
CSc 553 — Principles of Compilation

X16 : Optimization I

Christian Collberg

Department of Computer Science

University of Arizona

collberg@gmail.com

Copyright c© 2011 Christian Collberg

March 30, 2011

1

Introduction

2

AST

Transformation 1

Transformation 2
....

Inter−Proc. Opt

Transformation 1

Transformation 2
....

Local Opt

Transformation 1

Transformation 2
....

Global Opt

Syntactic Analysis

Lexical Analysis

Semantic Analysis

SOURCE

Build Call

Graph

gen[S]={..}

kill[S1]={..}
...

Data Flow

Analysis

Machine Code Gen.

Peephole Opt.

B5

Interm. Code Gen.

Transformations

Tree

Control Flow Analysis

Intermediate Code Optimization

AST

3

What do we Optimize?

4 What do we Optimize I?

1. Optimize everything, all the time. The problem is that optimization interferes with debugging. In fact,
many (most) compilers don’t let you generate an optimized program with debugging information. The
problem of debugging optimized code is an important research field.

1

Furthermore, optimization is probably the most time consuming pass in the compiler. Always opti-
mizing everything (even routines which will never be called!) wastes valuable time.

2. The programmer decides what to optimize. The problem is that the programmer has a local view of
the code. When timing a program programmers are often very surprised to see where most of the time
is spent.

5 What do we Optimize II?

3. Turn optimization on when program is complete. Unfortunately, optimizers aren’t perfect, and a
program that performed OK with debugging turned on often behaves differently when debugging is off
and optimization is on.

4. Optimize inner loops only. Unfortunately, procedure calls can hide inner loops:

PROCEDURE P(n);

BEGIN

FOR k:=1 TO n DO · · · END;

END P;

FOR i:=1 TO 10000 DO P(i) END;

6 What do we Optimize III?

5. Use profiling information to guide what to optimize.

data

Compiler

Front−End
Optimizer

Code

Generator

"Carefully

chosen input"
Executable

Program

Profile

6. Runtime code generation/optimization. We delay code generation and optimization until execution
time. At that time we have more information to guide the otpimizations:

Specialized Code

Front−End

Q [...]

P [...]

Interm.

Code Table

Compiled

Code Table

Q [...]

P(_,3) [...]

P [...]

Interm.

Code

Gen spec. code

for P(_,3),

optimize, then

call

Execution time

call P(x,3)

Compiler

7

Local vs. Global vs. Inter-procedural
Optimization

2

8 Local, Global, Inter-Proc. I

• Some compilers optimize more aggressively than others. An aggressive compiler optimizes over a
large piece of code, a simple one only considers a small chunk of code at a time.

Local Optimization

• Consider each basic block by itself.

• All compilers do this.

Global Optimization

• Consider each procedure by itself.

• Most compilers do this.

Inter-Procedural Opt.

• Consider the control flow between procedures.

• A few compilers do this.

9 Local Optimization I

Transformations:

• Local common subexpression elimination.

• Local copy propagation.

• Local dead-code elimination.

• Algebraic optimization.

• Jump-to-jump removal.

• Reduction in strength.

Peephole Optimization:

• On machine and/or interm. code.

1. Examine a “window” of instructions.

2. Improve code in window.

3. Slide window.

4. Repeat until “optimal”.

3

10 Local Opt. II

Redundant Loads:

A := A + 1; ⇒
set A, %l0

set A, %l1

ld [%l1], %l1

add %l1, 1, %l1

st %l1, [%l0] ⇒
set A, %l0

ld [%l0], %l1

add %l1, 1, %l1

st %l1, [%l0]

Jumps-to-jumps:

if a < b goto L1

L1: goto L2

L2: goto L3 ⇒
if a < b goto L3

L1: goto L3

L2: goto L3

11 Local Opt. IV

Algebraic Simplification:

x := x + 0; ⇒

x := x - 0; ⇒

x := x ∗ 1; ⇒

x := 1 ∗ 1; ⇒

x := x / 1; ⇒

x := x ** 2; ⇒ x := x * x;

f := f / 2.0; ⇒ f := f ∗ 0.5;

Reduction in Strength:

x := x ∗ 32; ⇒ x := SHL(x, 5);

x := x ∗ 100; ⇒
x := x ∗ (64 + 32 + 4) ⇒
x := x ∗ 64 + x ∗32 + x ∗4 ⇒
x := SHL(x,6) + SHL(x,5) + SHL(x,2)

12 Local, Global,Inter-Proc. II

Original Code

FUNCTION P (X,n): INT;

IF n = 3 THEN RETURN X[1]

ELSE RETURN X[n];

CONST R = 1;

BEGIN

K := 3; ...

IF P(X,K) = X[1] THEN

X[1] := R * (X[1] ** 2)

4

After Local Opt

FUNCTION P (X,n): INT;

IF n = 3 THEN RETURN X[1]

ELSE RETURN X[n]

BEGIN

K := 3; ...

IF P(X,K) = X[1] THEN

X[1] := X[1] * X[1]

13 Local, Global, Inter-Proc. III

After Local Opt

FUNCTION P (X,n): INT;

IF n = 3 THEN RETURN X[1]

ELSE RETURN X[n]

BEGIN

K := 3;

...

IF P(X,K) = X[1] THEN

X[1] := X[1] * X[1]

After Global Opt

FUNCTION P (X,n): INT;

IF n = 3 THEN RETURN X[1]

ELSE RETURN X[n]

BEGIN

...

IF P(X,3) = X[1] THEN

X[1] := X[1] * X[1]

14 Local, Global, Inter-Proc. IV

FUNCTION P (X,n): INT;

IF n = 3 THEN RETURN X[1]

ELSE RETURN X[n]

BEGIN

IF P(X,3) = X[1] THEN

X[1] := X[1] * X[1]

After Inter-Procedural Opt

BEGIN

IF TRUE THEN

X[1] := X[1] * X[1]

After Another Local Opt

BEGIN

X[1] := X[1] * X[1]

• Delete P if it isn’t used elsewhere. This can maybe be deduced by an inter-procedural analysis.

5

15

Local Optimization

16 Local Optimization I

Transformations

• Local common subexpression elimination.

• Local copy propagation.

• Local dead-code elimination.

• Algebraic optimization.

• Jump-to-jump removal.

• Reduction in strength.

Peephole Optimization

• On machine and/or interm. code.

1. Examine a “window” of instructions.

2. Improve code in window.

3. Slide window.

4. Repeat until “optimal”.

17 Redundant Loads

• A naive code generator will generate the same address or variable several times. Peephole optimization
over the generated code will easily remove these.

A := A + 1;

⇓

set A, %l0

set A, %l1

ld [%l1], %l1

add %l1, 1, %l1

st %l1, [%l0]

⇓

set A, %l0

ld [%l0], %l1

add %l1, 1, %l1

st %l1, [%l0]

6

18 Jumps-to-jumps

• Complicated boolean expressions (with many and, or, nots) can easily produce lots of jumps to
jumps. A peephole optimization pass over the generated code can remove these.

if a < b goto L1

...

L1: goto L2

...

L2: goto L3

⇓

if a < b goto L3

...

L1: goto L3

...

L2: goto L3

19 Algebraic Simplification

• Beware of numerical problems:

1. (x ∗ 0.00000001) ∗ 10000000000.0 may produce a different result than (x ∗ 1000.0)!

• FORTRAN requires that parenthesis be honored: (5.0∗x)∗ (6.0∗y) can’t be evaluated as (30.0∗x∗y).

• Note that multiplication is often faster than division.

x := x + 0; ⇒

x := x - 0; ⇒

x := x ∗ 1; ⇒

x := 1 ∗ 1; ⇒ x := 1

x := x / 1; ⇒

x := x ** 2; ⇒ x := x * x;

f := f / 2.0; ⇒ f := f ∗ 0.5;

20 Reduction in Strength

• SHL(x,y) = shift x left y steps.

• Multiplcation (and division) by a constant is a common operation. They can be replaced by cheaper
sequences of shifts and adds.

7

x := x ∗ 32 ;

⇓

x := SHL(x, 5);

x := x ∗ 100 ;

⇓

x := x ∗ (64 + 32 + 4)

⇓

x := x ∗ 64 + x ∗32 + x ∗4

⇓

x := SHL(x,6) + SHL(x,5) +

SHL(x,2)

21

Global Optimization

22 Global Optimization I

• Makes use of control-flow and data-flow analysis.

Transformations

• Dead code elimination.

• Common subexpression elimination (local and global).

• Loop unrolling.

• Code hoisting.

• Induction variables.

• Reduction in strenght.

• Copy propagation.

• Live variable analysis.

• Uninitialized Variable Analysis.

23 Control Flow Graphs

• We perform our optimizations over the control flow graph of a procedure.

8

Basic Block

B1

B2

B3

B4

B5 B6

if ... goto B3

if ... goto B2

if ... goto B6

goto B2

24 Common Sub-Expr. Elimination

No changes to j here!

B5

B1

B2

B3

B4

t3 := 4 * j

t5 := j * 4

A[t5] := 20

t3 := 4 * j

A[t3] := 20

t9 := 4 * j

x := A[t9] x := A[t3]

25 Copy Propagation

• Many optimizations produce X := Y .

• After an assignment X := Y , replace references to X by Y . Remove the assignment if possible.

9

No changes to x!

x := t3

A[t4] := t3

A[t4] := t3

B5

B3

B4

x := t3

A[t4] := x

A[x] := 20 A[t3] := 20

No more uses of x!

26 Dead Code Elimination

• A piece of code is dead if we can determine at compile time that it will never be executed.

Nor here!

B5

B1

B2

B3

B4

x := 23

if x>20 goto B4

t1 := 4 * j

A[t3] := 20

No changes to x here!

27 Induction Variables

• If i and j are updated simultaneously in a loop, and j = i ∗ c1 + c2 (c1, c2 are consants) we can remove
one of them, and/or replace ∗ by +.

10

t1 := 4 * j

j := j + 1;
t4 := A[4*j]

x := 23;
REPEAT

UNTIL;

B1

B2

B3

x := 23

j := j + 1

t4 := A[t1]

t1 := 4 * j

B4

if ... goto B3 if ... goto B3

j := j + 1

t1 := t1 + 4

t4 := A[t1]

28 Code Hoisting

• Move code that is computed twice in different basic blocks to a common ancestor block.

IF a < 5 THEN X := A[i+3] + 9;

ELSE X := A[i+3] * 6 END

B1

if a<5 goto B2

t1 := A[i+3];

X:=t1+9

B2 B3

X:=t1*6

B1

X:=A[i+3]+9

B2

X:=A[i+3]*6

B3

if a<5 goto B2

29

Loop Unrolling

30 Loop Unrolling

Constant Bounds

FOR i := 1 TO 5 DO A[i]:=i END

⇓

A[1] := 1; A[2] := 2; A[3] := 3;

A[4] := 4; A[5] := 5;

Variable Bounds

11

FOR i := 1 TO n DO A[i] := i END

⇓

i := 1;

WHILE i <= (n-4) DO

A[i]:=i; A[i+1]:=i+1; A[i+2]:=i+2;

A[i+3]:=i+3; A[i+4]:=i+4; i:=i+5;

END;

WHILE i<=n DO A[i]:=i; i:=i+1; END

• Loop unrolling increases code size. How does this effect caching?

31

Inter-procedural Optimizations

32 Inter-procedural Opt.

• Consider the entire program during optimization.

• How can this be done for languages that support separately compiled modules?

Transformations

• Inline expansion

– Replace a procedure call with the code of the called procedure.

• Procedure Cloning

– Create multiple specialized copies of a single procedure.

• Inter-procedural constant propagation

– If we know that a particular procedure is always called with a constant parameter with a specific
value, we can optimize for this case.

33 Inline Expansion I

Original Code:

FUNCTION Power (n, exp:INT):INT;

IF exp < 0 THEN result := 0;

ELSIF exp = 0 THEN result := 1;

ELSE result := n;

FOR i := 2 TO exp DO

result := result * n;

END; END;

RETURN result;

END Power;

BEGIN X := 7; PRINT Power(X,2) END;

Expanded Code:

12

BEGIN

X := 7;

result := X;

FOR i := 2 TO 2 DO

result := result * X;

END;

PRINT result;

END

34 Inline Expansion II

After copy propagation

X := 7;

result := 7;

FOR i := 2 TO 2 DO

result := result * 7;

END;

PRINT result;

After loop unrolling

X := 7;

result := 7;

result := result * 7;

PRINT result;

After constant folding

result := 49;

PRINT result;

35 Procedure Cloning

Original Code:

FUNCTION Power (n, exp:INT):INT;

IF exp < 0 THEN result := 0;

ELSIF exp = 0 THEN result := 1;

ELSE result := n;

FOR i := 2 TO exp DO

result := result * n;

END;

RETURN result;

END Power;

BEGIN PRINT Power(X,2), Power(X,7) END;

Cloned Routines:

FUNCTION Power0 (n):INT; RETURN 1;

FUNCTION Power2 (n):INT; RETURN n * n;

FUNCTION Power3 (n):INT; RETURN n * n * n;

13

FUNCTION Power (n, exp:INT):INT;

(* As before *)

Transformed Code:

BEGIN PRINT Power2(X), Power(X,7) END;

36

Machine Dependent vs. Machine Independent
Optimization

37 Machine (In-)Dependent Opt.? I

• Optimizations such as inline expansion and loop unrolling seem pretty machine independent. You
don’t need to know anything special about the machine architecture to implement these optimizations,
in fact, both inline expansion and loop unrolling can be applied at the source code level. (May or may
not be true for inline expansion, depending on the language).

• However, since both inline expansion and loop unrolling normally increase the code size of the program,
these optimizations do, in fact, interact with the hardware.

38 Machine (In-)Dependent Opt.? I

• A loop that previously might have fit in the instruction cache of the machine, may overflow the cache
once it has been unrolled, and therefore increase the cache miss rate so that the unrolled loop runs
slower than the original one.

• The unrolled loop may even be spread out over more than one virtual memory page and hence affect
the paging system adversely.

• The same argument holds for inline expansion.

39

Example I

40 Example I/a – Loop Invariants

Original code:

FOR I:= 1 TO 100 DO

FOR J := 1 TO 100 DO

FOR K := 1 TO 100 DO

A[I][J][K] := (I*J)*K;

END;

END;

END

14

Find loop invariants:

FOR I:= 1 TO 100 DO

T3 := ADR(A[I]);

FOR J := 1 TO 100 DO

T1 := ADR(T3[J]);

T2 := I * J;

FOR K := 1 TO 100 DO

T1[K] := T2 * K

END;

END;

END

41 Example I/b – Strength Reduct.

FOR I:= 1 TO 100 DO

T3 := ADR(A[I]);

FOR J := 1 TO 100 DO

T1 := ADR(T3[J]); T2 := I * J;

FOR K := 1 TO 100 DO T1[K]:=T2*K END;

END;

END

After strength reduction:

FOR I:= 1 TO 100 DO

T3 := ADR(A[I]); T4 := I;

FOR J := 1 TO 100 DO

T1 := ADR(T3[J]);

T2 := T4; (* T4 = I*J *)

T5 := T2; (* Init T2*K *)

FOR K := 1 TO 100 DO

T1[K] := T5; T5 := T5 + T2;

END;

T4 := T4 + I;

END; END

• T4 holds I*J: I, I + I, I + I + I, · · · I ∗ J . T5 holds T2*K = I*J*K.

42 Example I/c – Copy Propagation

FOR I:= 1 TO 100 DO

T3 := ADR(A[I]); T4 := I;

FOR J := 1 TO 100 DO

T1 := ADR(T3[J]); T2 := T4; T5 := T2;

FOR K := 1 TO 100 DO

T1[K] := T5; T5 := T5 + T2;

END; T4 := T4 + I;

END;

END

After Copy Propagation:

15

FOR I:= 1 TO 100 DO

T3 := ADR(A[I]); T4 := I;

FOR J := 1 TO 100 DO

T1 := ADR(T3[J]); T5 := T4;

FOR K := 1 TO 100 DO

T1[K] := T5; T5 := T5 + T4;

END;

T4 := T4 + I;

END;

END

• We replace T2 by T4.

43 Example I/d – Array Indexing

• Expand subscripting operations. Pascal array indexing turns into C-like address manipulation!

Expand Indexing:

VAR A:ARRAY[1..100,1..100,1..100] OF INT;

FOR I:= 1 TO 100 DO

T3 := ADR(A) + (10000*I)-10000;

T4 := I;

FOR J := 1 TO 100 DO

T1 := T3 +(100*J)-100;

T5 := T4;

FOR K := 1 TO 100 DO

(T1+K-1)↑ := T5;

T5 := T5 + T4;

END;

T4 := T4 + I;

END; END

44 Example I/e – Array Indexing

Strength Red. + Copy Prop.:

T6 := ADR(A);

FOR I:= 1 TO 100 DO

T4 := I;

T7 := T6;

FOR J := 1 TO 100 DO

T5 := T4;

T8 := T7;

FOR K := 1 TO 100 DO

T8↑ := T5;

T5 := T5 + T4;

T8 := T8 + 1;

END;

T4 := T4 + I;

T7 := T7 + I00;

16

END;

T6 := T6 + 10000;

END

45 Example I/f – Loop Unrolling

T6 := ADR(A);

FOR I:= 1 TO 100 DO

T4 := I; T7 := T6;

FOR J := 1 TO 100 DO

T5 := T4; T8 := T7;

FOR K := 1 TO 10 DO

T8↑ := T5; T5 += T4; T8 ++;

T8↑ := T5; T5 += T4; T8 ++;

T8↑ := T5; T5 += T4; T8 ++;

T8↑ := T5; T5 += T4; T8 ++;

T8↑ := T5; T5 += T4; T8 ++;

T8↑ := T5; T5 += T4; T8 ++;

T8↑ := T5; T5 += T4; T8 ++;

T8↑ := T5; T5 += T4; T8 ++;

T8↑ := T5; T5 += T4; T8 ++;

T8↑ := T5; T5 += T4; T8 ++;

END;

T4 := T4 + I; T7 := T7 + I00;

END;

T6 := T6 + 10000;

END

46

Example II

47 Example II/a – Inline Expansion

• ftp://cs.washington.edu/pub/pardo. The code has been simplified substantially...

• bitblt copies image region regions while performing an operation on the moved part.

• s is the source, d the destination, i the index in the x direction, j the index in the y direction.

• Every time around the loop we have to execute a switch (case) statement, which is very inefficient.

• Here we’ll show how bitblt can be optimized by inlining. It’s also amenable to run-time (dynamic)
code generation. I.e. we include the code generator in the executable and generate code for bitblt

when we know what it’s arguments are.

48 Example II/b – Inline Expansion

Original Code

17

#define BB_S (0xc)

bitblt (mask_t m, word s, word d, int op)

{for (j=0; j<dy; ++j) {

for (i=nw+1; i>0; --i) {

switch (op) {

case (0) : *d &= ~mask; break;

case (BB_D&~BB_S) :

*d ^= ((s &*d) & mask); break;

case (~BB_S) :

*d ^= ((~s ^ *d) & mask); break;

/* Another 12 cases... */

case (BB_X) : *d |= mask; break;

}; d++;

}; d++; s++;

}

}

main () {bitblt(mask,src,dest,...,BB_S);}

49 Example II/c – Inline Expansion

Expanded Code

main () {

d = src; s=dst;

for (j=0; j<dy; ++j) {

for (i=nw+1; i>0; --i) {

switch (BB_S) {

case (0) : *d &= ~mask; break;

case (BB_D&~BB_S) :

*d ^= ((s &*d) & mask); break;

case (~BB_S) :

*d ^= ((~s ^ *d) & mask); break;

/* Another 12 cases... */

case (BB_X) : *d |= mask; break;

}; d++;

}; d++; s++;

}

}

50 Example II/d – Inline Expansion

After Dead Code Elim

main () {

d = src; s=dst;

for (j=0; j<dy; ++j) {

for (i=nw+1; i>0; --i) {

d ^= ((s ^ *d) & mask);

d++;

};

d++; s++;

18

}

51

Summary

52 Summary

• Read the Dragon book: 530–532, 585–602.

• Debugging optimized code: See the Dragon book. pp. 703–711.

• Difficult problems:

– Which transformations are actually profitable?

– How do we avoid unsafe optimizations?

– What part of the code should we optimize?

– How do we take machine dependencies (cache size) into account?

– At which level(s) do we optimize (source, interm. code, machine code)?

– How do we order the different optimizations?

19

