to A[3]. This value is
used by S2 in iteration 4.

Therefore, there’s a flow dependence from S1 to S2: S1 δ S2.

We say that the data-dependence direction for this
dependence is < , since the dependence flows from i-1 to i.

We write: S1 δ< S2.

Dependence Directions III

FOR I := 2 TO 10 DO

S1: A[I] := B[I] + C[I];

S2: D[I] := A[I+1] + 10;

ENDFOR

On each iteration, S2 will use a value that will be overwritten
by S1 in the next iteration.

E.g., in iteration 3, S2 uses the value in A[4]. This value is
overwritten by S1 in iteration 4.

Therefore, there’s a anti dependence from S2 to S1: S2 δ S1.

We say that the data-dependence direction for this
dependence is < , since the dependence flows from i to i+1.

We write: S2 δ< S1.

Loop Nests

Loop Nests I

FOR I := 0 TO 9 DO

FOR J := 1 TO 10 DO

S1: · · · := A[I , J − 1]
S2: A[I , J] := · · ·

ENDFOR

ENDFOR

With nested loops the data-dependence directions become
vectors. There is one element per loop in the nest.

In the loop above there is a flow dependence S2 −→ S1 since
the element being assigned by S2 in iteration I (A[I , J]) will
be used by S1 in the next iteration.

This dependence is carried by the J loop.

We write: S2 δ=,< S1.

Loop Nests II – Example

FOR I := 1 TO N DO

FOR J := 2 TO N DO

S1: A[I , J] := A[I , J − 1] + B[I , J];

S2: C[I , J] := A[I , J] + D[I + 1, J];
S3: D[I , J] := 0.1;

ENDFOR

ENDFOR

S1 δ=,< S1 S1 assigns a value to A[I , J] in iteration (I , J) that

will be used by S1 in the next iteration (I , J + 1).
The dependence is carried by the J loop.

S1 δ=,= S2 S1 assigns a value to A[I , J] in iteration (I , J) that

will be used by S2 in the same iteration.

S2 δ<,= S3 S2 uses the value of D[I + 1, J] in iteration (I , J). It

will be overwritten by S3 in the next I -iteration. The
I -loop carries the dependence.

Model

A Model of Dependencies

Suppose we have the following loop-nest:

for i:=1 to x do

for j := 1 to y do

s1: A[a*i+b*j+c,d*i+e*j+f] = · · ·
s2 : · · · = A[g*i’+h*j’+k,l*i’+m*j’+n]

Then there is a dependency between statements s1 and s2 if
there exist iterations (i , j) and (i ′, j ′), such that

a ∗ i + b ∗ j + c = g ∗ i ′ + h ∗ j ′ + k

d ∗ i + e ∗ j + f = l ∗ i ′ + m ∗ j ′ + n

or

a ∗ i − g ∗ i ′ + b ∗ j − h ∗ j ′ = k − c

d ∗ i − l ∗ i ′ + e ∗ j − m ∗ j ′ = n − f

A Model of Dependencies

This is equivalent to an integer programming problem (a
system of linear equations with all integer variables and
constants) in four variables:

[

a −g b −h

d −l e −m

]

×









i

i ′

j

j ′









=

[

k − c

n − f

]

If the loop bounds are known we get some additional
constraints:

1 ≤ i ≤ x , 1 ≤ i ′ ≤ x ,

1 ≤ j ≤ y , 1 ≤ j ′ ≤ y

In other words, to solve this dependency problem we look for
integers i , i ′, j , j ′ such that the equation and constraints above
are satisfied.

Homework

Exam I/a (415.730/96)

1 What is the gcd-test? What do we mean when we say that
the gcd-test is conservative?

2 List the data dependencies (−→,−→+ ,−→◦) for the loops below.

FOR i := 1 TO 7 DO

S1: · · · := A[2 ∗ i + 1];
S2: · · · := A[4 ∗ i];

S3: A[8 ∗ i + 3] := · · · ;
END;

FOR i := 1 TO n DO

S1: X := A[2 ∗ i] + 5;

S2: A[2 ∗ i + 1] := X + B[i + 7];
S3: A[i + 5] := C[10 ∗ i];

S4: B[i + 10] := C[12 ∗ i] + 13;

END;

Exam II (415.730/97)

Consider the following loop:

FOR i := 1 TO n DO

S1: B[i] := C[i − 1] * 2;

S2: A[i] := A[i] + B[i − 1];
S3: D[i] := C[i] * 3;

S4: C[i] := B[i − 1] + 5;

ENDFOR

1 List the data dependencies for the loop. For each dependence
indicate whether it is a flow- (−→), anti- (−→+), or
output-dependence (−→◦), and whether it is a loop-carried
dependence or not.

2 Show the data dependence graph for the loop.

Summary

Readings and References

Padua & Wolfe, Advanced Compiler Optimizations for

Supercomputers, CACM, Dec 1996, Vol 29, No 12, pp.
1184–1187,
http://www.acm.org/pubs/citations/journals/cacm/1986-29-12/p1184-padua/.

Summary I

Dependence analysis is an important part of any parallelizing
compiler. In general, it’s a very difficult problem, but,
fortunately, most programs have very simple index expressions
that can be easily analyzed.

Most compilers will try to do a good job on common loops,
rather than a half-hearted job on all loops.

Integer programming is NP-complete.

Summary II

When faced with a loop

FOR i := From TO To DO

S1: A[f (i)] := · · ·
S2: · · · := A[g(i)]

ENDFOR

the compiler will try to determine if there are any index values
I , J for which f (I) = g(J). A number of cases can occur:

1 The compiler decides that f (i) and g(i) are too complicated
to analyze. ⇒ Run the loop serially.

2 The compiler decides that f (i) and g(i) are very simple (e.g.
f(i)=i, f(i)=c*i, f(i)=i+c, f(i)=c*i+d), and does the
analysis using some built-in pattern matching rules. ⇒ Run
the loop in parallel or serially, depending on the outcome.

Summary III

contd.
3 The compiler applies some advanced method to determine the

dependence. ⇒ Run the loop in parallel or serially, depending
on the outcome.

Most compilers use pattern-matching techniques to look for
important and common constructs, such as reductions (sums,
products, min & max of vectors).

The simplest analysis of all is a name analysis: If every
identifier in the loop occurs only once, there are no
dependencies, and the loop can be trivially parallelized:

FOR i := From TO To DO

S1: A[f (i)] := B[g(i)]+C[h(i)];
S2: D[j(i)] := E[k(i)]*F[m(i)];

ENDFOR

