
Code Obfuscation

c© May 3, 2011 Christian Collberg

Code obfuscation — what is it?

Informally, to obfuscate a program P means to transform it
into a program P ′ that is still executable but for which it is
hard to extract information.

2 / 214

Code obfuscation — what is it?

Informally, to obfuscate a program P means to transform it
into a program P ′ that is still executable but for which it is
hard to extract information.

“Hard?” ⇒ Harder than before!

2 / 214

Code obfuscation — what is it?

Informally, to obfuscate a program P means to transform it
into a program P ′ that is still executable but for which it is
hard to extract information.

“Hard?” ⇒ Harder than before!

static obfuscation ⇒ obfuscated programs that remain fixed
at runtime.

tries to thwart static analysis
attacked by dynamic techniques (debugging, emulation,
tracing).

2 / 214

Code obfuscation — what is it?

Informally, to obfuscate a program P means to transform it
into a program P ′ that is still executable but for which it is
hard to extract information.

“Hard?” ⇒ Harder than before!

static obfuscation ⇒ obfuscated programs that remain fixed
at runtime.

tries to thwart static analysis
attacked by dynamic techniques (debugging, emulation,
tracing).

dynamic obfuscators ⇒ transform programs continuously at
runtime, keeping them in constant flux.

tries to thwart dynamic analysis

2 / 214

Obfuscating

Transformations
p. 203

Obfuscation — The Early Years!

Fred Cohen: Operating system protection through program
evolution

4 / 214

Obfuscation — The Early Years!

Fred Cohen: Operating system protection through program
evolution

Diversity of programs : ways to generate syntactically different
but semantically identical versions of the same program.

4 / 214

Obfuscation — The Early Years!

Fred Cohen: Operating system protection through program
evolution

Diversity of programs : ways to generate syntactically different
but semantically identical versions of the same program.

Make an installation of a program different from all other
installations ⇒ harder for the malware writer to write their
code generically enough to work on all versions.

4 / 214

Algorithm
obfCF

p. 203

Diversifying transformations

Obfuscating Transformations: Expression equivalence

Compilers optimize for the fastest sequence of instructions.

You can optimize for confusion instead!

¨ ¥

y = x * 42;
§ ¦

¨ ¥

y = x << 5;

y += x << 3;

y += x << 1;
§ ¦

6 / 214

Algorithm obfCFreorder: Reordering Code and Data

Programmers put related pieces of code close together.

7 / 214

Algorithm obfCFreorder: Reordering Code and Data

Programmers put related pieces of code close together.

Locality can help a reverse engineer to see what pieces of code
belong together.

7 / 214

Algorithm obfCFreorder: Reordering Code and Data

Programmers put related pieces of code close together.

Locality can help a reverse engineer to see what pieces of code
belong together.

⇒ Randomize the placement of

modules within a program,
functions within a module,
statements within a function, and
instructions within a statement.

7 / 214

Algorithm obfCFinoutline: Splitting and Merging Functions

As programmers we use abstraction to manage the complexity
of larger programs.

8 / 214

Algorithm obfCFinoutline: Splitting and Merging Functions

As programmers we use abstraction to manage the complexity
of larger programs.

Function inlining breaks the abstraction boundary.

8 / 214

Algorithm obfCFinoutline: Splitting and Merging Functions

As programmers we use abstraction to manage the complexity
of larger programs.

Function inlining breaks the abstraction boundary.

Function outlining inserts a bogus abstraction.

8 / 214

Algorithm obfCFinoutline: Splitting and Merging Functions

¨ ¥

int modexp(int y,int x[],

int w,int n) {

int R, L;

int k = 0;

int s = 1;

while (k < w) {

if (x[k] == 1)

R = (s*y) % n;

else

R = s;

s = R*R % n;

L = R;

k++;

}

return L;

}
§ ¦

9 / 214

Algorithm obfCFinoutline: Splitting and Merging Functions

¨ ¥

int modexp(int y,int x[],

int w,int n) {

int R, L;

int k = 0;

int s = 1;

while (k < w) {

f(x[k],s,y,n,&R);

s = R*R % n;

L = R;

k++;

}

return L;

}
§ ¦

¨ ¥

void f(int xk ,int s,int y,

int n,int* R) {

if (xk == 1)

*R = (s*y) % n;

else

*R = s;

}
§ ¦

10 / 214

Algorithm obfCFinoutline: Splitting and Merging Functions

¨ ¥

float foo [100];

void f(int a,float b) {

foo[a] = b;

}

float g(float c,char d) {

return c*(float)d;

}

int main() {

f(42 ,42.0);

float v = g(6.0,’a’);

}
§ ¦

11 / 214

Algorithm obfCFinoutline: Splitting and Merging Functions

¨ ¥

float foo [100];

float fg(int a,float bc ,

char d,int which) {

if (which ==1)

foo[a] = bc;

return bc*(float)d;

}

int main() {

fg(42 ,42.0 ,’b’ ,1);

float v=fg(99,6.0,’a’ ,2);

}
§ ¦

12 / 214

Algorithm obfCFcopy: Copying code

Make the program larger by cloning pieces of it:

F F , F

13 / 214

Algorithm obfCFcopy: Copying code

Make the program larger by cloning pieces of it:

F F , F

Make the copied code look different from the original:

F F , F ′

Now the attacker must examine all pairs of code blocks to see
which ones are the same.

13 / 214

Algorithm obfCFcopy: Copying code

¨ ¥

float foo [100];

void f(int a, float b) {

foo[a] = b;

}

int main() {

f(42, 42.0);

f(6, 7.0);

}
§ ¦

f is called twice

14 / 214

Algorithm obfCFcopy: Copying code

¨ ¥

float foo [100];

void f(int a, float b) {

foo[a] = b;

}

float bogus;

void f1(int a, float b) {

*(foo + a*sizeof(float)) = b;

b += a*2;

bogus += b+a;

}

int main() {

f(42, 42.0);

f1(6, 7.0);

}
§ ¦

f and f1 do the same thing.

15 / 214

Algorithm obfCFinterp: Interpretation

Add a level of interpretation:
1 Define your own instruction set
2 Translate your program to this instruction set
3 Write an interpreter for the instruction set

16 / 214

Algorithm obfCFinterp: Interpretation

Add a level of interpretation:
1 Define your own instruction set
2 Translate your program to this instruction set
3 Write an interpreter for the instruction set

Your program: 10-100x slower than before.

16 / 214

Algorithm obfCFinterp: Interpretation

¨ ¥

int modexp(int y,int x[],

int w,int n) {

int R, L;

int k = 0;

int s = 1;

while (k < w) {

if (x[k] == 1)

R = (s*y) % n;

else

R = s;

s = R*R % n;

L = R;

k++;

}

return L;

}
§ ¦

17 / 214

int modexp(int y, int x[], int w, int n) {

void* prog []={...};

int R, L, k = 0, s = 1;

int Stack [10]; int sp=0;

void** pc = (void **) &prog;

goto **pc++;

inc_k: k++; goto **pc++;

pusha: Stack[sp++]=(int)*pc; pc++; goto **pc++;

pushv: Stack[sp ++]=*(int *)*pc; pc++; goto **pc++;

store: *((int*)Stack[sp -2])= Stack[sp -1]; sp -=2;

goto **pc++;

x_k_ne_1: if (x[k] != 1) pc=*pc; else pc++; goto **pc++;

k_ge_w: if (k >= w) return L; goto **pc++;

add: Stack[sp -2] += Stack[sp -1]; sp --; goto **pc++;

mul: Stack[sp -2] *= Stack[sp -1]; sp --; goto **pc++;

mod: Stack[sp -2] %= Stack[sp -1]; sp --; goto **pc++;

jump: pc=*pc; goto **pc++;

}

void* prog []={

// if (k >= w) return L

&&k_ge_w ,

// if (x[k] == 1)

&&x_k_ne_1 ,&prog [16],

// R = (s*y) % n;

&&pusha ,&R,&&pushv ,&s,&&pushv ,&y,&&mul ,&&pushv ,&n,&&mod ,&

// Jump after if -statement

&&jump ,&prog [21],

// R = s;

&&pusha ,&R,&&pushv ,&s,&&store ,

// s = R*R % n;

&&pusha ,&s,&&pushv ,&R,&&pushv ,&R,&&mul ,&&pushv ,&n,&&mod ,&

// L = R;

&&pusha ,&L,&&pushv ,&R,&&store ,

// k++

&&inc_k ,

// Jump to top of loop

&&jump ,&prog [0]

};

Complicating

control flow
p. 225

true false true false true false
P?PT PF

Complicating control flow

Transformations that make it difficult for an adversary to
analyze the flow-of-control:

1 insert bogus control-flow,

21 / 214

Complicating control flow

Transformations that make it difficult for an adversary to
analyze the flow-of-control:

1 insert bogus control-flow,
2 flatten the program

21 / 214

Complicating control flow

Transformations that make it difficult for an adversary to
analyze the flow-of-control:

1 insert bogus control-flow,
2 flatten the program
3 hide the targets of branches to make it difficult for the

adversary to build control-flow graphs

21 / 214

Complicating control flow

Transformations that make it difficult for an adversary to
analyze the flow-of-control:

1 insert bogus control-flow,
2 flatten the program
3 hide the targets of branches to make it difficult for the

adversary to build control-flow graphs

None of these transformations are immune to attacks,

21 / 214

Opaque Expressions

Simply put:

an expression whose value is known to you as the
defender (at obfuscation time) but which is difficult
for an attacker to figure out

22 / 214

Opaque Expressions

Simply put:

an expression whose value is known to you as the
defender (at obfuscation time) but which is difficult
for an attacker to figure out

Notation:

PT for an opaquely true predicate
PF for an opaquely false predicate
P? for an opaquely indeterminate predicate
E=v for an opaque expression of value v

22 / 214

Opaque Expressions

Simply put:

an expression whose value is known to you as the
defender (at obfuscation time) but which is difficult
for an attacker to figure out

Notation:

PT for an opaquely true predicate
PF for an opaquely false predicate
P? for an opaquely indeterminate predicate
E=v for an opaque expression of value v

Graphical notation:

true false true false true falseP?PT PF

Building blocks for many obfuscations.

22 / 214

Opaque Expressions

An opaquely true predicate:

true false
2|(x2 + x)T

23 / 214

Opaque Expressions

An opaquely true predicate:

true false
2|(x2 + x)T

An opaquely indeterminate predicate:

falsetrue
x mod 2 = 0?

23 / 214

Simple Opaque Predicates

Look in number theory text books, in the problems sections:

“Show that ∀x , y ∈ Z : p(x , y)”

24 / 214

Simple Opaque Predicates

Look in number theory text books, in the problems sections:

“Show that ∀x , y ∈ Z : p(x , y)”

∀x , y ∈ Z : x2 − 34y2 6= 1

24 / 214

Simple Opaque Predicates

Look in number theory text books, in the problems sections:

“Show that ∀x , y ∈ Z : p(x , y)”

∀x , y ∈ Z : x2 − 34y2 6= 1

∀x ∈ Z : 2|x2 + x

. . .

24 / 214

Algorithm
obfCTJbogus

p. 235

Inserting bogus control-flow

true false
PT

Algorithm obfCTJbogus: Inserting bogus control-flow

Insert bogus control-flow into a function:
1 dead branches which will never be taken

26 / 214

Algorithm obfCTJbogus: Inserting bogus control-flow

Insert bogus control-flow into a function:
1 dead branches which will never be taken
2 superfluous branches which will always be taken

26 / 214

Algorithm obfCTJbogus: Inserting bogus control-flow

Insert bogus control-flow into a function:
1 dead branches which will never be taken
2 superfluous branches which will always be taken
3 branches which will sometimes be taken and sometimes not,

but where this doesn’t matter

26 / 214

Algorithm obfCTJbogus: Inserting bogus control-flow

Insert bogus control-flow into a function:
1 dead branches which will never be taken
2 superfluous branches which will always be taken
3 branches which will sometimes be taken and sometimes not,

but where this doesn’t matter

The resilience reduces to the resilience of the opaque
predicates.

26 / 214

Algorithm obfCTJbogus: Inserting bogus control-flow

It seems that the blue block is only sometimes executed:

true false
PT

27 / 214

Algorithm obfCTJbogus: Inserting bogus control-flow

A bogus block (green) appears as it might be executed while,
in fact, it never will:

true falsePT

28 / 214

Algorithm obfCTJbogus: Inserting bogus control-flow

Sometimes execute the blue block, sometimes the green block.

The green and blue blocks should be semantically equivalent.

true falseP?

29 / 214

Algorithm obfCTJbogus: Inserting bogus control-flow

Extend a loop condition P by conjoining it with an opaquely
true predicate PT :

true

false

false

false truetrue
P P PT

30 / 214

Irreducible graphs

Build your code out of nested if-, for-, while-,
repeat-statements, etc., ⇒ the CFG will be reducible .

Static analysis of reducible CFGs is straight-forward, and
efficient.

Jump into the middle of a loop ⇒ CFG is irreducible .

Static analysis over irreducible CFGs is complicated.

¨ ¥

if (P
F) goto b;

while (1) {

x = y+10; return x;

b: y = 20;

}
§ ¦

true

false

PF

31 / 214

Irreducible graphs

¨ ¥

if (P
F)

y = 20;

while (1) {

x = y+10; return x;

y = 20;

}
§ ¦

true

false

PF

Before further analyzing the CFG, deobfuscate it, make it
reducible.

Here we used a nodesplitting deobfuscation.

A really complex CFG with n nodes ⇒ the deobfuscated
reducible graph will have 2n−1 nodes!

32 / 214

Irreducible graph

Unfortunately, there are other ways of deobfuscating:
¨ ¥

int firsttime =1;

while (1) {

if ((! firsttime) || (!P
F)) {

x = y+10; return x;

}

y = 20;

firsttime =0;

}
§ ¦

It’s not known whether this construction also causes
exponential blowup.

33 / 214

Complicating dynamic analaysis

Make opaque predicates interdependent.

An attacker cannot simply remove one predicate at a time,
rerun the program to see if it still works, remove another
predicate, etc.

Instead, he has to remove all interdependent opaque
predicates at the same time (or a divide-by-zero will be
raised):

¨ ¥

int x=0, y=2,t;

while (1) {

if (t=x*(x-1)%y==0,y-=2,x+=2,t)T ...

if (t=y*(y-1)%x==0,y+=2,x-=2,t)T ...

}
§ ¦

34 / 214

Problem

Problem

The above construction is admittedly lame, but, it’s late, and it’s all we
could come up with. Can you think of a way to generate less conspicuous
mutually dependent opaque predicates?

35 / 214

Algorithm
obfWHKD

p. 226

Control-flow flattening

next=3

if (k<w)

else

next=2

next=6

next=5

R=(s*y)%n R=s

next=5

S=R*R%n

L=R

K++

next=1

return Lk=0
s=1

next=1

next=0

switch(next)

if (x[k]==1)

else

next=4

B5

B6

B0
B1

B3 B4

B2

Algorithm obfWHKD: Control-flow flattening

Removes the control-flow structure of functions.

37 / 214

Algorithm obfWHKD: Control-flow flattening

Removes the control-flow structure of functions.

Put each basic block as a case inside a switch statement, and
wrap the switch inside an infinite loop.

37 / 214

Algorithm obfWHKD: Control-flow flattening

Removes the control-flow structure of functions.

Put each basic block as a case inside a switch statement, and
wrap the switch inside an infinite loop.

Known as chenxify, chenxification, after Chenxi Wang:

37 / 214

¨ ¥

int modexp(int y,int x[],

int w,int n) {

int R, L;

int k = 0;

int s = 1;

while (k < w) {

if (x[k] == 1)

R = (s*y) % n;

else

R = s;

s = R*R % n;

L = R;

k++;

}

return L;

}
§ ¦

if (k<w)

if (x[k]==1)

s=R*R mod n
L = R

k++

R=sR=(s*y) mod n

s=1
k=0

return L

B6 :

B1 :

B2 :

B5 :

goto B1

B4 :B3 :

B0 :

¨ ¥

int modexp(int y, int x[], int w, int n) {

int R, L, k, s;

int next =0;

for (;;)

switch(next) {

case 0 : k=0; s=1; next =1; break;

case 1 : if (k<w) next =2; else next =6; break;

case 2 : if (x[k]==1) next =3; else next =4; break;

case 3 : R=(s*y)%n; next =5; break;

case 4 : R=s; next =5; break;

case 5 : s=R*R%n; L=R; k++; next =1; break;

case 6 : return L;

}

}
§ ¦

next=3

if (k<w)

else

next=2

next=6

next=5

R=(s*y)%n R=s

next=5

S=R*R%n

L=R

K++

next=1

return Lk=0
s=1

next=1

next=0

switch(next)

if (x[k]==1)

else

next=4

B5

B6

B0

B1

B3 B4

B2

Exercise: Chenxify a control-flow graph

Consider again the control-flow graph for this GCD routine:
¨ ¥

int gcd(int x, int y) {

int temp;

while (true) {

boolean b = x%y == 0;

if (b) break;

temp = x%y;

x = y;

y = temp;

}

}
§ ¦

Flatten the graph using Chenxification.

41 / 214

Performance penalty

Replacing 50% of the branches in three SPEC programs slows
them down by a factor of 4 and increases their size by a factor
of 2.

42 / 214

Performance penalty

Replacing 50% of the branches in three SPEC programs slows
them down by a factor of 4 and increases their size by a factor
of 2.

Why?
1 The for loop incurs one jump,

42 / 214

Performance penalty

Replacing 50% of the branches in three SPEC programs slows
them down by a factor of 4 and increases their size by a factor
of 2.

Why?
1 The for loop incurs one jump,
2 the switch incurs a bounds check the next variable,

42 / 214

Performance penalty

Replacing 50% of the branches in three SPEC programs slows
them down by a factor of 4 and increases their size by a factor
of 2.

Why?
1 The for loop incurs one jump,
2 the switch incurs a bounds check the next variable,
3 the switch incurs an indirect jump through a jump table.

42 / 214

Performance penalty

Replacing 50% of the branches in three SPEC programs slows
them down by a factor of 4 and increases their size by a factor
of 2.

Why?
1 The for loop incurs one jump,
2 the switch incurs a bounds check the next variable,
3 the switch incurs an indirect jump through a jump table.

Optimize?

42 / 214

Performance penalty

Replacing 50% of the branches in three SPEC programs slows
them down by a factor of 4 and increases their size by a factor
of 2.

Why?
1 The for loop incurs one jump,
2 the switch incurs a bounds check the next variable,
3 the switch incurs an indirect jump through a jump table.

Optimize?
1 Keep tight loops as one switch entry.

42 / 214

Performance penalty

Replacing 50% of the branches in three SPEC programs slows
them down by a factor of 4 and increases their size by a factor
of 2.

Why?
1 The for loop incurs one jump,
2 the switch incurs a bounds check the next variable,
3 the switch incurs an indirect jump through a jump table.

Optimize?
1 Keep tight loops as one switch entry.
2 Use gcc’s labels-as-values ⇒ a jump table lets you jump

directly to the next basic block.

42 / 214

Performance penalty

Replacing 50% of the branches in three SPEC programs slows
them down by a factor of 4 and increases their size by a factor
of 2.

43 / 214

Performance penalty

Replacing 50% of the branches in three SPEC programs slows
them down by a factor of 4 and increases their size by a factor
of 2.

Why?

43 / 214

Use GCC’s labels-as-values

int modexp(int y, int x[], int w, int n) {

int R, L, k, s;

char* jtab []={&& case0 ,&&case1 ,&&case2 ,

&&case3 ,&&case4 ,&&case5 ,&& case6 };

goto *jtab [0];

case0: k=0; s=1; goto *jtab [1];

case1: if (k<w) goto *jtab [2]; else goto *jtab [6];

case2: if (x[k]==1) goto *jtab [3]; else goto *jtab [4];

case3: R=(s*y)%n; goto *jtab [5];

case4: R=s; goto *jtab [5];

case5: s=R*R%n; L=R; k++; goto *jtab [1];

case6: return L;

}

44 / 214

Algorithm obfWHKDalias: Control-flow flattening

Attack against Chenxification:
1 Work out what the next block of every block is.

45 / 214

Algorithm obfWHKDalias: Control-flow flattening

Attack against Chenxification:
1 Work out what the next block of every block is.
2 Rebuild the original CFG!

45 / 214

Algorithm obfWHKDalias: Control-flow flattening

Attack against Chenxification:
1 Work out what the next block of every block is.
2 Rebuild the original CFG!

How does an attacker do this?
1 use-def data-flow analysis

45 / 214

Algorithm obfWHKDalias: Control-flow flattening

Attack against Chenxification:
1 Work out what the next block of every block is.
2 Rebuild the original CFG!

How does an attacker do this?
1 use-def data-flow analysis
2 constant-propagation data-flow analysis

45 / 214

Compute next as an opaque predicate!

int modexp(int y, int x[], int w, int n) {

int R, L, k, s;

int next=E
=0;

for (;;)

switch(next) {

case 0 : k=0; s=1; next=E
=1; break;

case 1 : if (k<w) next=E
=2; else next=E

=6; break;

case 2 : if (x[k]==1) next=E
=3; else next=E

=4;

break;

case 3 : R=(s*y)%n; next=E
=5; break;

case 4 : R=s; next=E
=5; break;

case 5 : s=R*R%n; L=R; k++; next=E
=1; break;

case 6 : return L;

}

}

46 / 214

int modexp(int y, int x[], int w, int n) {

int R, L, k, s;

int next =0;

int g[] = {10,9,2,5,3};

for (;;)

switch(next) {

case 0 : k=0; s=1; next=g[0]%g[1]=1; break;

case 1 : if (k<w) next=g[g[2]]=2;

else next=g[0] -2*g[2]=6; break;

case 2 : if (x[k]==1) next=g[3]-g[2]=3;

else next =2*g[2]=4; break;

case 3 : R=(s*y)%n; next=g[4]+g[2]=5; break;

case 4 : R=s; next=g[0]-g[3]=5; break;

case 5 : s=R*R%n; L=R; k++; next=g[g[4]]%g[2]=1;

break;

case 6 : return L;

}

}

int modexp(int y, int x[], int w, int n) {

int R, L, k, s;

int next =0;

int m=0;

int g[] = {10,9,2,5,3};

for (;;) {

switch(next) {

case 0 : k=0; s=1; next=g[(0+m)%5]%g[(1+m)%5]; break;

case 1 : if (k<w) next=g[(g[(2+m)%5]+m)%5];

else next=g[(0+m)%5] -2*g[(2+m)%5]; break;

case 2 : if (x[k]==1) next=g[(3+m)%5]-g[(2+m)%5];

else next =2*g[(2+m)%5]; break;

case 3 : R=(s*y)%n; next=g[(4+m)%5]+g[(2+m)%5]; break;

case 4 : R=s; next=g[(0+m)%5]-g[(3+m)%5]; break;

case 5 : s=R*R%n; L=R; k++;

next=g[(g[(4+m)%5]+m)%5]%g[(2+m)%5]; break;

case 6 : return L;

}

permute(g,5,&m);

}

}

Thwarting inter-procedural analyses

Make it hard for the adversary to build a call graph.

49 / 214

Thwarting inter-procedural analyses

Make it hard for the adversary to build a call graph.

Replace every function call with an indirect call through a
pointer:

49 / 214

Thwarting inter-procedural analyses

Make it hard for the adversary to build a call graph.

Replace every function call with an indirect call through a
pointer:

1 Make every function have the same signature,

49 / 214

Thwarting inter-procedural analyses

Make it hard for the adversary to build a call graph.

Replace every function call with an indirect call through a
pointer:

1 Make every function have the same signature,
2 create function pointer variables

49 / 214

Thwarting inter-procedural analyses

Make it hard for the adversary to build a call graph.

Replace every function call with an indirect call through a
pointer:

1 Make every function have the same signature,
2 create function pointer variables
3 initialize them with the addresses of functions.

49 / 214

Thwarting inter-procedural analyses

Make it hard for the adversary to build a call graph.

Replace every function call with an indirect call through a
pointer:

1 Make every function have the same signature,
2 create function pointer variables
3 initialize them with the addresses of functions.
4 replace the static call with an indirect one through pointer.

49 / 214

Thwarting inter-procedural analyses

Make it hard for the adversary to build a call graph.

Replace every function call with an indirect call through a
pointer:

1 Make every function have the same signature,
2 create function pointer variables
3 initialize them with the addresses of functions.
4 replace the static call with an indirect one through pointer.

add bogus function pointers; add code that appears to call a
function through a pointer, use pointer arithmetic to
construct function pointers.

49 / 214

Algorithm
obfWHKDopaque

p. 250

Opaque values from array aliasing

obfWHKDopaque: Opaque values from array aliasing

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

36 58 1 46 23 5 16 65 2 41 2 7 1 37 0 11 16 2

Invariants:

1 every third cell (in pink), starting will cell 0, is ≡ 1 mod 5;

2 cells 2 and 5 (green) hold the values 1 and 5, respectively;

3 every third cell (in blue), starting will cell 1, is ≡ 2 mod 7;

4 cells 8 and 11 (yellow) hold the values 2 and 7, respectively.

You can update a pink element as often as you want, with any
value you want, as long as you ensure that the value is always
≡ 1 mod 5!

51 / 214

¨ ¥

int g[] = {36,58,1,46,23,5,16,65,2,41,

2,7,1,37,0,11,16,2,21,16};

if ((g[3] % g[5])==g[2])

printf("true!\n");

g[5] = (g[1]*g[4])%g[11] + g[6]%g[5];

g[14] = rand ();

g[4] = rand ()*g[11]+g[8];

int six = (g[4] + g[7] + g[10])%g[11];

int seven = six + g[3]%g[5];

int fortytwo = six * seven;
§ ¦

pink: opaquely true predicate.

blue: g is constantly changing at runtime.

green: an opaque value 42.

Initialize g at runtime!

Introducing aliasing
p. 229

Introducing aliasing

If you want to confuse static analysis — introduce spurious
aliases into your program!

54 / 214

Introducing aliasing

If you want to confuse static analysis — introduce spurious
aliases into your program!

Aliasing confuses both humans and analysis when performed
by static analysis tools.

54 / 214

Introducing aliasing

If you want to confuse static analysis — introduce spurious
aliases into your program!

Aliasing confuses both humans and analysis when performed
by static analysis tools.

Aliasing occurs in

two pointers can refer to the same memory location,
two reference parameters can also alias each other
a reference parameter and a global variable
two array elements indexed by different variables.

54 / 214

Algorithm
obfLDK

p. 239

Jumps through branch functions

...

call bf

bf() {

}
... b

b:

a

return to T [h(a)] + a

T [h(a)] = b − a

T [h(. . .)] = . . .

jmp b

b:

a:

obfLDK: Jumps through branch functions

Replace unconditional jumps with a call to a branch function .

Calls normally return to where they came from. . . But, a
branch function returns to the target of the jump!

...

call bf

bf() {

}
... b

b:

a

return to T [h(a)] + a

T [h(a)] = b − a

T [h(. . .)] = . . .

jmp b

b:

a:

56 / 214

obfLDK: Make branches explicit

¨ ¥

int modexp(int y,int x[],

int w,int n) {

int R, L;

int k = 0;

int s = 1;

while (k < w) {

if (x[k] == 1)

R = (s*y) % n;

else

R = s;

s = R*R % n;

L = R;

k++;

}

return L;

}
§ ¦

57 / 214

obfLDK: Jumps through branch functions

A table T stores
T [h(ai)] = bi − ai .

Code in pink updated the return address!

The branch function:

¨ ¥

char* T[2];

void bf() {

char* old;

asm volatile("movl 4(%% ebp),%0\n\t" : "=r" (old));

char* new = (char *)((int)T[h(old)] + (int)old);

asm volatile("movl %0 ,4(%% ebp)\n\t" : : "r" (new));

}
§ ¦

58 / 214

¨ ¥

int modexp(int y, int x[], int w, int n) {

int R, L; int k = 0; int s = 1;

T[h(&& retaddr1)]=(char *)(&& endif -&& retaddr1);
T[h(&& retaddr2)]=(char *)(&& beginloop -&& retaddr2);
beginloop:

if (k >= w) goto endloop;

if (x[k] != 1) goto elsepart;

R = (s*y) % n;

bf(); // goto endif;

retaddr1:

asm volatile(".ascii \"bogus \"\n\t");

elsepart:

R = s;

endif:

s = R*R % n;

L = R;

k++;

bf(); // goto beginloop;

retaddr2:

endloop:

return L;

}
§ ¦

obfLDK: Jumps through branch functions

Designed to confuse disassembly.

39% of instructions are incorrectly assembled using a linear
sweep disassembly.

25% for recursive disassembly.

Execution penalty: 13%

Increase in text segment size: 15%.

60 / 214

Opaque Predicates
p. 246

movedelete

split insert

q2

q2

q1 q1

q2q2

q1

q1

q2

q1

Algorithm obfCTJalias: Opaque predicates from pointer
aliasing

Create an obfuscating transformation from a known
computationally hard static analysis problem.

62 / 214

Algorithm obfCTJalias: Opaque predicates from pointer
aliasing

Create an obfuscating transformation from a known
computationally hard static analysis problem.

We assume that
1 the attacker will analyze the program statically, and
2 we can force him to solve a particular static analysis problem

to discover the secret he’s after, and
3 we can generate an actual hard instance of this problem for

him to solve.

62 / 214

Algorithm obfCTJalias: Opaque predicates from pointer
aliasing

Create an obfuscating transformation from a known
computationally hard static analysis problem.

We assume that
1 the attacker will analyze the program statically, and
2 we can force him to solve a particular static analysis problem

to discover the secret he’s after, and
3 we can generate an actual hard instance of this problem for

him to solve.

Of course, these assumptions may be false!

62 / 214

Algorithm obfCTJalias

Creates opaque predicates from pointer analysis problems.

63 / 214

Algorithm obfCTJalias

Creates opaque predicates from pointer analysis problems.

The algorithm tries to go beyond the capabilities of known
analysis algorithms:

Despite a great deal of work on both flow-sensitive
and context-sensitive algorithms [. . .], none has
been shown to scale to programs with millions of
lines of code, and most have difficulty scaling to
100,000 lines of code.

63 / 214

Algorithm obfCTJalias

Creates opaque predicates from pointer analysis problems.

The algorithm tries to go beyond the capabilities of known
analysis algorithms:

Despite a great deal of work on both flow-sensitive
and context-sensitive algorithms [. . .], none has
been shown to scale to programs with millions of
lines of code, and most have difficulty scaling to
100,000 lines of code.

Alias analysis algorithms are designed to perform well on
“normal code” written by humans!

63 / 214

Algorithm obfCTJalias

Construct one or more heap-based graphs, keep pointers into
those graphs, create opaque predicates by checking properties
you know to be true.

q1 q2

64 / 214

Algorithm obfCTJalias

Construct one or more heap-based graphs, keep pointers into
those graphs, create opaque predicates by checking properties
you know to be true.

q1 and q2 point into two graphs G1 (pink) and G2 (blue):

split

q2q1

q2

q1

64 / 214

Algorithm obfCTJalias

Construct one or more heap-based graphs, keep pointers into
those graphs, create opaque predicates by checking properties
you know to be true.

q1 and q2 point into two graphs G1 (pink) and G2 (blue):

split insert

q2

q1

q1 q2

q2

q1

64 / 214

Algorithm obfCTJalias

Construct one or more heap-based graphs, keep pointers into
those graphs, create opaque predicates by checking properties
you know to be true.

q1 and q2 point into two graphs G1 (pink) and G2 (blue):

delete

split insert

q1

q2

q1

q2

q1 q2

q2

q1

64 / 214

Algorithm obfCTJalias

Construct one or more heap-based graphs, keep pointers into
those graphs, create opaque predicates by checking properties
you know to be true.

q1 and q2 point into two graphs G1 (pink) and G2 (blue):

movedelete

split insert

q2

q1 q1

q2q2

q1

q1 q2

q2

q1

64 / 214

Algorithm obfCTJalias

Two invariants:

“G1 and G2 are circular linked lists”
“q1 points to a node in G1 and q2 points to a node in G2.”

65 / 214

Algorithm obfCTJalias

Two invariants:

“G1 and G2 are circular linked lists”
“q1 points to a node in G1 and q2 points to a node in G2.”

Perform enough operations to confuse even the most precise
alias analysis algorithm,

65 / 214

Algorithm obfCTJalias

Two invariants:

“G1 and G2 are circular linked lists”
“q1 points to a node in G1 and q2 points to a node in G2.”

Perform enough operations to confuse even the most precise
alias analysis algorithm,

Insert opaque queries such as (q1 6= q2)
T into the code.

65 / 214

Algorithm obfCTJpointer: Opaque predicates from
concurrency

Concurrent programs are difficult to analyze statically: n
statements in a parallel region can execute in n! different
orders.

66 / 214

Algorithm obfCTJpointer: Opaque predicates from
concurrency

Concurrent programs are difficult to analyze statically: n
statements in a parallel region can execute in n! different
orders.

Construct opaque predicates based on the difficulty of
analyzing the threading behavior of programs!

66 / 214

Algorithm obfCTJpointer: Opaque predicates from
concurrency

Concurrent programs are difficult to analyze statically: n
statements in a parallel region can execute in n! different
orders.

Construct opaque predicates based on the difficulty of
analyzing the threading behavior of programs!

Keep a global data structure G with a certain set of invariants
I , to concurrently update G while maintaining I , and use I to
construct opaque predicates over G

66 / 214

Algorithm obfCTJpointer: Opaque predicates from
concurrency

Threads T1 and T2 concurrently bang on two integer variables X
and Y, with complete disregard for data races:

YX

X=rnd()2

X=X*X

Y=rnd()2T1
T2

Maintain the invariants that both X and Y will always be the
square of some value.

67 / 214

Algorithm obfCTJpointer: Opaque predicates from
concurrency

Threads T1 and T2 concurrently bang on two integer variables X
and Y, with complete disregard for data races:

YX

X=rnd()2

X=X*X

Y=rnd()2T1
T2

Maintain the invariants that both X and Y will always be the
square of some value.

Construct an opaque predicate (X-34*Y==-1)F .

67 / 214

Algorithm obfCTJpointer: Opaque predicates from
concurrency

Threads T1 and T2 concurrently bang on two integer variables X
and Y, with complete disregard for data races:

YX

X=rnd()2

X=X*X

Y=rnd()2T1
T2

Maintain the invariants that both X and Y will always be the
square of some value.

Construct an opaque predicate (X-34*Y==-1)F .

∀x , y ∈ Z : x2 − 34y2 6= −1.

67 / 214

Opaque predicates from concurrency

badcba

move(a, b) move(c, d)

bad c

dc

68 / 214

Opaque predicates from concurrency

Thread T1 updates a and b, such that each time a is updated
to point to its next node in the cycle, b is also updated to
point to its next node in the cycle.

69 / 214

Opaque predicates from concurrency

Thread T1 updates a and b, such that each time a is updated
to point to its next node in the cycle, b is also updated to
point to its next node in the cycle.

Thread T2 updates c and d .

69 / 214

Opaque predicates from concurrency

Thread T1 updates a and b, such that each time a is updated
to point to its next node in the cycle, b is also updated to
point to its next node in the cycle.

Thread T2 updates c and d .

Opaquely true predicate (a = b)T is statically
indistinguishable from an opaquely false predicate (c = d)F !

69 / 214

Breaking opaque predicates

Breaking opaque predicates

¨ ¥

...

x1 ← · · ·;

x2 ← · · ·;

...

b ← f (x1, x2, . . .);
if b goto . . .

§ ¦

1 find the instructions that make up f (x1, x2, . . .);

2 find the inputs to f , i.e. x1, x2 . . .;

3 find the range of values R1 of x1,. . . ;

4 compute the outcome of f for all input values;

5 kill the branch if f ≡ true.

71 / 214

Breaking opaque predicates

How can you make attacker’s task more difficult?

make it harder to locate the instructions that make up
f (x1, x2, . . .);

make it harder to determine what are the inputs x1, x2, . . . to
f ;

make it harder to determine the actual ranges R1, R2, . . . of
x1, x2, . . .; or

make it harder to determine the outcome of f for all possible
argument values.

72 / 214

Breaking opaque predicates

¨ ¥

int x = some complicated expression;

int y = 42;

z = . . .

boolean b = (34*y*y -1)==x*x;

if b goto . . .

§ ¦

1 Compute a backwards slice from b,

2 Find the inputs (x and y),

3 Find range of x and y ,

4 Use number-theory/brute force to determine b ≡ false.

73 / 214

Breaking opaque predicates

How to make attacker’s task more difficult? Make it harder to

find f (x1, x2, . . .);

find the inputs x1, x2, . . . to f ;

find the ranges R1, R2, . . . of x1, x2, . . .; or

determine the outcome of f for all argument values.

74 / 214

Algorithm
rePMBG

p. 256

Breaking ∀x ∈ Z : n|p(x)

Algorithm rePMBG: Breaking ∀x ∈ Z : n|p(x)

Mila Dalla Preda:

Attack opaque predicates confined to a single basic block.

76 / 214

Algorithm rePMBG: Breaking ∀x ∈ Z : n|p(x)

Mila Dalla Preda:

Attack opaque predicates confined to a single basic block.

Assume that the instructions that make up the predicate are
contiguous.

76 / 214

Algorithm rePMBG: Breaking ∀x ∈ Z : n|p(x)

Mila Dalla Preda:

Attack opaque predicates confined to a single basic block.

Assume that the instructions that make up the predicate are
contiguous.

Start at a conditional jump instruction j and incrementally
extend it with the 1, 2, . . . instructions until an opaque
predicate (or beginning of basic block) is found.

76 / 214

Algorithm rePMBG: Breaking ∀x ∈ Z : n|p(x)

Mila Dalla Preda:

Attack opaque predicates confined to a single basic block.

Assume that the instructions that make up the predicate are
contiguous.

Start at a conditional jump instruction j and incrementally
extend it with the 1, 2, . . . instructions until an opaque
predicate (or beginning of basic block) is found.

Brute force evaluate, or use abstract interpretation.

76 / 214

Breaking ∀x ∈ Z : 2|(x2 + x)

Opaquely true predicate ∀x ∈ Z : 2|(x2 + x):

(1) (2) (3) (4)
¨ ¥

x = . . .;

y = x*x;

y = y + x;

y = y % 2;

b = y==0;

if b . . .

§ ¦

77 / 214

Breaking ∀x ∈ Z : 2|(x2 + x)

Opaquely true predicate ∀x ∈ Z : 2|(x2 + x):

(1) (2) (3) (4)
¨ ¥

x = . . .;

y = x*x;

y = y + x;

y = y % 2;

b = y==0;

if b . . .

§ ¦

¨ ¥

x = . . .;

y = x*x;

y = y + x;

y = y % 2;

b = y==0;

if b . . .

§ ¦

78 / 214

Breaking ∀x ∈ Z : 2|(x2 + x)

Opaquely true predicate ∀x ∈ Z : 2|(x2 + x):

(1) (2) (3) (4)
¨ ¥

x = . . .;

y = x*x;

y = y + x;

y = y % 2;

b = y==0;

if b . . .

§ ¦

¨ ¥

x = . . .;

y = x*x;

y = y + x;

y = y % 2;

b = y==0;

if b . . .

§ ¦

¨ ¥

x = . . .;

y = x*x;

y = y + x;

y = y % 2;

b = y==0;

if b . . .

§ ¦

79 / 214

Breaking ∀x ∈ Z : 2|(x2 + x)

Opaquely true predicate ∀x ∈ Z : 2|(x2 + x):

(1) (2) (3) (4)
¨ ¥

x = . . .;

y = x*x;

y = y + x;

y = y % 2;

b = y==0;

if b . . .

§ ¦

¨ ¥

x = . . .;

y = x*x;

y = y + x;

y = y % 2;

b = y==0;

if b . . .

§ ¦

¨ ¥

x = . . .;

y = x*x;

y = y + x;

y = y % 2;

b = y==0;

if b . . .

§ ¦

¨ ¥

x = . . .;

y = x*x;

y = y + x;

y = y % 2;

b = y==0;

if b . . .

§ ¦

80 / 214

Breaking ∀x ∈ Z : 2|(x2 + x)

Opaquely true predicate ∀x ∈ Z : 2|(x2 + x):

(1) (2) (3) (4)
¨ ¥

x = . . .;

y = x*x;

y = y + x;

y = y % 2;

b = y==0;

if b . . .

§ ¦

¨ ¥

x = . . .;

y = x*x;

y = y + x;

y = y % 2;

b = y==0;

if b . . .

§ ¦

¨ ¥

x = . . .;

y = x*x;

y = y + x;

y = y % 2;

b = y==0;

if b . . .

§ ¦

¨ ¥

x = . . .;

y = x*x;

y = y + x;

y = y % 2;

b = y==0;

if b . . .

§ ¦

¨ ¥

x = . . .;

y = x*x;

y = y + x;

y = y % 2;

b = y==0;

if b . . .

§ ¦

81 / 214

Using Abstract Interpretation

Consider the case when x is an even number:

¨ ¥

x = even number;

y = x * x;

y = y + x;

z = y % 2;

b = z==0;

if b . . .

§ ¦

¨ ¥

x = even;

y = x *a x = even ∗a even = even;

y = y +a x = even +a even = even;

z = y %a 2 = even mod 2 = 0;
b = z==0; = true

if b . . .

§ ¦

82 / 214

Using Abstract Interpretation

Consider the case when x starts out being odd:

¨ ¥

x = odd number;

y = x * x;

y = y + x;

z = y % 2;

b = z==0;

if b . . .

§ ¦

¨ ¥

x = odd;

y = x *a x = odd ∗a odd = odd;

y = y +a x = odd +a odd = even;

z = y %a 2 = even mod 2 = 0;
b = z==0; = true

if b . . .

§ ¦

Regardless of whether x’s initial value is even or odd, b is true!

83 / 214

Algorithm rePMBG: Breaking ∀x ∈ Z : n|p(x)

Regardless of whether x’s initial value is even or odd, b is true!

84 / 214

Algorithm rePMBG: Breaking ∀x ∈ Z : n|p(x)

Regardless of whether x’s initial value is even or odd, b is true!

You’ve broken the opaque predicate, efficiently!!

84 / 214

Algorithm rePMBG: Breaking ∀x ∈ Z : n|p(x)

Regardless of whether x’s initial value is even or odd, b is true!

You’ve broken the opaque predicate, efficiently!!

By constructing different abstract domains, Algorithm
rePMBG is able to break all opaque predicates of the form
∀x ∈ Z : n|p(x) where p(x) is a polynomial.

84 / 214

Data encodings
p. 258

E

Eint T

T

T
TMUL

T

T
LT booleanT intD

D

D +
ADD

T

T

T

Data encodings

Obfuscating an Abstract Datatype







type T = · · ·
⊕T : T × T → T
⊗T : T × T → T

⇓






















type T ′ = · · ·
ET ′ : T → T ′

DT ′ : T ′ → T
⊕T ′ : T ′ × T ′ → T ′

⊗T ′ : T ′ × T ′ → T ′

87 / 214

Obfuscating an Abstract Datatype

T

ADD

T

T
T

T

T
TMUL

T

T
LT boolean

T intD

Eint

88 / 214

Obfuscating an ADT — Simplistic method







type T = · · ·
⊕T : T × T → T
⊗T : T × T → T

⇓
{

x ⊕T ′ y = ET ′(DT ′(x) ⊕T DT ′(y))
x ⊗T ′ y = ET ′(DT ′(x) ⊗T DT ′(y))

Better if every operation is performed on the obfuscated
representation directly!

89 / 214

Obfuscating an ADT — Simplistic method

E

Eint T

T

T
TMUL

T

T
LT booleanT intD

D

D +
ADD

T

T

T

90 / 214

Obfuscating an ADT — Parameterize family

To prevent pattern matching attacks you want the obfuscated
representation to be parameterized:



























type T ′
p = · · ·

Ep

T ′ : T → T ′
p

Dp

T ′ : T ′
p → T

⊕p

T ′

p
: T ′

p × T ′
p → T ′

p

⊗p

T ′

p
: T ′

p × T ′
p → T ′

p

91 / 214

Multiple different representations

The original program has three integer variables a, x, and y.

You obfuscate a and x to be of type T1 and y to be of type
T2:

¨ ¥

int a = · · ·;

int x = · · ·;

int y = · · ·;

x = · · · a · · ·;

y = · · · x · · ·;
§ ¦

¨ ¥

T1 a = · · ·;

T1 x = · · ·;

T2 y = · · ·;

x = · · · a · · ·;

y = · · · ET2(DT1(x)) · · ·;
§ ¦

92 / 214

Data obfuscations

We’re going to look at ways to obfuscate

Integers,

Booleans,

Strings, and

Arrays

93 / 214

Transforming Integers — The identity transformation

¨ ¥

typedef int T1;

T1 E1(int e) {return e;}

int D1(T1 e) {return e;}

T1 ADD1(T1 a, T1 b) {return E1(D1(a)+D1(b));}

T1 MUL1(T1 a, T1 b) {return E1(D1(a)*D1(b));}

BOOL LT1(T1 a, T1 b) {return D1(a)<D1(b);}
§ ¦

T1 is the data type of the obfuscated representation,

E1 is a function that transforms from cleartext integers into
the obfuscated representation,

D1 transforms obfuscated integers into cleartext,

ADD1, MUL1, and LT1 define how to add, multiply, and
compare two obfuscated integers.

94 / 214

Transforming Integers — The identity transformation

LT

D

D

D

D +

D

D

*

DE intint

< boolean

ADD

intE

E

int

int

int

int

int

int

int

int int

MUL

95 / 214

Transforming Integers — The identity transformation

Add these definitions to your program and transform the code
on the left into the code on the right:

¨ ¥

int v = 7;

v = v * 5;

v = v + 7;

while (v<50) v++;
§ ¦

¨ ¥

T1 v = E1(7);

v = MUL1(v,E1 (5));

v = ADD1(v,E1 (7));

while (LT1(v,E1 (50)))

v=ADD1(v,E1 (1));
§ ¦

96 / 214

+1 transformation with deobfuscation

¨ ¥

typedef int T2;

T2 E2(int e) {return e+1;}

int D2(T2 e) {return e-1;}

T2 ADD2(T2 a, T2 b) {return E2(D2(a)+D2(b));}

T2 MUL2(T2 a, T2 b) {return E2(D2(a)*D2(b));}

BOOL LT2(T2 a, T2 b) {return D2(a)<D2(b);}
§ ¦

Bad implementation of addition and multiplication: before
applying the operations we first convert to deobfuscated
space.

Watch out for overflow!

97 / 214

+1 transformation with deobfuscation

LT

−
1

D
int int

D

D +
ADD

intE

int

int

+
1

Eint int

D

D

D

D

*

<
int

int

boolean

intE

int

int

MUL

98 / 214

+1 transformation without deobfuscation

¨ ¥

typedef int T3;

T3 E3(int e) {return e+1;}

int D3(T3 e) {return e-1;}

T3 ADD3(T3 a, T3 b) {return a+b-1;}

T3 MUL3(T3 a, T3 b) {return a*b-a-b+2;}

BOOL LT3(T3 a, T3 b) {return a<b;}
§ ¦

Perform arithmetic operations directly on the obfuscated
values.

For x + y , adjust by subtracting 1, since x + y in obfuscated
space is (x + 1) + (y + 1) = x + y + 2.

99 / 214

+1 transformation without deobfuscation

int

+
1

Eint int

+

−

−

<
int LT

int

boolean

ADDint

1

D
int int

1

int

100 / 214

Exercise: Integer encoding

Consider again the GCD routine:
¨ ¥

int gcd(int x, int y) {

int temp;

while (true) {

boolean b = x%y == 0;

if (b) break;

temp = x%y;

x = y;

y = temp;

}

}
§ ¦

Use the E ()/D() scheme above to encode the integer
variables.

What kind of encoding would work well here?

101 / 214

Algorithm obfBDKMRVnum: Number-theoretic tricks

¨ ¥

typedef int T4;

#define N4 (53*59)

T4 E4(int e,int p) {return p*N4+e;}

int D4(T4 e) {return e%N4;}

T4 ADD4(T4 a, T4 b) {return a+b;}

T4 MUL4(T4 a, T4 b) {return a*b;}

BOOL LT4(T4 a, T4 b) {return D4(a)<D4(b);}
§ ¦

An integer y is represented as N ∗ p + y , where N is the
product of two close primes, and p is a random value.

Addition and multiplication are performed in obfuscated space.

Comparisons require deobfuscation.

Parameterized obfuscation: create a family of representation
by choosing different values for p.

102 / 214

Operating on differently obfuscated integers

¨ ¥

int x = 7;

int v = 6;

v = x * v;

x = v + x;

printf("%i\n",x);
§ ¦

¨ ¥

T3 x = E3(7);

T4 v = E4(6 ,3);

v = MUL4(E4(D3(x),5),v);

x = ADD3(E3(D4(v)),E3 (8));

printf("%i\n",D3(x));
§ ¦

If two differently obfuscated integers need to be operated on,
then one needs to be first deobfuscated and then
re-obfuscated to the correct representation.

103 / 214

Algorithm obfBDKMRVcrypto: Encrypting integers

¨ ¥

DES_key_schedule ks;

DES_cblock key ={0x12 ,0x34 ,0x56 ,0x78 ...};

typedef struct {int x; int y;} T7;

T7 E7(int e) {

T7 block = (T7){e,0};

DES_ecb_encrypt ((DES_cblock *)&block ,

(DES_cblock *)&block ,&ks ,DES_ENCRYPT);

return block ;}

int D7(T7 e) {

DES_ecb_encrypt ((DES_cblock *)&e,

(DES_cblock *)&e,&ks ,DES_DECRYPT);

return e.x;}

T7 ADD7(T7 a,T7 b) {return E7(D7(a)+D7(b));}

T7 MUL7(T7 a,T7 b) {return E7(D7(a)*D7(b));}

BOOL LT7(T7 a,T7 b) {return D7(a)<D7(b);}
§ ¦

104 / 214

Algorithm obfBDKMRVcrypto: Encrypting integers

You can’t perform arithmetic operations on values encrypted
by DES directly!

105 / 214

Algorithm obfBDKMRVcrypto: Encrypting integers

You can’t perform arithmetic operations on values encrypted
by DES directly!

Decrypt the operands, perform arithmetic, re-encrypt the
result ⇒ bad.

105 / 214

Algorithm obfBDKMRVcrypto: Encrypting integers

You can’t perform arithmetic operations on values encrypted
by DES directly!

Decrypt the operands, perform arithmetic, re-encrypt the
result ⇒ bad.

Overhead!

105 / 214

Counted loops using encryption

¨ ¥

typedef struct {int x; int y;} T8;

T8 E8(T8 e) {

DES_ecb_encrypt ((DES_cblock *)&e,

(DES_cblock *)&e,&ks ,DES_ENCRYPT);

return e;}

T8 D8(T8 e) {

DES_ecb_encrypt ((DES_cblock *)&e,

(DES_cblock *)&e,&ks ,DES_DECRYPT);

return e;}

BOOL NE8(T8 a,T8 b) {return memcmp (&a,&b,sizeof(T8))!=0;}
§ ¦

This representation only supports the not-equal comparison on
encrypted values.

106 / 214

Counted loops using encryption

¨ ¥

for(i=0;i<5;i++)

printf("HERE\n");
§ ¦

¨ ¥

T8 v = E8(E8(E8(E8((T8){42 ,42}))));

while (NE8(v,(T8){42 ,42})) {

printf("HERE\n");

v = D8(v);

}
§ ¦

Allows you to construct simple counted loops inside the
encrypted domain.

The code in pink can be computed at obfuscation time.

107 / 214

RSA is homomorphic in multiplication

To multiply two values that have been encrypted with RSA
you just multiply the encrypted values:

E (x · y) = E (x) · E (y).

108 / 214

RSA is homomorphic in multiplication

To multiply two values that have been encrypted with RSA
you just multiply the encrypted values:

E (x · y) = E (x) · E (y).

RSA definition:

C = Me mod n

M = Cd mod p

n = pq

ed = 1 mod (p − 1)(q − 1)

108 / 214

RSA is homomorphic in multiplication

To multiply two values that have been encrypted with RSA
you just multiply the encrypted values:

E (x · y) = E (x) · E (y).

RSA definition:

C = Me mod n

M = Cd mod p

n = pq

ed = 1 mod (p − 1)(q − 1)

M is the cleartext message, C the cryptotext, e is the public
modulus, d is the private modulus, p and q are primes.

108 / 214

RSA is homomorphic in multiplication

To multiply two values that have been encrypted with RSA
you just multiply the encrypted values:

E (x · y) = E (x) · E (y).

RSA definition:

C = Me mod n

M = Cd mod p

n = pq

ed = 1 mod (p − 1)(q − 1)

M is the cleartext message, C the cryptotext, e is the public
modulus, d is the private modulus, p and q are primes.
RSA is homomorphic in multiplication:

(Me
1 mod n)·(Me

2 mod n) = (Me
1 ·M

e
2) mod n = (M1·M2)

e mod n.
108 / 214

RSA is homomorphic in multiplication

¨ ¥

typedef int T9;

#define M 33

T9 E9(int e) {return (((e*e)%M)*e)%M;}

int D9(T9 e) {int t=(((e*e)%M)*e)%M;

return (((t*t)%M)*e)%M;}

T9 ADD9(T9 a,T9 b) {return E9((D9(a)+D9(b)));}

T9 MUL9(T9 a,T9 b) {return (a*b)%M;}

BOOL LT9(T9 a,T9 b) {return D9(a)<D9(b);}
§ ¦

The modulus M is 33, the public exponent 3, the private
exponent 7.

You can only represent numbers smaller than the modulus.

RSA is not homomorphic in addition!

109 / 214

Transform addition in counted loops to use multiplication.

¨ ¥

for(i=1;i<6;i++)

printf("HERE\n");
§ ¦

¨ ¥

for(i=E9(1);i!=E9 (32);i=MUL9(i,E9(2)))

printf("HERE\n");
§ ¦

It’s easy to transform simple counted for-loops to use
multiplication

You never have to deobfuscate the loop variable, unless its
value is used inside the loop.

110 / 214

Encoding literal data

Literal data often carries much semantic information:

"Please enter your password:"

0xA17BC97A7E5F...FF67 (maybe a cryptographic key???)

111 / 214

Encoding literal data

Literal data often carries much semantic information:

"Please enter your password:"

0xA17BC97A7E5F...FF67 (maybe a cryptographic key???)

Split up in pieces.

111 / 214

Encoding literal data

Literal data often carries much semantic information:

"Please enter your password:"

0xA17BC97A7E5F...FF67 (maybe a cryptographic key???)

Split up in pieces.

Xor with a constant.

111 / 214

Encoding literal data

Literal data often carries much semantic information:

"Please enter your password:"

0xA17BC97A7E5F...FF67 (maybe a cryptographic key???)

Split up in pieces.

Xor with a constant.

Avoid ever reconstituting the literal in cleartext! (What about
printf?)

111 / 214

Encoding literal data

Literal data often carries much semantic information:

"Please enter your password:"

0xA17BC97A7E5F...FF67 (maybe a cryptographic key???)

Split up in pieces.

Xor with a constant.

Avoid ever reconstituting the literal in cleartext! (What about
printf?)

Print each character one at a time?

111 / 214

Convert literals to code — Mealy machine

Encode the strings "MIMI" and "MILA" in a finite state
transducer (a Mealy machine)

112 / 214

Convert literals to code — Mealy machine

Encode the strings "MIMI" and "MILA" in a finite state
transducer (a Mealy machine)

The machine takes a bitstring and a state transition table as
input and and generates a string as output.

112 / 214

Convert literals to code — Mealy machine

Encode the strings "MIMI" and "MILA" in a finite state
transducer (a Mealy machine)

The machine takes a bitstring and a state transition table as
input and and generates a string as output.

Mealy(102) produces "MIMI".

Mealy(1102) produces "MILA".

112 / 214

Convert literals to code — Mealy machine

i/’l’

1/’i’

0/’a’

0/’i’

1/’b’

0/’m’

10

2 3

¨ ¥

int next [][2] =

{{1,2},

{3,0},

{3 ,2}};

char out [][2] =

{{’m’,’l’},

{’i’,’i’},

{’a’,’b’}};
§ ¦

s0
i/o
−→ s1 means in state s0 on input i transfer to state s1 and

produce an o.

next[state][input]=next state

out[state][input]=output

113 / 214

Mealy machine — table driven

¨ ¥

char* mealy(int v) {

char* str=(char*) malloc (10);

int state=0,len =0;

while (state !=3) {

int input = 1&v; v >>= 1;

str[len ++]= out[state][input];

state = next[state][input];

}

str[len]=’\0’;

return str;

}
§ ¦

114 / 214

Mealy machine — hardcoded

¨ ¥

char* mealy(int v) {

char* str=(char*) malloc (10);

int state=0,len =0;

while (1) {

int input = 1&v; v >>= 1;

switch (state) {

case 0: state =(input ==0)?1:2;

str[len ++]=(input ==0)? ’m’:’l’; break;

case 1: state =(input ==0)?3:0;

str[len ++]=’i’; break;

case 2: state =(input ==0)?3:2;

str[len ++]=(input ==0)? ’a’:’b’; break;

case 3: str[len]=’\0’; return str;

}

}

}
§ ¦

115 / 214

Breaking abstractions

Algorithm
obfAJV

p. 293

Modifying instruction encodings

0 1

0 1

0 1

0 1

PUSHC

3

6
PRINT
5

4

SWAP
7

2

EXIT
8

0

1

ADD

Algorithm obfAJV: Modifying instruction encodings

Obfuscate the instruction set architecture!

118 / 214

Algorithm obfAJV: Modifying instruction encodings

Obfuscate the instruction set architecture!

Now, can’t run on the bare metal.

118 / 214

Algorithm obfAJV: Modifying instruction encodings

Obfuscate the instruction set architecture!

Now, can’t run on the bare metal.

But, we can run on a virtual machine!

118 / 214

Algorithm obfAJV: Modifying instruction encodings

Produce diverse programs by generating a unique interpreter
and a unique instruction set for every distributed copy of a
program.

119 / 214

Algorithm obfAJV: Modifying instruction encodings

Produce diverse programs by generating a unique interpreter
and a unique instruction set for every distributed copy of a
program.

Every program should encode instructions differently, and for
this encoding to change at runtime.

119 / 214

Algorithm obfAJV: Modifying instruction encodings

Produce diverse programs by generating a unique interpreter
and a unique instruction set for every distributed copy of a
program.

Every program should encode instructions differently, and for
this encoding to change at runtime.

The attacker will find that the instruction encoding change as
he chooses different execution paths!

119 / 214

Example code

¨ ¥

PUSHC 2

PUSHC 5

ADD

PRINT

SWAP 0

PUSHC 2

PUSHC 5

ADD

PRINT

EXIT
§ ¦

PUSHC c pushes the 3-bit constant c ,
ADD adds the two top elements on the stack,
PRINT prints and pops the top element on the stack, and
EXIT stops execution.
SWAP n mean “from here on, the instruction set changes.” n
is the node in the instruction decoding tree.

120 / 214

Instruction decoding tree

0 1

0 1

0 1

0 1

PUSHC

3

6
PRINT
5

4

SWAP
7

2

EXIT
8

0

1

ADD

Internal nodes (pink) point to left and right subtrees,

Leaves (blue) contain references to the code that implements
the opcode semantics.

121 / 214

Instruction decoding tree

0 1

0 1

0 1

0 1

PUSHC

3

6
PRINT
5

4

SWAP
7

2

EXIT
8

0

1

ADD

Internal nodes (pink) point to left and right subtrees,

Leaves (blue) contain references to the code that implements
the opcode semantics.

〈0, 0, 1, 1, 1, 1, 0〉 ⇒ PUSHC 〈0, 1, 1〉, PRINT.

121 / 214

How to diversify?

To diversify:
1 generate a decoding three

122 / 214

How to diversify?

To diversify:
1 generate a decoding three
2 translate each instruction from the original program into the

new encoding.

122 / 214

How to diversify?

To diversify:
1 generate a decoding three
2 translate each instruction from the original program into the

new encoding.

Resulting encoding is variable length!

122 / 214

Changing encoding at runtime!

The SWAP instruction changes the instruction encoding on the
fly, at runtime!

0

0 1

1

10

10

10

10

1

SWAP(0)

0

10

1
PUSHC

1

8
EXIT

7
SWAP

5
PRINT

3
ADD

6

4

2

0

8
EXIT

7
SWAP

5
PRINT

3
ADD

6

4

2

0

PUSHC

123 / 214

Changing encoding at runtime!

The SWAP instruction changes the instruction encoding on the
fly, at runtime!

SWAP n just swaps the children of node n.

0

0 1

1

10

10

10

10

1

SWAP(0)

0

10

1
PUSHC

1

8
EXIT

7
SWAP

5
PRINT

3
ADD

6

4

2

0

8
EXIT

7
SWAP

5
PRINT

3
ADD

6

4

2

0

PUSHC

123 / 214

PUSHC 2 PUSHC 5 ADD PRINT
z}|{ z }| { z}|{ z }| { z }| { z }| {

0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0,

SWAP 0
z }| { z }| {

1, 1, 1, 0, 0, 0, 0

PUSHC 2 PUSHC 5
z}|{ z }| { z}|{ z }| {

1, 0, 1, 0, 1, 1, 0, 1,

ADD PRINT EXIT
z }| { z }| { z }| {

0, 0, 0, 1, 0, 0, 1, 1, 1

¨ ¥

class Node{}

class Internal extends Node{

public Node left ,right;

public Internal(Node left , Node right) {

this.left = left; this.right=right;

}

public void swap() {

Node tmp = left; left=right; right=tmp;

}

}

class Leaf extends Node {

public int operator;

public Leaf(int operator) {

this.operator=operator;

}

}
§ ¦

¨ ¥

static Node[] tree = new Node [9];

static {

tree [1]= new Leaf (0); // PUSHC

tree [3]= new Leaf (1); // ADD

tree [5]= new Leaf (2); // PRINT

tree [7]= new Leaf (3); // SWAP

tree [8]= new Leaf (4); // EXIT

tree [6]= new Internal(tree[7],tree [8]);

tree [4]= new Internal(tree[5],tree [6]);

tree [2]= new Internal(tree[3],tree [4]);

tree [0]= new Internal(tree[1],tree [2]);

}
§ ¦

¨ ¥

static int prog[]={0,0,1,0,0,1,0,1,1,0,1,1,0,

1,1,1,0,0,0,0,

1,0,1,0,1,1,0,1,0,0,0,1,0,0,1,1,1};

static int pc = 0;
§ ¦

¨ ¥

static int decode () {

Node t = tree [0];

while (t instanceof Internal)

t = (prog[pc ++]==0)?((Internal)t).left

:((Internal)t).right;

return ((Leaf)t). operator;

}

static int operand () {

return 4*prog[pc ++]+2* prog[pc++]+ prog[pc++];

}
§ ¦

¨ ¥

static void interpret () {

int stack [] = new int [10]; int sp = -1;

while (true) {

switch (decode ()) {

case 0 : stack [++sp]= operand ();

break; // PUSHC

case 1 : stack[sp -1]+= stack[sp]; sp --;

break; // ADD

case 2 : System.out.println(stack[sp --]);

break; // PRINT

case 3 : ((Internal)tree[operand ()]). swap ();

break; // SWAP

case 4 : return; // EXIT

}

}

}
§ ¦

Algorithm obfAJV: Modifying instruction encodings

Attack: find the interpreter, ignore the changes to encodings!

130 / 214

Algorithm obfAJV: Modifying instruction encodings

Attack: find the interpreter, ignore the changes to encodings!

Must make sure that every instruction semantics is different.

130 / 214

Algorithm obfAJV: Modifying instruction encodings

Attack: find the interpreter, ignore the changes to encodings!

Must make sure that every instruction semantics is different.

Merge several instructions into new ones with unique and
unknown semantics.

130 / 214

Algorithm obfAJV: Modifying instruction encodings

Attack: find the interpreter, ignore the changes to encodings!

Must make sure that every instruction semantics is different.

Merge several instructions into new ones with unique and
unknown semantics.

The authors of report slowdown factors of between 50 and
3500.

130 / 214

