
CSc 553

Principles of Compilation

9 : Garbage Collection — Mark and Sweep

Department of Computer Science

University of Arizona

collberg@gmail.com

Copyright c© 2011 Christian Collberg

Finding the Object Graph

Finding the roots: The dynamic objects in a program form a
graph. Most GC algorithms need to traverse this
graph. The roots of the graph can be in

1 global variables
2 registers
3 local variables/formal parameters on the stack.

Hence, the compiler must communicate to the GC
which registers/variables contain roots.

Finding the Object Graph. . .

Finding internal pointers: Structured variables (arrays, records,
objects) may contain internal pointers. These must
be known to the GC so that it can traverse the
graph. Hence, the compiler must communicate to
the GC the type of each dynamic object and the
internal structure of each type.

Finding the beginning of objects: What happens if the only
pointer to an object points somewhere in the middle
of the object? We must either be able to find the
beginning of the object, or make sure the compiler
does not generate such code.

Finding the Object Graph. . .

8:

A

C

%r8

Execution

Stack

for

AR

P

for

AR

Q

for

AR

R

template

G

Globals

Ptrs: [12]

Size:96

Template for P

Ptrs: [0]

Size:4

Template for MAIN

Size:32

Ptrs: [4,12]

Template for T1

Ptrs: [8]

Size: 24

Template for T2

Heap

O: template

O: template

8:

12:

O: template

8:



Pointer Maps

The internal structure of activation records & structured
variables is described by run-time templates.

Every run-time object has an extra word that points to a type

descriptor (or Temaplate), a structure describing which words
in the object are pointers. This map is constructed at
compile-time and stored statically in the data segment of the
executable.

Pointer Maps. . .

When the GC is invoked, registers may also contain valid
pointers. The compiler must therefore also generate (for every
point where the GC may be called) a pointer map that
describes which registers hold live pointers at this point. For
this reason, we usually only allow the GC to run at certain
points, often the points where new is called.

We must also provide pointer maps for every function call
point. A function P may call Q which calls new which invokes
the GC. We need to know which words in P ’s activation
record that at this point contain live pointers.

Pointer Maps. . .

How does the GC look up which pointer map belongs to a
particular call to procedure P at a particular address a? The
pointer maps are indexed by the return address of P! So, to
traverse the stack of activation records, the GC looks at each
frame, extracts the return address, finds the pointer map for
that address, and extracts each pointer according to the map.

Algorithm: Mark and Sweep

The basic idea behind Mark-and-Sweep is to traverse and
mark all the cells that can be reached from the root cells.

A root cell is any pointer on the stack or in global memory
which points to objects on the heap.

Once all the live cells (those which are pointed to by a global
variable or some other live cells) have been marked, we scan
through the heap and separate the live data from the garbage.

If we are dealing with equal size objects only (this is the case
in LISP, for example) the we scan the heap and link all the
unmarked objects onto the free list. At the same time we can
unmark the live cells.



Algorithm: Mark and Sweep. . .

If we have cells of different sizes, just linking the freed objects
together may result in heap fragmentation. Instead we need to
compact the heap, by collecting live cells together in a
contiguous memory area on the heap and doing the same with
the garbage cells in another area.

Algorithm: Mark and Sweep. . .

Marking Phase:

1 Mark all objects unmarked.

2 Find all roots, i.e. heap pointers in stack, regs & globals.

3 Mark reachable blocks using a depth first search starting at
the roots.

1 DFS may run out of stack space!
2 Use non-recursive (Deutsch-Schorr-Waite) DFS.

Scanning Phase:

same-size-cells Scan heap and put un-marked (non-reachable) cells
back on free-list.

different-size-cells Compact the heap to prevent fragmentation.

Marking Phase

A straight-forward implementation of mark and sweep may
run into memory problems itself! A depth-first-search makes
use of a stack, and the size of the stack will be the same as
the depth of the object graph.

Remember that the stack and the heap share the same
memory space, and may even grow towards eachother.

So, if we’re out of luck we might run into this situation:

the heap is full (otherwise we wouldn’t be gc:ing!),
the object graph is deep,
we run out of stack space during the marking phase.

We’re now out of memory alltogether. Difficult to recover
from!

Marking Phase. . .

Fortunately, there is a smart algorithm for marking in constant
space, called the Deutsch-Schorr-Waite algorithm. Actually, it
was developed simultaneously by Peter Deutsch and by
Herbert Schorr and W. M. Waite.

The basic idea is to store the DFS stack in the object graph
itself. When a new node (object) is encountered

1 we set the “marked”-bit to 1,
2 the node (object) is made to point to the previous node,
3 two global variables current and previous are updated.

current points to the current cell, previous to the
previously visited cell.



Marking: “Look Ma, No Stack!”

Use pointer reversal to encode the DFS stack in the object
graph itself.

When the DFS reaches a new cell, change a pointer in the cell
to point back to the DFS parent cell. When we can go no
deeper, return, following the back links, restoring the links.

M

(1)

(2)

/

(3)

/

(1)

M

(2) (3)

// B B

M M

current

previous

B = Back Pointer

M = Marked

(4)
(5)

/ /

(4)
(5)

/ /

Marking: “Look Ma, No Stack!”. . .

LOOP

CASE 1: current’s fields are not Done

i := next field of current that’s not Done;

next := current↑ .fi;

IF next↑ isn’t marked THEN

current↑ .fi := previous;

previous := current;

current := next;

ENDIF;

CASE 2: current’s fields are Done

next := current;

current := previous;

i := next field of current that’s not Done;

previous := current↑ .fi;

current↑ .fi := next;

ENDLOOP

Marking: “Look Ma, No Stack!”. . .

⇓ Case 1

f2Done:2

Marked:2
√

Done:2
√

f1

f1

f2Done:2
f1

f2

f3

Done:2

Done:2

Done:2

Marked:2
√

Done:2
√

Marked:2
√

f1

f2

Done:2

Done:2

Marked:2

next
current

previous

f1

f2

f3

Done:2

Done:2

Done:2

Marked:2
√

previous

f1

f2

Done:2

Done:2

Marked:2
√

current

Marking: “Look Ma, No Stack!”. . .

⇓ Case 2

f1

f2

f3

Marked:2
√

Done:2
√

Done:2
√

Done:2
√

f2

Marked:2
√

Done:2
√

f1

Done:2
√

current next

f1

Marked:2
√

f2

f3

Done:2
√

Done:2
√

Done:2
√

f1

f2

Done:2
√

Done:2

Marked:2
√

previous

next

current



Pointer Reversal Example — Step 1

y
E

x y

D
x y

C
x y

B

yx
A

x y

x

B
x y

previous=current=A
current=next=B

current.x=previous=nil

/

previous=nil
current=A
next=current.x=B

y
E

y

C
x y

A
x

D

x

/ /

//

previous current

/ /

//

previous current next

2

⇓ Case 1

1

Pointer Reversal Example — Step 2

y

y

C
x

yx
A

y

B
x

B
x y

y

x y

/

/

previous=A

current=B
next=current.y=C

current.y=previous=A

previous=current=B
current=next=C

back

C
x y

E

yx

x y
E

A
x

D

D
x

/ /

//

/ /

//

previous current
next

currentprevious

⇓ Case 1

3

2

Pointer Reversal Example — Step 3

A
yx

x y
ED

x y

yx
A

B
x y

C
x y

x y
ED

x y

/

back

/

back

previous=B

current=C
next=current.x=D

current.x=previous=B

previous=current=C
current=next=D

back

B
x y

C
x y

current

/

/

//

/

currentprevious

next

/

previous

/

/

⇓ Case 1

4

3

Pointer Reversal Example — Step 4

A

current.y=previous=C

yx

x y

yx
A

B
x y

C
x y

x y
E

/

back
back

/

back
back

previous=C

current=D
next=current.y=E

previous=current=D
current=next=E

x y
E

D
x y

back

B
x y

C
x y

D

previous

/

/

/

/

previous

current

/ /

/ /

next

current

/

5

⇓ Case 1

4



Pointer Reversal Example — Step 5

y

B
x y

B
x y

C
x y

x

/

back
back

/

back
back previous=D

current=E
next=current=E

current=previous=D

current.y=next=E

D
x y

back

D
x y

previous=current.y=C

back
y

E

yx

x y
E

A

yx
A

C
x

/ /

//

/ /

currentprevious

//

current

next

previous

5

⇓ Case 2

6

Pointer Reversal Example — Step 6

C
x y

B
x y

B
x y

C
x y

x y

/

back

D
x y

/

back
back

D
x y

previous=C

current=D
next=current=D

current=previous=C

previous=current.x=B
current.x=next=D

E

x y
E

yx
A

yx
A

current

/ /

//

/ /

//

previous

next

currentprevious
7

6

⇓ Case 2

Pointer Reversal Example — Step 7

A

C
x

yx
A

y

B
x

B
x y

y

x

/

back

D
x y

/

D
x y

previous=B

current=C
next=curent=C

current=previous=B

previous=current.y=A
current.y=next=C

y

C
x y

E

y

x y
E

x

/ /

//

currentprevious

/ /

//

next

previous

current

⇓ Case 2

8

7

Pointer Reversal Example — Step 8

x
A

C
x

yx
A

y

B
x

B
x y

y

x y

/

D
x y

/

D
x y

previous=A

current=B
next=current=B

current=previous=A

previous=nil
current.x=next=B

C
x y

E

y

x
E

y

/ /

//

previous

current

/ /

//

next

previous

current

8

⇓ Case 2

9



Where do the markbits go???

Where do we store the extra mark bits for every object? An
extra word in the header would be wastefull!

kind=record

pointersAt =

{0,8,16}

size=20

kind=array

20,28,36,...}

pointersAt =
{0,8,16,

Heap

Globals

Templates
Markbits

2−bits

size=10

30−bits
Next Ptr

Where do the markbits go. . .

Align the templates on a word-boundary, then the two lowest
bit of the template-pointers will always be zero — use these
bits for markers!

We’re somehow going to have to store which pointer to deal
with next during pointer reversal. We could use the same
tricks as above, set the low order bits of pointers we’ve dealt
with to 1, but then we need to search through the entire
object every time for the next pointer to deal with —
expensive.

Note that, just like in the malloc implementation, the pointer
to an object points right after the header. So, the header is at
address ptr-8, and the data in each object is at ptr, ptr+4,
etc.

Sweeping: Compaction

Compaction

A B C ED F

data1 data2 data3

data1 data2 data3

A B C ED F

1 Calculate the forwarding address of each cell.

2 Store the forwarding address of cell B in B .forw addr.

3 If p points to cell B , replace p with B .forw addr.

4 Move all cells to their forwarding addresses.

Cost of Garbage Collection

The size of the heap is H, the amount of reachable memory is
R , the amount of memory reclaimed is H − R .

What is the cost of the different GC algorithms?

H
e
a
p

Heapsize=H

Reachable=R Reclaimed=H − R

amortized GC cost =
time spent in GC

amount of garbage collected

=
time spent in GC

H − R



Cost of GC — Mark-and-Sweep

H
e
a
p

Heapsize=H

Reachable=R Reclaimed=H − R

The mark phase touches all live nodes. Hence, it takes time
c1R , for some constant c1. c1 ≈ 10?

The sweep phase touches the whole heap. Hence, it takes
time c2H, for some constant c2. c2 ≈ 3?

GC cost =
c1R + c2H

H − R
≈

10R + 3H

H − R

Cost of GC — Mark-and-Sweep. . .

e
a
p

H

Reachable=R

Heapsize=H

Reclaimed=H − R

GC cost =
c1R + c2H

H − R
≈

10R + 3H

H − R

If H ≈ R we reclaim very litte, and the cost of GC goes up. In
this case the GC should grow the heap (increase H).

Readings and References

Read Scott, pp. 383–389.


