Stack Caching for Interpreters

M. Anton Ertl

Institut fur Computersprachen
Technische Universitat Wien
Argentinierstrafie 8, A-1040 Wien, Austria
anton@mips.complang.tuwien.ac.at
Tel.: (+43-1) 58801 4459
Fax.: (+43-1) 505 78 38

Abstract. An interpreter for a virtual stack ma-
chine can spend a significant part of its execution
time fetching values from and storing values to the
stack. This paper explores two methods to reduce
this overhead by caching top-of-stack values in reg-
isters. The dynamic method is based on having one
version of the whole interpreter for every possible
state of the cache; the execution of a primitive usu-
ally changes the state of the cache and the next
primitive is executed in the version corresponding
to the new state. In the static method a state ma-
chine that keeps track of the cache state is added to
the compiler. Common primitives exist in versions
for several states, but it is not necessary to have
a version of every primitive for every cache state.
The compiler generates glue code, if necessary, and
compiles the version of the primitive appropriate
for the cache state. Stack manipulation primitives
are usually optimized away.

1 Introduction

Interpreters are often used for programming lan-
guage implementation. The major advantages over
compilation to native code are simplicity and porta-
bility. The major advantages over the generation
of C code are compilation speed and flexibility
(e.g., to generate additional code at run-time). In-
terpreters are still the dominant implementation
method of general-purpose languages like Prolog,
Forth and APL, they are even used in special imple-
mentations of traditionally compiled languages like
C, and probably the majority of special-purpose
language implementations are interpreters.

In the last years many questions about inter-
preters have been asked in the Usenet newsgroup
comp.compilers. Efficiency was a major concern;
another question that came up several times is
whether to use a stack or a register architecture
for the virtual machine.

The present paper deals with these issues. Sec-
tion 2 discusses general efficency issues; then we
concentrate on a particular aspect of the efficency
question, the question of accessing arguments of
virtual machine instructions. Our answer is to use
a stack machine that caches a variable amount of

stack values in registers (Section 3). We present two
methods for implementing this idea: Either the in-
terpreter keeps track of the cache state (Section 4,
or the compiler does it (Section 5).

A note on teminology: Unless otherwise noted,
the terms instruction and primitive refer to vir-
tual machine instructions, cache refers to the stack
cache implemented in software, and the compiler
is the program that generates the virtual machine
code.

2 Interpreter efficiency

Since we are interested in efficiency, we limit the
discussion to virtual machine interpreters, and will
not discuss, e.g., syntax tree interpreters. The inter-
pretation of a virtual machine instruction consists
of three parts:

— accessing arguments of the instruction

— performing the function of the instruction

— dispatching (fetching, decoding and starting)
the next instruction

The first and third parts constitute the interpreter
overhead.

2.1 NEXT

1w $2,0($4) #$4=ip
addu $4,%4.,4
h| $2

#nop #tbranch delay slot

Fig. 1. Direct threading in MIPS assembly

The most efficient method for fetching, decod-
ing, and starting the next primitive is still direct
threading [Bel73]. Unfortunately, direct threading
cannot be implemented in ANSI C and other lan-
guages that do not have first-class labels and do not
guarantee tail-call optimization (Fig. 2 shows how
direct threading would be implemented in C using

Paper and BibTeX entry are available at http://www.complang.tuwien.ac.at/papers/. This paper was published in:

EuroForth '94 Conference Proceedings, pages 3--12

typedef void (* Inst)();

void add(Inst *ip, int #*sp /* other regs */)

{

sp[1] = sp[0]+sp[1];

(*ip) (ip+1, sp+l /* other registers */);
¥

Inst program[] = { add /* ... */ };

Fig. 2. Direct threading in C using tail calls

typedef enum {
add /# ... */
} Inst;

void engine()
{
static Inst program[] = { add /* ... */ };

Inst *ip;
int *sp;

for (;3)
switch (*ip++) {
case add:
spl[1]=sp[0]1+sp[1];
spt+;
break;

}

Fig. 3. Instruction dispatch using switch

$L2: #for ;)

1w $3,0($6) #$6=ip

#nop

sltu $2,$8,$3 #check upper bound
bne $2,$0,3$L2

addu $6,$6,4 #branch delay slot
s1l1 $2,$3,2 #multiply by 4
addu $2,%$2,$7 #3$7 contains $L13
1w $2,0(%2)

#nop

h| $2

#nop

$L13: #switch target table
.word $L12
$L12: #add:

i $L2
#nop

typedef void (* Inst)();

Inst *ip;
int *sp;

void add()

{
spl1]=sp[0]+sp[1];
spt+;

}
Inst program[] = { add /# ... */ };

void engine()
{
for (53)
(*ip++) O;

Fig. 5. Direct call threading

add:

i $31
engine:

$L3:

lw $2,ip
#nop

1l $4,0(32)
addu $3,%$2,4

jal $31,%$4 #call

sw $3,ip #branch delay slot
h| $L3

#nop

Fig. 6. Direct call threading in assembly

tail-calls). Two methods are usually used in C: a
giant switch (Fig. 3) or calls (Fig. 5). In the first
method the whole interpreter, including the imple-
mentations of the instructions, must be in one func-
tion. In the second method every primitive is a sep-
arate function; this method is actually quite simi-
lar to direct threading (it just uses calls instead of
jumps), so I call it direct call threading. Figure 1,4

R3000 R4000

direct| 3-4 5-7
switch|12-13 18-19
call| 9-10 17-18

Fig. 4. Switch dispatch in assembly

Fig. 7. Cycles needed for instruction dispatch

and 6 show MIPS assembly' code for the three tech-
niques (direct call threading needed a little source
code twisting to get reasonable scheduling). Fig. 7
shows the overhead of these techniques in cycles on
two processors, the R3000, and the more deeply
pipelined R4000. The overhead varies depending
on how many delay slots can be filled; usually it
will be at the lower bound (all delay slots filled).
The execution time penalty of the switch method
is caused by a range check, by a table lookup, and
by the jump to the dispatch routine generated by
most compilers. The call method does not look so
slow, but it is usually even slower than the switch
method: Every virtual machine register, e.g.; in-
struction and stack pointers, have to be kept in
global or static variables. Most C compilers keep
such variables in memory, causing at least a load
and/or store for every virtual machine register ac-
cessed in a primitive. In the switch method virtual
machine registers can be kept in local variables,
which are translated into real machine registers by
good compilers.

typedef void *Inst;

void engine()

{
static Inst program[] = { &&%add /* ...
Inst *ip;
int *sp;

*/ };

goto *ip++;

add:
sp[1]1=sp[0]+sp[1];
spt+;

goto *ip++;

}

Fig. 8. Direct threading using GNU C’s “labels as val-

ues”

Fortunately, there is a widely-available language
with first-class labels: GNU C (version 2.x); so
we can implement direct threading portably (see
Fig. 8). If portability to machines without gec is a
concern, 1t is easy to switch between direct thread-
ing and ANSI C conforming methods by using con-
ditional compilation.

If the instructions are of constant length, dis-
patching the next instruction can be performed
in parallel with the processing of the current in-
struction. This 1s very useful for filling delay slots

! In MIPS assembly, register n is denoted by $n, and
the destination operand of an instructions is usually
the leftmost register.

of both the instruction dispatch routine as well
as the rest of the instruction. When coding in C
care must be taken to avoid potential dependences
due to aliasing (e.g., between instruction and stack
pointer) that would prevent the compiler from per-
forming good scheduling. If an even higher amount
of instruction-level parallelism is desired, a part of
the dispatch routine (e.g., instruction fetch) can be
shifted to earlier instructions. However, this work
1s wasted if the control flow of the interpreted pro-
gram changes (unless there are delayed branches in
the virtual machine).

2.2 Semantic content

The interpreter overhead can also be reduced by re-
ducing the number of primitives executed, i.e., by
increasing the semantic content of each instruction.
Combining often-used instruction sequences into
one instruction is a popular technique, as well as
specializing an instruction for a frequent constant
argument (eliminating the argument fetch and en-
abling optimizations in the native code for the in-
struction). Care has to be taken that the resulting
code expansion with its higher cache miss-rate does
not cancel out the benefits. Also, often the com-
piler must be made more complex to make use of
these instructions. On the other hand, optimizing
compilers can make instructions with high semantic
content useless (part of the RISC lesson).

2.3 Accessing arguments

In the hardware area the contest between stack and
register architectures has been decided for register
machines.? However, for interpretive implementa-
tions the picture looks different:

From the view of the compiler writer, many lan-
guages can be easily compiled for stack machine
code. To achieve better performance with a regis-
ter machine, the compiler must perform optimiza-
tions, e.g., global register allocation (which needs
data flow analysis). This eliminates one of the ad-
vantages of using an interpreter, namely simplicity.

Moreover, in an interpreter the spill and move
instructions necessary in register arechitectures are
much more time consuming than in hardware, since
each instruction also has to execute a NEXT. This
i1s not balanced by the fact that the other instruc-
tions also have to perform NEXTs, since the other
instructions usually have higher semantic content.
E.g., for a direct threaded implementation on the
R4000 a spill or move instruction is (at least) 7
times more expensive than in native code, whereas,
e.g., an instruction for computing the maximum of
two numbers is not even twice as expensive as in
native code.

2 for a dissenting opinion, read [Koo89].

1w $3,0($6) #$6=ip

1w $2,4(%6)

1w $4,8(%$6)

addu $3,%7,$3 #$7=reg. array start
addu $2,$7,%$2

1w $2,0($2)

1w $3,0($3)

addu $4,$7,%4

addu $2,$2,$3

sw $2,0(%4)

Fig.9. Add in a register architecture (without NEXT)

In hardware the instruction and the register num-
bers are decoded in parallel. A simple software im-
plementation of a register machine has to fetch
and/or decode the register numbers using separate
instructions. Even with the amount of instruction-
level parallelism that superpipelined and super-
scalar processors offer today and in the near future,
this still costs much time. Since hardware registers
cannot be accessed in an indexed way, the virtual
machines registers have to be kept and accessed in
memory, costing even more time. Fig. 9 shows a
three register add without NEXT on the MIPS ar-
chitecture (10 cycles on R3000).

addu $5,%$4,$6 #3$5=r3 $4=r1 $6=r2

Fig.10. Unfolded add (rl and r2 into r3)

There is an alternative implementation of a regis-
ter machine: The registers accessed can be encoded
into the instruction by unfolding it, i.e., by creat-
ing a version of the instruction for every combi-
nation of registers. The registers can then be ac-
cessed directly, and therefore be kept in real ma-
chine registers, if there are enough®. Fig. 10 shows
one version of the add instruction. However, this
strategy causes code explosion, and will probably
suffer a severe performance hit on machines with
small first-level caches: E.g., there would be 288-
512 versions of every three-register instruction in a
virtual machine with 8 registers (the lower bound
is for commutative operations); the add instruction
alone would need 4.5 KB in a direct threaded im-

? However, the availability of registers should not be
taken for granted even on the register-rich RISCs.
E.g., when I tried to keep the top of stack (of Forths
stack-oriented virtual machine) in a register on the
MIPS architecture, gcc (versions 2.3.3 and 2.4.5)
spilled the return stack pointer to memory, an im-
portant internal register of the virtual machine.

plementation on the MIPS architecture. The size
of the first-level (real machine) instruction cache

on the R4000 is just 8 KB.

1w $2,0($5) #$5=sp
1w $3,4($5)
addu $2,$2,$3
sw $2,4($5)
addu $5,%$5,4

Fig.11. Add in a simple stack implementation

A simple stack machine does better than a simple
register machine (see Fig. 11). Tt has the same num-
ber of operand fetches and stores; in addition, many
instructions update the stack pointer, but there is
no fetching/decoding to learn where the operands
are.

1w $2,4($5) #3$5=sp
addu $5,%$5,4
addu $6,%$6,$2 ;$6=tos

Fig.12. Add, the top of stack is kept in a register

If there are enough registers, the number of
operand fetches and stores can be reduced by keep-
ing n top-of-stack values in registers (see Fig. 12).
This 1s not always beneficial; if an instruction takes
x 1items from the stack and stores y items to the
stack, keeping the top n items in registers

— 18 better than keeping just n — 1 items, if
z>nAy>n, due to fewer loads from and
stores to the stack.

— 1s usually slower than keeping n — 1 items, if
r#£yAz < nAy<n,due to additional moves
between registers.

Moreover, machines that can exploit a high
amount of instruction-level parallelism can profit
from the prefetching effect of keeping more items
in registers. On a related note, keeping one item in
a register also speeds up floating-point and other
long-latency instructions, where the store back to
the stack would expose the latency.

Keeping one item in a register is never a dis-
advantage, if there are enough registers. Whether
keeping two items is a good idea, depends on the
virtual machine and how it is used. E.g., for Forth
it 1s probably not a good idea, because from the
top ten heavily-used instructions three (16% of all

dynamically executed instructions) become slower,
and only one (5% of the executed instructions) be-
comes faster. One (2.6%) may profit from prefetch-
ing.

3 Stack caching

Keeping a constant number of items in registers is
simple, but causes unnecessary operand loads and
stores. E.g., an instruction taking one item from
the stack and producing no item (e.g., a conditional
branch) has to load an item from the stack, that will
not be used if the next instruction pushes a value
on the stack (e.g., a literal). It would be better to
keep a varying number of items in registers, on an
on-demand basis, like a cache.

This requires different implementations of an in-
struction for different cache states. Every allowed
mapping of stack items to machine registers consti-
tutes a cache state.

stack[0]: $8
stack[1]: $9

-Ww
W--Ww

stack[0]: $9
sp offset: 1

sp offset: 0

Fig.13. A simple cache state machine

There are several sensible options on the set of
states allowed. Basically, we would like the set to
be finite, so we can use finite state machines to de-
scribe the effect of executing or compiling instruc-
tions. The relations of the states should minimize
the amount of work necessary for getting from one
state to another. Fig. 13 shows a three-state ma-
chine for stack caching in two registers. Transitions
are shown for words with various stack effects (due
to space limitations not for all stack effects).

In general, the selection of a set of states and
transitions for a given number of states and regis-

ters is an interesting optimization problem that we
leave for future work. Here we present just a few
insights.

In addition to stack accesses, many stack pointer
updates can be optimized away, too: The cache
state can also contain the information how much
the contents of the stack pointer register differ from
the actual value of the stack pointer. A good strat-
egy that does not introduce additional states is to
let the difference correspond to the number of stack
items in the cache (see Fig. 13). This means that
the stack pointer need not be updated in instruc-
tion implementations that can access all stack items
in registers, i.e., hopefully most of the time.

addu $9,%$8,$9

Fig.14. Add in stack caching (full state of the
three-state machine)

Stack caching with stack pointer update mini-
mization leads to code that is as good as that of
the unfolded register machine (see Fig. 14).

cached: 5

cached: 4
$9 $8 $7 $6

cached: 3 e
$9 $8 $7

cached: 2
$9 $8 “
¢

cached: 1
$9

0

cached: 0

X | overflow

Fig. 15. Overflow transition in a minimal organization

As a minimum, there should be one state for
every number of stack items in registers (as in
Fig. 13). To minimize the amount of work, the bot-
tom of the cached stack items should be in the same

register in all states; the other stack items should
be allocated similarly. This arrangement of states
avoids the need to move stack items around on the
bottom of the cache whenever something on the
top changes. There 1s a movement cost, however: If
something has to be pushed when the cache is full,
all stack items in the cache have to be moved to
other registers. Fortunately, overflows are very rare
if the cache is sufficiently large (if the cache is small,
there are not many moves). It can be made rarer
by choosing an appropriate followup state for over-
flowing instructions: On many processors a store to
cached memory costs as much as a move, therefore
on overflow the transition to any state costs the
same amount. The best choice is usually a slightly
more than half-full state (see Fig. 15): this makes
cache over- or underflows in the near future pretty
unlikely.

¢
cached: 4 cached: 4)
$9 $8 $7 $6 $7 $6 $5 $9

cached: 3

<

4 . $7

¢ ¢

AT
=

cached: 0

cached: 3 %
$9 $8 $7 ‘ $7$6$5
cached: 2 cached: 2

$9 $8

Fig.16. Avoiding moves with additional states

Another solution to the movement problem is to
introduce more states: instead of moving all stack
items just the bottom cached stack item is stored
to memory and the register where it resided is
reused to keep the top of stack. Of course, this
new mapping of stack items to registers has to be
represented in a new state. But the moves would
have to be performed when the new state is left.
To avoid this, appropriate neighbours for this new
state should be introduced. If this approach is per-
formed consequently, all such moves can be elim-
inated, but the number of states i1s nearly multi-

plied by the number of cache registers. Combina-
tions of both solutions to this problem are possible

(see Fig. 16).

Fig.17. A cache organization where one duplication is
allowed

Stack manipulation instructions also cause moves
in the minimal state machine. As before, these
moves can be optimized away by introducing more
states. For stack shuffling instructions (e.g., swap
and rot), the extreme form of this approach creates
all assignments of stack items to registers where no
register occurs twice. For duplicating instructions
(e.g., dup and over), the extreme form results in
an infinite number of cache states, since an unlim-
ited number of such instructions causes an equally
unlimited number of stack items to reside in the
cache, and an infinite number of states is needed to
record all these possibilities. If the number of cache
states 1s to be limited, the number of duplications
represented in the states has to be limited. E.g.,
the number of stack items in the cache could be
limited, the number of duplicates of each item, or
the total number of duplications. Figure 17 shows
a two register cache organization where one dupli-
cation is allowed.

If there are several stacks, the simple solution is
to treat them separately, with separate caches (and
separate state machines). This is a good solution
for Forths floating-point stack on machines that
have a separate floating-point register set (nearly
all current machines). They can also be treated in
a unified manner, sharing the same set of registers.
This 1s the solution of choice for Forths data and
return stacks. Moves between the stacks can again
be optimized by introducing additional states.

In practice finiteness is not enough, there are also
other limits to the number of states. Figure 18 gives
an idea of the number of states of various cache or-
ganizations with a varying number of registers. The
“minimal” organization has only one state for a cer-
tain number of stack items in registers; “overflow

registers 12 3 4 5 6 7 8 n

“minimal” 2 3 4 5 6 7 8 9 n+1

overflow move opt.[2 5 10 17 26 37 50 65 n?4+1

arbitrary shuffles |2 5 16 65 326 1,957 13,700 109,601 Sor gnt/dl

n+ 1 stack items |3 15 121 1,356 19,531 335,923 6,725,601 153,391,689 Z?j_ol n’

one duplication |3 7 14 25 41 63 92 129n(n+ D)(n+2)/6 +n+1
return stack 36 9 12 15 18 21 24 3n

Fig. 18. The number of cache states

move optimization” removes the moves on overflow
by introducing more states; “arbitrary shuffles” op-
timizes shuffle instructions in a similar way, “n+ 1
stack items” supports keeping up to n + 1 stack
items in n registers, in any order and with any kind
of duplication; these two cases show that the num-
ber of states can grow explosively. “One duplica-
tion” is the “minimal” organization, extended with
states that represent one (arbitrary) duplication of
a stack item. “Return stack” is the “minimal” orga-
nization, combined with caching up to two return
stack items in the same registers, also in a “mini-
mal” organization.

For organizations with many states, nearly all
states will be rarely used. If a smaller number
of states is desired, many of these states can be
eliminated. Transitions to such states have to be
rerouted, possibly incurring higher transition costs.
However, these costs have to be payed rarely, only
when the state would have been used.

This brings up the question of what transitions
there should be in the first place. The simplest cri-
terion 1s the cost of the transition itself. However,
there are often several transitions costing the same
(e.g., consider the overflow case in the “minimal”
organization). In this case a transition should be
chosen to the node that has the smallest average
transition cost (e.g., a half-full state in the above-
mentioned overflow case, because it minimizes the
costly overflows and underflows). Indeed, cost of the
transition should be considered to include the aver-
age transition cost of the successor node.* Or, even
better, if the future is known, the actual future cost
can be used to select the transition.

The choice of transitions also influences the us-
age counts of the states. It 1s desirable to have a
strongly biased distribution of usage counts, in or-
der to be able to eliminate many states, but also to
achieve high processor cache hit rates. This biasing
can be achieved by selecting a specific state and
choosing transitions that get closer to this canoni-
cal state if there is a choice.

If stack item prefetching is desired, states with

* This infinitely recursive definition would result in in-
finite costs, but it is possible to shift the scale into a
finite range.

too few stack items in registers should be forbid-
den. This will cause slightly higher memory traffic:
the prefetches will be useless if a number of pushes
follows that causes the stack cache to overflow. In
addition, on overflow the prefetched values have to
be stored into memory, unless the cache state also
contains information about the prefetched values.
Prefetching more than one value can also introduce
moves (an underflow variant of the overflow prob-
lem). If it is used, prefetching should overcompen-
sate these costs by reducing pipeline bubbles.

4 Dynamic stack caching

Dynamic stack caching is a pure run-time method,
1.e., the interpreter maintains the state of the cache
and the compiler need not be aware of it. This
means that there 1s a copy of the whole interpreter
for every cache state. The execution of an instruc-
tion can change the state of the cache, and the next
instruction has to be executed in the copy of the in-
terpreter corresponding to the new state.

This implies a change of the NEXT routine. In a
switch-based implementation, the instruction just
has to jump to the appropriate copy of the switch.
For direct threading the changes are not so sim-
ple: The easy solution performs a table lookup (see
Fig. 19). This costs a (real machine) load instruc-
tion on current RISC processors; to make bad news
worse, this load instruction may cost more than
one cycle, since it increases the path length of the
NEXT sequence, which will often become the crit-
ical path of an instruction, especially if much of
the rest has been optimized away (as in the add
in state 2 in Fig. 19). On CISCs the lookup may
come for free or at little cost. The other solution is
to store the instructions for a state at a fixed offset
from the corresponding routines in the other states.
Then the address of the routine for an instruction
can be computed by adding the base address of the
instruction and the offset of the state. This costs
a (real machine) add instruction on many proces-
sors, but may come for free on others. The problem
with this approach is that no portable language 1
know supports placing routines at specific points in

$L2: #add in state 0: cache empty
1w $4,0($6) #$6=sp

lu $3,4(36)

1w $2,0($5) #$5=ip

addu $6,$6,8

1w $2,4($2) #next state: 1
addu $5,%$5,4

J $2

addu $4,%$4,%$3

$L3: #add in state 1: tos in $4
1w $2,0(%6)

1w $3,0($5)

addu $6,%$6,4

1w $3,4($3) #next state: 1
addu $5,%$5,4

h| $3

addu $4,%$4,%2

$L4: #add in state 2: tos in $7, second in $4
1w $2,0($5)

#nop

1w $2,4($2) #next state: 1

addu $4,%$4,%$7

h| $2

addu $5,%$5,4

Fig.19. Add in dynamic stack caching with table
lookup

memory; Even worse, even some assemblers do not
support it (e.g., the DecStation assembler).

If NEXT becomes more expensive, dynamic stack
caching 1s probably not worth the trouble.

Since the whole interpreter has to be replicated
for every state, only state machines with a few
dozen states or less (depending on the size of the in-
terpreter and the (real machine) instruction cache)
are practicable. In other words, the stack cache
should have the minimal organization, maybe with
a few frills like a bit of return stack caching, or,
if there are few registers for caching, one duplica-
tion, to make better use of them. Eliminating the
moves of stack manipulation instructions does not
pay in many cases anyway: The NEXT has to be
performed anyway, and the moves can often be done
in parallel, 1.e., in the delay slots. In Forth return
stack caching would be very profitable, given the
high frequency of calls and returns. A nice opti-
mization is possible here: The instruction pointer
(IP) need not be moved to the top of return stack
register during the call, instead the register contain-
ing the old IP can be treated as the top of return
stack register and the new IP resides in another
register.

Since the state of the cache is represented in only
one value, 1.e., the program counter of the proces-
sor, it is not possible treat two caches (e.g., for

data and floating-point stack) with separate state
machines in dynamic caching. The states of both
caches have to be represented in a single state ma-
chine. This multiplies their number and makes hav-
ing big caches for more than one stack impractical.

5 Static stack caching

In static stack caching the compiler keeps track of
the state of the cache and generates the code ac-
cordingly.

This approach offers several big advantages over
dynamic stack caching:

— There is no need for a special NEXT routine
and its possible performance disadvantages, di-
rect threading can be used.

— There is no need to replicate the whole inter-
preter for every state: First, the implementa-
tion of the same instruction in many states can
be the same, i.e., when the arguments of the
instruction are accessed in the same registers,
but some other stack items reside in different
registers etc. (in dynamic stack caching they
would have different NEXTs for continuing in
different states); second, implementations of
rarely used instruction for rarely used states
can be left out. The compiler will then gener-
ate code for a transition into a state for which
the instruction is implemented.

— Stack manipulations can be optimized away
completely, i.e., not even a NEXT is executed.
The compiler just notes the state transition.

— The compiler knows the future instruction
stream and can generate optimal code for it.

Of course, there is also a disadvantage: It is not
possible to execute the same code in different states.
The compiler has to reconcile the states of different
control flows at control flow joins. Apart from this
fundamental problem there are also the practical
problems of insufficent knowledge in the compiler
and avoiding compiler complexity;in particular, the
compiler usually knows nothing about the states of
callers and callees.

The traditional solution for the call problem 1is
to have a calling convention. In the case of stack
caching this means that all definitions start in a
specific state and return in a specific (possibly dif-
ferent) state. The transition into these states can
be performed by the call and return instructions
respectively.®

A simple solution for the control flow join prob-
lem is to have a “control flow convention”: at ev-
ery basic block boundary (i.e., at every branch and

® This implies that there are several versions of the
call instruction, so the conventional Forth way calling
cannot be taken and an explicit call instruction with
an inline argument is needed.

branch target) the code is in a specific state. The
transition into this state can be performed by the
branch instructions; for branch targets the transi-
tions have to be performed by additional instruc-
tions generated just in front of the target. A slightly
more complex solution is to generate no code be-
fore branch targets; the transition to the state at
the branch target must be performed by the branch.
This avoids generating additional instructions.

Due to the need for a calling convention a return
stack cache cannot be used as effectively as in dy-
namic stack caching. However, a one-register return
stack cache can be used to good effect: at the start
of a definition the register is filled with the return
address. This provides the leaf procedure optimiza-
tion of conventional languages on RISCs. After a
call the return stack cache is empty (the value has
just been used up in the return from the call).

Generating optimal code using knowledge of the
next instructions in the basic block is possible in
linear time using a two-pass algorithm, as a spe-
cialization of the approach taken in tree pattern
matching [PLG88, FHPY1]. The first pass just de-
termines which of the possible code sequences 1s
optimal, the second pass then generates the code.
Both passes use finite state machines and are there-
fore fast. The usefulness of this technique depends
on the organization of the cache state machine. It
is only useful if there is more than one transition
possible for an instruction from a given state and
if choosing the right one requires foresight.

From a certain point of view there 1s not much
difference between static stack caching and using
a register architecture for the virtual machine. In-
deed, it can be seen as a framework to make virtual
register machines more usable: It provides auto-
matic register allocation and spilling without lots of
overhead instructions. It also provides principles for
keeping the number of different implementations of
an instruction small, if necessary. And it provides
a simple, stack-based interface to the higher levels
of the compiler. The low level of the compiler does
not have to handle the complexities of register al-
location, it is just a simple and fast state machine.
However, there is quite a bit of complexity in the
generator that generates the instructions and the
tables for the compiler.

6 Related work

Much of the knowledge about interpreters is folk-
lore. The discussions in the Usenet newsgroup
comp.compilers [c.c] contain much folk wisdom
and personal experience reports.

Probably the most complete current treatment
on interpreters is [DV90]. It also contains a big
bibliography. Another book that contains several
articles on interpreter efficiency is [Kra83].

Most of the published literature on interpreters
concentrates on decoding speed [Bel73, Kli81],
semantic content, virtual machine design and
time/space tradeoffs [KIi81, Pit87].

Stack caching has been used first in hardware
stack machines [Koo89, HFWZ87]. For interpreters,
[DV90] proposed dynamic stack caching with a
“minimal” cache organization. However, they do
not analyse the available options as it is done in
Section 3. In particular, they do not optimize stack
pointer updates away (this may also be due to their
use of the 8086 for their examples), and their suc-
cessor state for overflow is the full state. They re-
port speedups (probably over an implementation
that does not keep any part of the stack in regis-
ters, probably running the sieve benchmark) of 16%
for Forth on an 8086 with a two-register cache and
17% for M-Code (a virtual machine for Modula-2)
on an 68020 with a three register cache. They also
report a reduction of stack referencences in Forth
of 54% for one register, 82% for two registers (this
difference results in a 5% speedup on the 8086) and
93% for four registers. For M-code, the reductions
are 56% for one register and 100% for three regis-
ters. They do not report the number of additional
moves.

7 Conclusion

Apart from optimizing instruction dispatch and in-
creasing the semantic content of the instructions,
another factor determines the performance of an
interpreter: fetching the arguments of the instruc-
tions. Conventional register architectures do not en-
joy the same advantages as in hardware machines;
Their disadvantages are compiler complexity, slow-
ness and/or big interpreters.

The performance of stack machines can be im-
proved by caching stack items in registers. There is
a large variety of stack cache organizations. Stack
caching can be employed in two ways: In dynamic
stack caching the interpreter keeps track of the
state of the cache. A copy of the complete inter-
preter has to be kept for every state of the cache,
making only cache organization with few states fea-
sible. Moreover, on many processors dynamic stack
caching increases instruction dispatch time, elimi-
nating much of the speed advantage of caching. In
static caching the compiler keeps track of the cache
state. This allows using organizations with more
states, using fast direct threading, and stack ma-
nipulation operations can often be optimized away
completely. But there is a bit of overhead for mak-
ing the state conform to calling conventions and
reconciling the cache states on control flow joins.

I am currently working on implementing these
ideas in a Forth interpreter generator [Ert93], which

can then be used for getting empirical results for
various organizations on several processors.

Acknowledgements

Konrad Schwarz provided valuable comments on

this paper.

References

[Bel 73] James R. Bell. Threaded code. Communi-
cations of the ACM, 16(6):370-372, 1973.

[c.c] comp.compilers. Usenet
Newsgroup; archives available by ftp from
primost.cs.wisc.edu.

[DV90] Eddy H. Debaere and Jan M. Van Campen-
hout. Interpretation and Instruction Path
Coprocessing. The MIT Press, 1990.

[Ert93] M. Anton Ertl. A portable Forth engine.
In FuroFORTH 93 conference proceedings,
Maridnské Lizné (Marienbad), 1993.

[FHP91] Christopher W. Fraser, Robert R. Henry,

and Todd A. Proebsting. BuUrRG — Fuast
Optimal Instruction Selection and Tree
Parsing, 1991. Available via anony-
mous ftp from kaese.cs.wisc.edu, file
pub/burg.shar.Z.

[HFWZ87] John R. Hayes, Martin E. Fraeman,

[K1i81]

[Koo89]

[Kra83]

[Pit§7]

[PLGSS]

Robert L. Williams, and Thomas Zaremba.
An architecture for the direct execution of
the Forth programming language. In Ar-
chitectural Support for Programming Lan-
guages and Operating Systems (ASPLOS-
1), pages 42-48, 1987.

Paul Klint. Interpretation techniques.
Software— Practice and Experience, 11:963—
973, 1981.

Philip J. Koopman, Jr. Stack Computers.
Ellis Horwood Limited, 1989.

Glen Krasner, editor. Smalltalk-80: Bits of
History, Words of Advice. Addison-Wesley,
1983.

Thomas Pittman. Two-level hybrid in-
terpreter /native code execution for com-
bined space-time efficiency. In Symposium
on Interpreters and Interpretive Techniques
(SIGPLAN ’87), pages 150-152, 1987.
Eduardo Pelegrf—Llopart and Susan L. Gra-
ham. Optimal code generation for expres-
sion trees: An application of the burs the-
ory. In Fifteenth Annual ACM Symposium
on Principles of Programming Languages,
pages 294-308, 1988.

10

