CSc 553

Principles of Compilation Data Dependence AnaIySiS
33: Loop Dependence

Department of Computer Science
University of Arizona

Data Dependence Analysis | Dependence Graphs |

@ There can be three kinds of dependencies between statements:

@ Data dependence analysis determines what the constraints are

on how a piece of code can be reorganized. @ Also, true dependence or definition-use dependence.
@ If we can determine that no data dependencies exist between) X .=

the different iterations of a loop we may be able to run the

loop in parallel or transform it to make better use of the cache. &) = X
@ For the code below, a compiler could determine that

@ Statement (i) generates (defines) a value which is used by

statement S; must execute before S,, and S3 before S4. S,
statement (j). We write (1) — (j).

and S3 can be executed in any order:

Si: A :=0; e
S B := A; @ Also, use-definition dependence.
S3: C:=A+D; W T

S4: D=2

&) X o=

Dependence Graphs |l

Data Dependence Analysis |

@ Statement (i) uses a value overwritten by statement (j).
We write (1)—(j)-

@ Also, definition-definition dependence.

) X
&) X

@ Statements (i) and (j) both assign to (define) the same
variable. We write (i)—e=(j).

Regardless of the type of dependence, if statement (j)
depends on (i), then (i) has to be executed before (j).

©

Loop Fundamentals

The Dependence Graph:
Si: A :=0;
Syt B :=A;
S3: C :=A+D;

Sa: D :=2;

@ In any program without loops, the dependence graph will be
acyclic.
@ Other common notations are

Flow — = § = &
Anti —+ 3 0°
Output —=» = §° = §°

Loop Fundamentals |

@ We'll consider only perfect loop nests, where the only
non-loop code is within the innermost loop:

FOR j; := 1 TO n; DO
FOR i, := 1 TO np DO

FOR ik := 1 TO ny DO
statements
ENDFOR

ENDFOR
ENDFOR

@ The jteration-space of a loop nest is the set of iteration
vectors (k-tuples): (1,1,1,---),-+ (ny, m,--- , ng).

Loop Fundamentals Il Loop Fundamentals Il1

@ The iteration-space is often rectangular, but in this case it's

FOR i := 1 TO 3 DO trapezoidal:
FOR j := 1 TO 4 DO FOR / := 1 TO 3 DO
statement FOR j := 1 TO i+1 DO
ENDFOR
statement
ENDFOR ENDFOR
ENDFOR

Iteration-space:
Iteration-space:

Represented graphically:
Represented graphically:

Loop Fundamentals IV

@ The index vectors can be lexicographically ordered.
(1,1)=<(1,2) means that iteration (1,1) precedes (1,2).

o Inthe loop Loop Transformations

FOR / := 1 TO 3 DO
FOR j := 1 TO 4 DO
statement
ENDFOR
ENDFOR
the following relations hold: (1,1)<(1,2), (1,2)=<(1,3),
(1,3)<(1,4), (1,4)=<(2,1), (2,1)<(2,2), ---, (3,3)<(3,4).
@ The iteration-space, then, is the lexicographic enumeration of
the index vectors. Confused yet?

Loop Transformations | Loop Transformations Il

@ The reason that we want to determine loop dependencies is to

make sure that loop transformations that we want to perform @ After the original loop the array holds:

are legal. [1] | [2] | [3] | [4] | [5]
@ For example, (for whatever reason) we might want to run a n

loop backwards: @ After the transformed loop the array holds:

[11 | [21 | [31 | [41 | [5]

FOR / := 1 TO 4 DO => FOR/ :=4 TO 1 BY -1 DO (20][15]10]5 [0]

A[i] := A[i+1] + 5 A[i] := A[i+1] + 5 @ It is clear that, in this case, reversing the loop is not a legal
ENDFOR ENDFOR transformation. The reason is that there is a data dependence

between the loop iterations.
@ The original array is: @ In the original loop A[/] is read before it's assigned to, in the
1] 21|31 41| 15 transformed loop A[/] is assigned to before it's read.

Loop Transformations Il Loop Dependencies |

@ The dependencies are easy to spot if we unroll the loop:

Si: A[1] := A[2] + 5 @ Hence, in this loop

Sp: A[2] :=A[3] + 5 FOR i := 1 TO 4 DO
S3: A[3] := A[4] + 5 S0 - Ali+1]
Sa: A[4] := A[5] + 5 Sp: AL
'ﬂ‘ Unroll ENDFOR
Fﬂi[;] there's an anti-dependence from S; to S,: M
ENDFOR @ In this loop

~U/ Reverse & Unroll FOR i := 1 TO 4 DO

S4: A[4] := A[5] + 5 S1: AL :=
S3: A[3] := A[4] Spr e = ALI-1]
ENDFOR

+ 5
Sp: A[2] :=A[3] +5
Si: A1) :=A[2] + 5

@ Graphically: @@

there’s a flow-dependence from S; to S,: @ C)

Loop Dependence Analysis |

@ Are there dependencies between the statements in a loop,
that stop us from transforming it? A general, 1-dim loop:

. FOR / := From TO To DO
Loop Dependence Analysis S A0
ot oo+ = Alg(i)]
ENDFOR

©

f(i) and g(i) are the expressions that index the array A.
They're often of the form ¢; =i + ¢, (¢ are constants).

@ There's a flow dependence S; — S5, if, for some values of 19
and /¥, From < [,/ < To, 19 < ¥, f(/d) =g(I"), ie. the
two index expressions are the same.

& 9 is the index for the definition (A[/91:=---) and /¥ the
index for the use (--- :=A[/“]).

Loop Dependence Analysis Il
FOR i := 1 TO 10 DO
Si: A[Bxi+3] := - H
A Simple Dependence Tests

ENDFOR

@ f(19)=8x19+3, g(I)=2x%1"+1

@ Does there exist 1 < /9 <10, 1 < /¥ < 10, /9 < ¥, such that
8419 43 =2% /"4 17 If that's the case, then S; — S5.

@ VYes, [9=1,/"=5=8x/9+3=11=2x/"+1.

@ There is a loop carried dependence between statement Sy
and S.

The GCD Test The GCD Test — Example |

@ Does there exist a dependence in this loop? l.e., do there exist & Does there exist a dependence in this loop?
integers /9 and 1, such that ¢+ 19 4 j = d * " 4+ k?
FOR / := 1 TO 10 DO

FOR / := 1 TO n DO Si: A[2+I] = .-
S1: Alcx I+ = .- Syi oo = A[2%I+1]
Spr v = Ald* 1+ k] ENDFOR

ENDFOR

o cx 194 j=dx* "+ konly if gcd(c, d) evenly divides k — j,
@ cx 194 j=dx "+ konly if gcd(c, d) evenly divides k — j, i.e. if (k—j) mod ged(c, d) = 0.
i.e. if (k —j) mod ged(c,d) = 0. 0c=2j=0d=2k=1.
@ This is a very simple and coarse test. For example, it doesn’t o (1-0) mod ged(2,2) = 1 mod 2 = 1

check the conditions 1 < 19 < n, 1< [¥<n, 19 < v
@ = 51 and S are data independent! This should be obvious to

@ There are many other much more exact (and complicated! .
Y (P) us, since S; accesses even elements of A, and S, odd elements.

tests.

The GCD Test — Example Il

FOR / := 1 TO 10 DO

Si: A[19%I+3] := --- FOR / := 1 TO 10 DO

Spi e 1= A[2%I+21] S1: A[Bxi+3] =
ENDFOR Spi oo 1= ALRxi41]
ENDFOR

@ cx 94 j=dx "+ konly if gcd(c, d) evenly divides k — j,
i.e. if (k—j) mod ged(c, d) = 0. s cx 19+ j=dx*I"+ konly if gcd(c, d) evenly divides k — j,
0c=19j=3d=2k=2L i.e. if (k —j) mod ged(c,d) = 0.
o (21 —3) mod ged(19,2) = 18 mod 1 = 0 c=8j=3d=2k=1
@ = There's a flow dependence: S; — S,. (1 —3) mod ged(8,2) = —2mod 2 =0
@ The only values that satisfy the dependence are /9 = 2 and = There's a flow dependence: S| — 5,.
/" =10: 19 %2+ 3 =41 = 2% 10 + 21. If the loop had gone We knew this already, from the example in a previous slide.
from 3 to 9, there would be no dependence! The gcd-test 19=1,1"=5=8%1943=11=2x/"+1.
doesn't catch this.

¢ ¢ ¢ ©

Dependence Distance

Dependence Directions I

°

FOR I := 2 TO 10 DO
Sp: A[I] := B[I] + C[I];
S>: D[I] := A[I-1] + 10;

ENDFOR

On each iteration, S; will assign a value to A[i], and S, will
use this value in the next iteration.

E.g., in iteration 3, S; assigns a value to A[3]. This value is
used by Sy in iteration 4.

Therefore, there's a flow dependence from Sy to Sp: S1 6 Ss.
We say that the data-dependence direction for this
dependence is
We write: Sy 6 Ss.

since the dependence flows from i-1 to i.

Dependence Directions |

FOR I := 2 TO 10 DO
Sp: A[I] := B[I] + C[I];
Sp: D[I] := A[I] + 10;

ENDFOR

@ On each iteration, S; will assign a value to A[i], and S, will
use it.

@ Therefore, there's a flow dependence from S; to S 516 So.

@ We say that the data-dependence direction for this
dependence is [=], since the dependence stays within one
iteration.

@ We write: S; 6= S,.

Dependence Directions 111

FOR I := 2 TO 10 DO
Sp: A[I] := B[I] + C[I];
Sp: D[I] := A[I+1] + 10;

ENDFOR

@ On each iteration, Sy will use a value that will be overwritten
by S; in the next iteration.

@ E.g., in iteration 3, S, uses the value in A[4]. This value is
overwritten by Sy in iteration 4.

o Therefore, there's a anti dependence from S, to Sy S, Sy.

@ We say that the data-dependence direction for this
dependence is since the dependence flows from i to i+1.

o We write: S0 S;.

Loop Nests |

FOR / := 0 TO 9 DO
FOR J := 1 TO 10 DO
Si:o-ee 1= ALLJ—1]

Loop Nests Sp: UL o= oo

ENDFOR
ENDFOR

@ With nested loops the data-dependence directions become
vectors. There is one element per loop in the nest.

@ In the loop above there is a flow dependence S; — S; since
the element being assigned by S, in iteration / (AL/, J1) will
be used by S; in the next iteration.

@ This dependence is carried by the J loop.

@ We write: S, - Sy.

Loop Nests Il — Example

FOR / := 1 TO N DO
FOR J := 2 TO N DO
Si: ALLJY := ALLJ—1] + BLL,JD;
Sy: CULJY := ALLJ] + DO/ +1,07;
S3: DILJ] := 0.1; MOdEl
ENDFOR
ENDFOR

Sy assigns a value to A[/, J] in iteration (/, J) that
will be used by Sy in the next iteration (/,J + 1).
The dependence is carried by the J loop.

Sy assigns a value to A[/, J] in iteration (/,J) that
will be used by S, in the same iteration.

S» uses the value of D[/ + 1, J] in iteration (/,J). It
will be overwritten by S3 in the next /-iteration. The

I lann Farriee +he Aenendence

A Model of Dependencies

A Model of Dependencies

@ Suppose we have the following loop-nest:

for i:=1 to x do
for j :=1 toy do
si: Alaxi+bxj+c,dxi+exj+f] = ---
Spee= AlgHi’+h*j’+k,1*i’+m*j’+n]

@ Then there is a dependency between statements s; and s, if
there exist iterations (/) and (i’,;’), such that

axi+bxj+c = gxi'+hxj+k

dxitexj+f = [«i'+mxj+n
or
axi—gxi'+bxj—hxj = k—c
dxi—Isi'+exj—mxj = n—f
Homework

@ This is equivalent to an integer programming problem (a
system of linear equations with all integer variables and
constants) in four variables:

i
a —g b —h « il [k-c
d - e —m j| |n—f
K
@ If the loop bounds are known we get some additional
constraints:
1<i<x, 1<i'<x,
1<j<y 1</<y

@ In other word:
integers /.
are satisfied.

to solve this dependency problem we look for
/" such that the equation and constraints above

Exam I/a (415.730/96)

@ What is the gcd-test? What do we mean when we say that
the ged-test is conservative?
@ List the data dependencies (—,—+,—o~) for the loops below.

FOR i := 1 TO 7 DO

Si: = A[R%i+11;
So: = Ald*il;
S3: AlB+i+3] :=---;

END;

FOR / := 1 TO n DO
Sy X A[2xi] + 5;
So: A2xi+1] X + BLi+7];
S3: A[i+5] C[10%i1;
Sa: BLi+10] Cl12x% i1 + 13;

END;

Exam Il (415.730/97)

@ Consider the following loop:

FOR i := 1 TO n DO

Sp: B[] :=Cli—1] * 2;
Sp: AL ALl + BLi —11; Summary
S3: D[/l CLil * 3;
Ss: CL :=BLi—11 + 5;
ENDFOR

@ List the data dependencies for the loop. For each dependence
indicate whether it is a flow- (—), anti- (—), or
output-dependence (—e-), and whether it is a loop-carried
dependence or not.

@ Show the data dependence graph for the loop.

Readings and References Summary |

@ Dependence analysis is an important part of any parallelizing

@ Padua & Wolfe, Advanced Compiler Optimizations for compiler. In general, it's a very difficuIF F>70b|_emv but,)
Supercomputers, CACM, Dec 1996, Vol 29, No 12, pp. fortunately, mosft programs have very simple index expressions
1184-1187, that can be easily analyzed.
http: /s aca. org/pubs/citations/ journals/caca/1986-29- 12/p1 184-padual - @ Most compilers will try to do a good job on common loops,

rather than a half-hearted job on all loops.
@ Integer programming is NP-complete.

Summary Il

Summary Il

@ When faced with a loop

FOR /i := From TO To DO
Syt ALF(I) &= -
Spi - = ALg(i)]

ENDFOR

the compiler will try to determine if there are any index values
1, J for which f(I) = g(J). A number of cases can occur:

@ The compiler decides that £(i) and g(i) are too complicated
to analyze. = Run the loop serially.

@ The compiler decides that f(i) and g(i) are very simple (e.g.
£(i)=i, f(i)=c*i, f(i)=i+c, f(i)=c*i+d), and does the
analysis using some built-in pattern matching rules. = Run
the loop in parallel or serially, depending on the outcome.

@ contd.
© The compiler applies some advanced method to determine the
dependence. = Run the loop in parallel or serially, depending
on the outcome.

@ Most compilers use pattern-matching techniques to look for
important and common constructs, such as reductions (sums,
products, min & max of vectors).

@ The simplest analysis of all is a name analysis: If every
identifier in the loop occurs only once, there are no
dependencies, and the loop can be trivially parallelized:

FOR i From TO To DO
Si: ALF(i)] := Blg(i)1+CLh(i)1;
Sz: DL()] := ELk(I)I*FIm(i)1;
ENDFOR

