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Code obfuscation — what is it?

@ Informally, to obfuscate a program P means to transform it
into a program P’ that is still executable but for which it is
hard to extract information.

@ "Hard?” =- Harder than before!

@ static obfuscation =- obfuscated programs that remain fixed
at runtime.

o tries to thwart static analysis
s attacked by dynamic techniques (debugging, emulation,
tracing).

@ dynamic obfuscators = transform programs continuously at
runtime, keeping them in constant flux.

@ tries to thwart dynamic analysis
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Obfuscation — The Early Years!

@ Fred Cohen: Operating system protection through program
evolution
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Obfuscation — The Early Years!

o Fred Cohen: Operating system protection through program

evolution

o Diversity of programs: ways to generate syntactically different
but semantically identical versions of the same program.

@ Make an installation of a program different from all other
installations = harder for the malware writer to write their
code generically enough to work on all versions.
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Diversifying transformations



Obfuscating Transformations: Expression equivalence

@ Compilers optimize for the fastest sequence of instructions.

@ You can optimize for confusion instead!
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Algorithm OBFCF ' ¢orqer: Reordering Code and Data

@ Programmers put related pieces of code close together.
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Algorithm OBFCF ' ¢orqer: Reordering Code and Data

@ Programmers put related pieces of code close together.

@ Locality can help a reverse engineer to see what pieces of code
belong together.
@ = Randomize the placement of

modules within a program,
functions within a module,
statements within a function, and
instructions within a statement.

¢ © ¢ @

7/214



Algorithm OBFCF' i outiine: Splitting and Merging Functions

@ As programmers we use abstraction to manage the complexity
of larger programs.
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Algorithm OBFCF' i outiine: Splitting and Merging Functions

@ As programmers we use abstraction to manage the complexity
of larger programs.

@ Function inlining breaks the abstraction boundary.

@ Function outlining inserts a bogus abstraction.
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Algorithm OBFCF' i outiine: Splitting and Merging Functions

int modexp(int y,int x[],
int w,int n) {
int R, L;
int k = 0;
int s = 1;
while (k < w) {
if (x[k] == 1)

R = (sxy) % n; [j>
else

R = s;
s = R*¥R % n;
L = R;
k++;
}

return L;
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Algorithm OBFCF' i outiine: Splitting and Merging Functions

int modexp(int y,int x[],
int w,int n) {
int R, L;
int k = 0;
int s =1
while (k < w) {
f(x[k]l,s,y,n,&R);
s = R*¥R % n;
L = R;
k++;

3

}

return L;

void f(int xk,int s,int vy,
int n,int* R) {

if (xk == 1)

*R = (s*xy) % n;
else

*R = s;
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Algorithm OBFCF' i outiine: Splitting and Merging Functions

float foo[100];

void f(int a,float b) {
foo[a] = b;
}

float g(float c,char d) { [j>

return c*x(float)d;

}

int main() {
£(42,42.0);
float v = g(6.0,’a’);
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Algorithm OBFCF' i outiine: Splitting and Merging Functions

float foo[100];

float fg(int a,float bc,
char d,int which) {
if (which==1)
fool[a] = bc;
return bc*(float)d;
}

int main() {
£g(42,42.0,°b ,1);
float v=£g(99,6.0,%a’,2);
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Algorithm OBFCF .,,: Copying code

@ Make the program larger by cloning pieces of it:

0o AE
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Algorithm OBFCF .,,: Copying code

@ Make the program larger by cloning pieces of it:

0o AE

@ Make the copied code look different from the original:

& BF

Now the attacker must examine all pairs of code blocks to see
which ones are the same.
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Algorithm OBFCF .,,: Copying code

float foo[100];

void f(int a, float b) {
fool[al] = b;

} [::>

int main() {
f(42, 42.0);
f(6, 7.0);

o f is called twice
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Algorithm OBFCF .,,: Copying code

rﬂoat foo[100];

void f(int a, float b) {
fool[a] = b;

}

float bogus;

void f1(int a, float b) {
*(foo + axsizeof (float))
b += ax2;
bogus += b+a;

]
o

}

int main() {
f(42, 42.0);
f1(6, 7.0);

o f and £1 do the same thing.
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Algorithm OBFCF'iyterp: Interpretation

@ Add a level of interpretation:

© Define your own instruction set
@ Translate your program to this instruction set
© Write an interpreter for the instruction set
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Algorithm OBFCF'iyterp: Interpretation

@ Add a level of interpretation:

© Define your own instruction set
@ Translate your program to this instruction set
© Write an interpreter for the instruction set

@ Your program: 10-100x slower than before.
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Algorithm OBFCF'iyterp: Interpretation

int modexp(int y,int x[],
int w,int n) {
int R, L;
int k = 0;
int s = 1;
while (k < w) {
if (x[k] == 1)

R = (s*xy) % n; [j>
else

R = s;
s = R*¥R % n;
L = R;
k++;
}

return L;
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int modexp(int y, int x[]
void* progll={...};
k =0, s = 1;

int R, L,

int Stack[10];
void** pc

inc_k:
pusha:
pushv:
store:

x_k_ne_1:
k_ge_w:
add:

mul :

mod :
jump:

int sp=

, int w, int n) {

0;

= (voidx**) &prog;
goto **pc++;
k++; goto **pc++;
Stack [sp++]=(int)*pc; pc++; goto **pc++;

*(int*)*pc; pc++; goto **pc++;

Stack [sp++]=
*((int=*) Stack[sp-2])=Stack([sp-11;

goto **pc++;
if (x[k] !=
if (k >= w)
Stack [sp-2]
Stack [sp-2]
Stack [sp-2]

1) pc=*xpc; else pc++; goto
return L; goto **pc++;

+= Stack[sp-1]; sp--; goto
x= Stack[sp-1]; sp--; goto
%= Stackl[sp-1]; sp--; goto

pc=*pc; goto **pc++;

sp-=2;

**pc++;

**pc++;
**pc++;
**pc++;



void* progl[l={
// if (kx >= w) return L
&&k_ge_w,
// if (x[k] == 1)
&&x_k_ne_1 ,&progl16],
// R = (s*xy) % n;
&&pusha ,&R,&&pushv ,&s ,&&pushv ,&y ,&&mul ,&&pushv ,&n ,&&mod,
// Jump after if-statement
&& jump ,&prog[21],
// R = s;
&&pusha ,&R,&&pushv ,&s ,&&store,
// s = RxR % n;
&&pusha ,&s ,&&pushv ,&R ,&&pushv ,&R ,&&mul ,&&pushv ,&n ,&&mod,
// L = R;
&&pusha ,&L ,&&pushv ,&R ,&&store,
// k++
&&inc_k,
// Jump to top of loop
&& jump ,&prog [0]
};
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Complicating control flow

@ Transformations that make it difficult for an adversary to
analyze the flow-of-control:

© insert bogus control-flow,
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Complicating control flow

@ Transformations that make it difficult for an adversary to
analyze the flow-of-control:

© insert bogus control-flow,

@ flatten the program

© hide the targets of branches to make it difficult for the
adversary to build control-flow graphs

@ None of these transformations are immune to attacks,
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Opaque Expressions

@ Simply put:
an expression whose value is known to you as the
defender (at obfuscation time) but which is difficult
for an attacker to figure out
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Opaque Expressions

@ Simply put:
an expression whose value is known to you as the
defender (at obfuscation time) but which is difficult
for an attacker to figure out

@ Notation:

o PT for an opaquely true predicate

o PF for an opaquely false predicate

o P’ for an opaquely indeterminate predicate
o E=V for an opaque expression of value v

@ Graphical notation:

lﬂa‘false true false true false

@ Building blocks for many obfuscations.
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Opaque Expressions

@ An opaquely true predicate:

true false
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Opaque Expressions

@ An opaquely true predicate:

true false

v

@ An opaquely indeterminate predicate:

true false
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Simple Opaque Predicates

@ Look in number theory text books, in the problems sections:
“Show that Vx,y € Z : p(x,y)"
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Simple Opaque Predicates

@ Look in number theory text books, in the problems sections:
“Show that Vx,y € Z : p(x,y)"

o Vx,y €Z:x>—34y? £1

o Vx €Z:2Ix® +x

° ...
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Inserting bogus control-flow




Algorithm OBFCT Jy,ogus: Inserting bogus control-flow

@ Insert bogus control-flow into a function:
@ dead branches which will never be taken
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Algorithm OBFCT Jy,ogus: Inserting bogus control-flow

@ Insert bogus control-flow into a function:
@ dead branches which will never be taken
@ superfluous branches which will always be taken
© branches which will sometimes be taken and sometimes not,
but where this doesn't matter
@ The resilience reduces to the resilience of the opaque
predicates.
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Algorithm OBFCT Jy,ogus: Inserting bogus control-flow

@ |t seems that the blue block is only sometimes executed:
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Algorithm OBFCT Jy,ogus: Inserting bogus control-flow

@ A bogus block (green) appears as it might be executed while,
in fact, it never will:

E:> true false
T
1
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Algorithm OBFCT Jy,ogus: Inserting bogus control-flow

@ Sometimes execute the blue block, sometimes the green block.

@ The green and blue blocks should be semantically equivalent.

>
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Algorithm OBFCT Jy,ogus: Inserting bogus control-flow

@ Extend a loop condition P by conjoining it with an opaquely
true predicate PT:

O I

false false true true

true E:> false,
<
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Irreducible graphs

@ Build your code out of nested if-, for-, while-,
repeat-statements, etc., = the CFG will be reducible.

@ Static analysis of reducible CFGs is straight-forward, and
efficient.

@ Jump into the middle of a loop = CFG is irreducible.

@ Static analysis over irreducible CFGs is complicated.

if (PF) goto b;

while (1) {
x = y+10; return x;
b: y = 20;
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Irreducible graphs

j‘f (PF) true

y = 20; > ]
while (1) {
y+10;

false
X ; return x;
y 20; | |——_—_T'
¥

o Before further analyzing the CFG, deobfuscate it, make it
reducible.

@ Here we used a nodesplitting deobfuscation.

@ A really complex CFG with n nodes = the deobfuscated
reducible graph will have 271 nodes!
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Irreducible graph

@ Unfortunately, there are other ways of deobfuscating:

int firsttime=1;
while (1) {

if ((Vfirsttime) || (1PF)) {
x = y+10; return x;

}

y = 20;

firsttime=0;

@ It's not known whether this construction also causes
exponential blowup.
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Complicating dynamic analaysis

@ Make opaque predicates interdependent.

@ An attacker cannot simply remove one predicate at a time,
rerun the program to see if it still works, remove another
predicate, etc.

@ Instead, he has to remove all interdependent opaque
predicates at the same time (or a divide-by-zero will be
raised):

int x=0, y=2,t;

while (1) A
if (t=x*(x-1)%y==0,y-=2,x+=2,t)"
if (t=y*(y-1)%x==0,y+=2,x-=2,t)
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Problem

Problem
The above construction is admittedly lame, but, it's late, and it's all we
could come up with. Can you think of a way to generate less conspicuous
mutually dependent opaque predicates?
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Control-flow flattening

swi t ch(next)

k=0 if (kew || if (x[k]==1)
s=1 next =2 next =3
next=1| | el se el se
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next =1
Bs

By next =6 next =4




Algorithm O BFWHKD: Control-flow flattening

® Removes the control-flow structure of functions.
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Algorithm O BFWHKD: Control-flow flattening

® Removes the control-flow structure of functions.

@ Put each basic block as a case inside a switch statement, and
wrap the switch inside an infinite loop.

@ Known as chenxify, chenxification, after Chenxi Wang:
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int modexp(int y,int xI[],
int w,int n) {

int R, L;
int k = 0;
int s = 1;
while (k < w) {
if (x[k] == 1)
R = (s*xy) % n;
else
R = s;
s = R*¥R % n;
L = R;
k++;
}

return L;

Bo: k=0
s=1
vy
Bt it (kew
Bs : ¢

‘ return L ‘

&:‘if(x[mzzn‘

/ \
Bs 1| Re(s*y) mod n Ba ) Res

B_r,:

s=R*R rmod n
L=R

k++

goto Bi

[ |




int modexp(int y, int x[], int w, int n) {
int R, L, k, s;
int next=0;
for (;;)
switch(next) {
case 0 : k=0; s=1; next=1; break;
case 1 if (k<w) next=2; else next=6; break;
case 2 if (x[k]==1) next=3; else next=4; bresq
case 3 R=(s*y)%n; next=5; break;
case 4 R=s; next=5; break;
case 5 s=R*R%n; L=R; k++; next=1; break;
case 6 return L;
}




next =0

A

v

swi t ch(next)

k=0 it (k<w) | [1f (x[Kl==1)] [Re(s*y) %] [ R=s SRR | [ roturn L
s=1 next =2 next =3 next =5 next=5|| L=R
next=1|| el se el se Bs Ba K+ Bs
Bo next =6 next =4 next =1

Bs

B N‘\

>
>




Exercise: Chenxify a control-flow graph

o Consider again the control-flow graph for this GCD routine:

Ve

int gcd(int x, int y) {

int temp;

while (true) A
boolean b = x%y == 0;
if (b) break;
temp = xhy;
X = y;
y = temp;

o Flatten the graph using Chenxification.
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Performance penalty

@ Replacing 50% of the branches in three SPEC programs slows
them down by a factor of 4 and increases their size by a factor
of 2.
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Performance penalty

@ Replacing 50% of the branches in three SPEC programs slows
them down by a factor of 4 and increases their size by a factor
of 2.

@ Why?

@ The for loop incurs one jump,
@ the switch incurs a bounds check the next variable,
© the switch incurs an indirect jump through a jump table.
@ Optimize?
© Keep tight loops as one switch entry.
@ Use gec's labels-as-values = a jump table lets you jump
directly to the next basic block.
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Performance penalty

@ Replacing 50% of the branches in three SPEC programs slows
them down by a factor of 4 and increases their size by a factor
of 2.

o Why?
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Use GCC's labels-as-values

int modexp(int y, int x[], int w, int n) {
int R, L, k, s;
char* jtab[]l={&&case0 ,&&casel ,&&case2,
&&case3 ,&&cased ,&&caseb ,&&caseb};
goto *jtabl[0];
case0: k=0; s=1; goto *jtab[1];
casel: if (k<w) goto *jtab[2]; else goto *jtab[6];
case2: if (x[k]l==1) goto *jtab[3]; else goto *jtabl[4];
case3: R=(s*y)%n; goto *jtab[5];
case4: R=s; goto *jtab[5];
caseb: s=R*R¥n; L=R; k++; goto *jtab[1];
case6: return L;

44 /214



Algorithm OBFWHKD j;.s: Control-flow flattening
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Algorithm OBFWHKD j;.s: Control-flow flattening

@ Attack against Chenxification:

© Work out what the next block of every block is.
@ Rebuild the original CFG!

@ How does an attacker do this?

© use-def data-flow analysis
@ constant-propagation data-flow analysis

45 /214



Compute [l8@ as an opaque predicate!

int modexp(int y, int x[], int w, int n) {
int R, L, k, s;
int next=E~C;
for(;;)
switch(next) {
case 0 : k=0; s=1; next=EF~!; break;

case 1 : if (k<w) next=F~2; else next=E°%; break;

case 2 : if (x[k]l==1) next=E>; else next=E~*;
break;

case 3 R=(s*y)%n; next=E~>; break;

case 4 R=s; next=E~>; break;

case 5 s=R*R%n; L=R; k++; next=EF~!; break;

case 6 return L;
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int modexp(int y, int x[], int w, int n) {
int R, L, k, s;
int next=0;
int gll = {10,9,2,5,3%};
for (;;)
switch(next) {
case 0 : k=0; s=1; next=g[0]%g[1]:1; break;
case 1 : if (k<w) next=glg[2]]172;
else next=g[0]-2%g[2]7%; break;
case 2 : if (x[k]l==1) next=g[3]-g[2]:3;
else next=2*g[2]:4; break;
case 3 : R=(s*y)%n; next=gl[4]+g[2]~°; break;
case 4 : R=s; next=g[0]—g[3]:5; break;
case 5 : s=R*R%n; L=R; k++; next=glgl[4]1%gl[2]7};
break;
case 6 : return L;



int modexp(int y, int x[], int w, int n) {
int R, L, k, s;
int next=0;
int m=0;
int gl[]l = {10,9,2,5,3%};
for(;;) {
switch(next) {
case 0 : k=0; s=1; next=g[(0+m)%5]1%gl[(1+m)%5]; break;
case 1 : if (k<w) next=gl[(gl[(2+m)%5]1+m)%5];
else next=g[(0+m)%5]-2*xg[(2+m)%5]; break;
case 2 : if (x[k]==1) next=g[(3+m)%5]-gl[(2+m)%5];
else next=2*xg[(2+m)’5]; break;
case 3 : R=(s*y)¥%n; next=g[(4+m)%5]+g[(2+m)%5]; break
case 4 : R=s; next=g[(0+m)%5]-gl[(3+m)’%5]; break;
case 5 : s=R*R%n; L=R; k++;
next=g[(g[(4+m)%5]1+m)%5]1%g[(2+m)%5]; break;
case 6 : return L;
}
permute (g,5,&m) ;



Thwarting inter-procedural analyses

@ Make it hard for the adversary to build a call graph.
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Thwarting inter-procedural analyses

@ Make it hard for the adversary to build a call graph.
@ Replace every function call with an indirect call through a
pointer:
© Make every function have the same signature,
@ create function pointer variables
© initialize them with the addresses of functions.
@ replace the static call with an indirect one through pointer.
@ add bogus function pointers; add code that appears to call a
function through a pointer, use pointer arithmetic to
construct function pointers.
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Opaque values from array aliasing



OBFWHKD paque: Opaque values from array aliasing

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
13658 | 1)46 23 ]5 16|65 2 a1| 2] 7] 1]37[o0]11]16]2]

Invariants:

O every third cell (in pink), starting will cell 0, is =1 mod 5;
@ cells 2 and 5 (green) hold the values 1 and 5, respectively;
© every third cell (in blue), starting will cell 1, is =2 mod 7;
@ cells 8 and 11 (yellow) hold the values 2 and 7, respectively.

You can update a pink element as often as you want, with any
value you want, as long as you ensure that the value is always
=1 mod 5!
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-
int gl[] = {36,58,1,46,23,5,16,65,2,41,
2,7,1,37,0,11,16,2,21,16};

if ((gl31 % gl51)==gl[21)
printf ("true!\n");

gl5] = (glil*xgl4l)%gl11] + gl6l%glsl;
gl14] = rand();
gl4] = rand O*gl[11]+gl[8];

int six = (gl4] + gl7] + gl[101)%gl11];
int seven = six + gl[3]%gl5];
int fortytwo = six * seven;

-

@ pink: opaquely true predicate.
@ blue: g is constantly changing at runtime.

@ green: an opaque value 42.

Initialize g at runtime!



Introducing aliasing

p. 229



Introducing aliasing

o If you want to confuse static analysis — introduce spurious
aliases into your program!
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Introducing aliasing

o If you want to confuse static analysis — introduce spurious
aliases into your program!

@ Aliasing confuses both humans and analysis when performed
by static analysis tools.
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Introducing aliasing

o If you want to confuse static analysis — introduce spurious
aliases into your program!

@ Aliasing confuses both humans and analysis when performed
by static analysis tools.
@ Aliasing occurs in

@ two pointers can refer to the same memory location,
o two reference parameters can also alias each other

o a reference parameter and a global variable

@ two array elements indexed by different variables.
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Algorithm
OBFLDK

p. 239

Jumps through branch functions

bf () {
jmp b call bf return to T[h(a)] + a
a:

’ }
E> b Tlh(a)] = b —a

b: b: Tlh(.. )] =...




OBFLDK: Jumps through branch functions

@ Replace unconditional jumps with a call to a branch function.

@ Calls normally return to where they came from...But, a
branch function returns to the target of the jump!

a bf () {
jmp b 5 call bf return to T[h(a)]+ a
’ }
l::> b Tlh(a)] =b—a
b: b: Tlh(..)]=...
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OBFLDK: Make branches explicit

int modexp(int y,int x[],
int w,int n) {
int R, L;
int k = 0;
int s = 1;
while (k < w) {
if (x[k] == 1)

R = (s*xy) % n; [:>
else

R = s;
s = R¥R % n;
L = R;
k++;
}

return L;
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OBFLDK: Jumps through branch functions

@ A table T stores
T[h(a,-)] = b,' — aj.

@ Code in pink updated the return address!

@ The branch function:

char*x T[2];
void bf () {
char*x old;

asm volatile("movl 4(%%ebp) ,%40\n\t" : "=r" (old));
char* new = (char*) ((int)T[h(old)] + (int)old);
asm volatile("movl %0,4(%%ebp)\n\t" : : "r" (new));
}
L J
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-

int modexp(int y, int x[], int w, int n) {
int R, L; int k = 0; int s = 1;
T[h(&&retaddrl)]=(char*) (&&endif -&&retaddrl);
T[h(&&retaddr2)]=(char*) (&&beginloop -&&retaddr2) ;
beginloop:
if (k >= w) goto endloop;
if (x[k] !'= 1) goto elsepart;
R = (sxy) % n;
bf () ; // goto endif;
retaddri:
asm volatile(".ascii \"bogus\"\n\t");
elsepart:
R = s;
endif:
s = R*¥R % n;
L = R;
k++;
bt () // goto beginloop;
retaddr2:
endloop:
return L;
}




OBFLDK: Jumps through branch functions

Designed to confuse disassembly.

(]

39% of instructions are incorrectly assembled using a linear
sweep disassembly.

25% for recursive disassembly.

Execution penalty: 13%

Increase in text segment size: 15%.
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Opaque Predicates

p. 246




Algorithm OBFCT J ;.. Opaque predicates from pointer

aliasing

o Create an obfuscating transformation from a known
computationally hard static analysis problem.
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Algorithm OBFCT J ;.. Opaque predicates from pointer

aliasing

o Create an obfuscating transformation from a known
computationally hard static analysis problem.
@ We assume that
© the attacker will analyze the program statically, and
@ we can force him to solve a particular static analysis problem
to discover the secret he's after, and
© we can generate an actual hard instance of this problem for
him to solve.
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Algorithm OBFCT J ;.. Opaque predicates from pointer

aliasing

o Create an obfuscating transformation from a known
computationally hard static analysis problem.
@ We assume that

© the attacker will analyze the program statically, and

@ we can force him to solve a particular static analysis problem
to discover the secret he's after, and

© we can generate an actual hard instance of this problem for
him to solve.

@ Of course, these assumptions may be false!
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Algorithm OBFCT J ias

o Creates opaque predicates from pointer analysis problems.
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Algorithm OBFCT J ias

o Creates opaque predicates from pointer analysis problems.

@ The algorithm tries to go beyond the capabilities of known
analysis algorithms:
Despite a great deal of work on both flow-sensitive
and context-sensitive algorithms [...], none has
been shown to scale to programs with millions of
lines of code, and most have difficulty scaling to
100,000 lines of code.
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Algorithm OBFCTJ jias

o Creates opaque predicates from pointer analysis problems.

@ The algorithm tries to go beyond the capabilities of known
analysis algorithms:
Despite a great deal of work on both flow-sensitive
and context-sensitive algorithms [...], none has
been shown to scale to programs with millions of
lines of code, and most have difficulty scaling to
100,000 lines of code.

@ Alias analysis algorithms are designed to perform well on
“normal code” written by humans!
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Algorithm OBFCT J ias

@ Construct one or more heap-based graphs, keep pointers into
those graphs, create opaque predicates by checking properties
you know to be true.

RCECECEC)
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Algorithm OBFCT J ias

@ Construct one or more heap-based graphs, keep pointers into
those graphs, create opaque predicates by checking properties
you know to be true.

@ g and g point into two graphs G; (pink) and Gy (blue):

split @»
SCRCRCRC :
rere e (o

a2
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Algorithm OBFCTJ jias

@ Construct one or more heap-based graphs, keep pointers into
those graphs, create opaque predicates by checking properties
you know to be true.

@ g and g point into two graphs G; (pink) and Gy (blue):

et L ©
7 =a!

a2
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Algorithm OBFCTJ jias

@ Construct one or more heap-based graphs, keep pointers into
those graphs, create opaque predicates by checking properties
you know to be true.

@ g and g point into two graphs G; (pink) and Gy (blue):

®eee
pee . lpes

q1
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q2
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Algorithm OBFCTJ jias

@ Construct one or more heap-based graphs, keep pointers into
those graphs, create opaque predicates by checking properties
you know to be true.

@ g and g point into two graphs G; (pink) and Gy (blue):

BERS T

o @ "

Q@ a2
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Algorithm OBFCT J ias

@ Two invariants:

e "Gy and G, are circular linked lists”
@ “gp points to a node in G; and ¢, points to a node in G,.”
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Algorithm OBFCT J ias

@ Two invariants:

e "Gy and G, are circular linked lists”
@ “gp points to a node in G; and ¢, points to a node in G,.”

@ Perform enough operations to confuse even the most precise
alias analysis algorithm,
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Algorithm OBFCT J ias

@ Two invariants:

e "Gy and G, are circular linked lists”
@ “gp points to a node in G; and ¢, points to a node in G,.”

@ Perform enough operations to confuse even the most precise
alias analysis algorithm,

@ Insert opaque queries such as (g1 # q2)7 into the code.
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Algorithm OBFCT Jginter: Opaque predicates from

concurrency

@ Concurrent programs are difficult to analyze statically: n
statements in a parallel region can execute in n! different
orders.
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Algorithm OBFCT Jginter: Opaque predicates from

concurrency

@ Concurrent programs are difficult to analyze statically: n
statements in a parallel region can execute in n! different
orders.

@ Construct opaque predicates based on the difficulty of
analyzing the threading behavior of programs!
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Algorithm OBFCT Jginter: Opaque predicates from

concurrency

@ Concurrent programs are difficult to analyze statically: n
statements in a parallel region can execute in n! different
orders.

@ Construct opaque predicates based on the difficulty of
analyzing the threading behavior of programs!

@ Keep a global data structure G with a certain set of invariants
I, to concurrently update G while maintaining /, and use / to
construct opaque predicates over G
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Algorithm OBFCT Jginter: Opaque predicates from

concurrency

Threads T1 and T, concurrently bang on two integer variables X
and Y, with complete disregard for data races:

@ Maintain the invariants that both X and Y will always be the
square of some value.
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Algorithm OBFCT Jginter: Opaque predicates from

concurrency

Threads T1 and T, concurrently bang on two integer variables X
and Y, with complete disregard for data races:

@ Maintain the invariants that both X and Y will always be the
square of some value.

o Construct an opaque predicate (X-34*Y==-1)F.
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Algorithm OBFCT Jginter: Opaque predicates from

concurrency

Threads T1 and T, concurrently bang on two integer variables X
and Y, with complete disregard for data races:

@ Maintain the invariants that both X and Y will always be the
square of some value.

o Construct an opaque predicate (X-34*Y==-1)F.
o Vx,y €Z: x> —34y? £ —1.
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Opaque predicates from concurrency

move(c,d)

REEES L EBERE T

e
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Opaque predicates from concurrency

@ Thread T; updates a and b, such that each time a is updated
to point to its next node in the cycle, b is also updated to
point to its next node in the cycle.
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Opaque predicates from concurrency

@ Thread T; updates a and b, such that each time a is updated
to point to its next node in the cycle, b is also updated to
point to its next node in the cycle.

@ Thread T, updates ¢ and d.
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Opaque predicates from concurrency

@ Thread T; updates a and b, such that each time a is updated
to point to its next node in the cycle, b is also updated to
point to its next node in the cycle.

@ Thread T, updates ¢ and d.

@ Opaquely true predicate (a = b)7 is statically
indistinguishable from an opaquely false predicate (c = d)F!
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Breaking opaque predicates

X] — 03

Xp — -+

b— f(x1,x2,...);

if b goto ...

O find the instructions that make up f(x1, x2,...);
@ find the inputs to f, i.e. x1,x2..;

© find the range of values Ry of x,...;

@ compute the outcome of f for all input values;
@ kill the branch if f = true.
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Breaking opaque predicates

How can you make attacker's task more difficult?
@ make it harder to locate the instructions that make up

f(x1,x2,...);

@ make it harder to determine what are the inputs xi, xp, ... to
f;

@ make it harder to determine the actual ranges Ry, Ry, ... of
X1,X2,..., Or

@ make it harder to determine the outcome of f for all possible
argument values.
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Breaking opaque predicates

int x
int y

some complicated expression;
42;

z = ...
boolean b = (34*xy*xy-1)==x%*x;
if b goto ...

@ Compute a backwards slice from b,
@ Find the inputs (x and y),
© Find range of x and y,

@ Use number-theory/brute force to determine b = false.
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Breaking opaque predicates

How to make attacker’s task more difficult? Make it harder to
o find f(xy,x2,...);
o find the inputs x1,x»,... to f;
o find the ranges Ry, Ry, ... of x1,xp,...; or

@ determine the outcome of f for all argument values.
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Algorithm
REPMBG

p. 256

Breaking Vx € Z : n|p(x)



Algorithm REPMBG: Breaking Vx € Z : n|p(x)

o Mila Dalla Preda:

@ Attack opaque predicates confined to a single basic block.
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Algorithm REPMBG: Breaking Vx € Z : n|p(x)

o Mila Dalla Preda:

@ Attack opaque predicates confined to a single basic block.

@ Assume that the instructions that make up the predicate are
contiguous.
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Algorithm REPMBG: Breaking Vx € Z : n|p(x)

o Mila Dalla Preda:

@ Attack opaque predicates confined to a single basic block.

@ Assume that the instructions that make up the predicate are
contiguous.

@ Start at a conditional jump instruction j and incrementally
extend it with the 1,2, ... instructions until an opaque
predicate (or beginning of basic block) is found.
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Algorithm REPMBG: Breaking Vx € Z : n|p(x)

o Mila Dalla Preda:

@ Attack opaque predicates confined to a single basic block.

@ Assume that the instructions that make up the predicate are
contiguous.

@ Start at a conditional jump instruction j and incrementally
extend it with the 1,2, ... instructions until an opaque
predicate (or beginning of basic block) is found.

@ Brute force evaluate, or use abstract interpretation.
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Breaking Vx € Z : 2|(x* + x)

Opaquely true predicate ¥x € Z : 2|(x? + x):

(1) (2) (3) (4)
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Breaking Vx € Z : 2|(x* + x)

Opaquely true predicate ¥x € Z : 2|(x? + x):

(1) (2) (3) (4)
X = ; X = ...
y = X*X; Yy = X*X;
y =y fx ||y =y o+ ox;
y=vyh 2|y =y %h2;
b = y==0; b = y==0;
if b ... if b ...
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Breaking Vx € Z : 2|(x* + x)

Opaquely true predicate ¥x € Z : 2|(x? + x):

(1) (2) (3) (4)
X = ; X = ... X = ...
y = X*X; Yy = X*X; y = X*X;
y =y +tx ||y =y x|y =y + ox;
y=y h2||ly =y %h 2|y =7y h 2
b = y==0; b = y==0; b = y==0;
if b ... if b ... if b ...
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Breaking Vx € Z : 2|(x* + x)

Opaquely true predicate ¥x € Z : 2|(x? + x):

(1) (2) (3) (4)
X = ; X = ... X = ... X = ...
y = X*X; Yy = X*X; y = X*X; y = X*X;
Y=y x5 ||y =y x|y =Y+ x|y =y +ox;
y=y h2lly =y h2|ly=yh2||y=1yh 2
b = y==0; b = y==0; b = y==0; b = y==0;
if b ... if b ... if b ... if b ...
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Breaking Vx € Z : 2|(x* + x)

Opaquely true predicate ¥x € Z : 2|(x? + x):

(1) (2) (3) (4)
X = ; X = ... X = ... b4 .3 b .3
y = X*X; Yy = X*X; y = X*X; y = X*X; y = X*X;
Y=y A x|y =y ||y =y ||y =y x|y =y +fox;
y=y h2|ly=yh2|ly=yh2|ly=yh2|y=1yh 2
b = y==0; b = y==0; b = y==0; b = y==0; b = y==0;

if b ... if b ... if b ... if b ... if b ...
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Using Abstract Interpretation

Consider the case when x is an even number:

X even number; X = even;

y = X ¥ X y = X *, X = even, even = even;
y =y + x; l::> y =y +, x = even+,even = even;
z =y h 2 z =y %hs 2 = evenmod2=0;

b = z==0; b = z==0; = true

if b ... if b ...
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Using Abstract Interpretation

Consider the case when x starts out being odd:

x = odd number; X = odd;

y = X * X3 y = X *; x = oddx,odd = odd;
y =y + x; I::> y =y +, x = odd+,odd = even;
z =3 %h 2; z =y %hs 2 = evenmod2=0;

b = z==0; b = z==0; = true

if b ... if b ...

@ Regardless of whether x's initial value is even or odd, b is true!
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Algorithm REPMBG: Breaking Vx € Z : n|p(x)

@ Regardless of whether x's initial value is even or odd, b is true!
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Algorithm REPMBG: Breaking Vx € Z : n|p(x)

@ Regardless of whether x's initial value is even or odd, b is true!

@ You've broken the opaque predicate, efficiently!!
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Algorithm REPMBG: Breaking Vx € Z : n|p(x)

@ Regardless of whether x's initial value is even or odd, b is true!
@ You've broken the opaque predicate, efficiently!!

@ By constructing different abstract domains, Algorithm
REPMBG is able to break all opaque predicates of the form
Vx € Z : n|p(x) where p(x) is a polynomial.
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Data encodings

p. 258
it —>[ E — T \m_>
T : > int \n—> boolean
T
T \ Al
:@”@»»HT
T 7




Data encodings



Obfuscating an Abstract Datatype

Ll

.,_,

T/
T/
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Obfuscating an Abstract Datatype

e
T —»EI—» int -_Ir_

T

/ boolean
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Obfuscating an ADT — Simplistic method

type T = ...

&r:TxT — T

KT: TxT — T
I

{X@T/y = Er/(Dm(x)®1 D1/(Y))
x@my = Ep(Dr(x)®71 Dri(y))

Better if every operation is performed on the obfuscated
representation directly!
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Obfuscating an ADT — Simplistic method

int —» T \m_>
- _)III_) int \n—> boolean

T

ADD
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Obfuscating an ADT — Parameterize family

@ To prevent pattern matching attacks you want the obfuscated
representation to be parameterized:

type T;’ = ...
R, T —~ T
DE, : T - T
P . / ! !
o, Tyx Ty — T
P . !/ ! !
@ Tyx Ty = T
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Multiple different representations

@ The original program has three integer variables a, x, and y.
@ You obfuscate a and x to be of type T1 and y to be of type

T2:

int a = ---; TL a = ---;

int x = .-+ Tl x = ---;

int y = ---; l::> T2 y = -

X = .- @ ey X = -o-o@ ey

y = X o y = 0 En(Du(x) -
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Data obfuscations

We're going to look at ways to obfuscate
@ Integers,
@ Booleans,
@ Strings, and
@ Arrays
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Transforming Integers — The identity transformation

typedef int T1;

T1 E1(int e) {return e;}

int D1(T1 e) {return e;}

T1 ADD1(T1 a, T1 b) {return E1(D1(a)+D1(b));}
T1 MUL1(T1 a, T1 b) {return E1(D1(a)*D1(b));}
BOOL LT1(T1 a, T1 b) {return D1(a)<D1(b);}

@ T1 is the data type of the obfuscated representation,

@ E1 is a function that transforms from cleartext integers into
the obfuscated representation,

@ D1 transforms obfuscated integers into cleartext,

@ ADD1, MUL1, and LT1 define how to add, multiply, and
compare two obfuscated integers.
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Transforming Integers — The identity transformation

[ E J>—int

*E'_»@»—»—Hnt

int /

—> boolean
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Transforming Integers — The identity transformation

@ Add these definitions to your program and transform the code
on the left into the code on the right:

T1 v = E1(7);

nt M ; v = MUL1(v,E1(5));
MM v = ADD1(v,E1(7));
vhile (v<éo) v while (LT1(v,E1(50)))

v=ADD1 (v,E1(1));
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+1 transformation with deobfuscation

typedef int T2;

T2 E2(int e) {return e+1;}

int D2(T2 e) {return e-1;}%}

T2 ADD2(T2 a, T2 b) {return E2(D2(a)+D2(b));}
T2 MUL2(T2 a, T2 b) {return E2(D2(a)*D2(b));}
BOOL LT2(T2 a, T2 b) {return D2(a)<D2(b);}

@ Bad implementation of addition and multiplication: before
applying the operations we first convert to deobfuscated
space.

@ Watch out for overflow!
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+1 transformation with deobfuscation

int —>E—/:@—>—>int int —»D—/:@—»—»int
1 1
int ADD
e -
—> —>—>int

Ao
int
)

@—»—»—»int
/'_>

f LT
int
\ E_»
—»—>boolean

int / QE’_»
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+1 transformation without deobfuscation

typedef int T3;

T3 E3(int e) {return e+1;}

int D3(T3 e) {return e-1;}%}

T3 ADD3(T3 a, T3 b) {return a+b-1;}%}

T3 MUL3(T3 a, T3 b) {return a*b-a-b+2;}
BOOL LT3(T3 a, T3 b) {return a<b;}

@ Perform arithmetic operations directly on the obfuscated
values.

@ For x + y, adjust by subtracting 1, since x 4+ y in obfuscated
spaceis (x +1)+(y+1)=x+y+2.
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+1 transformation without deobfuscation

int —>E—>@_> | sint int —»D—>@_> > int
1 1
int \ ADD
:@—’@*% int
int 1

int \ LT
—>
) @—»—» boolean
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Exercise: Integer encoding

@ Consider again the GCD routine:

int gcd(int x, int y) {

int temp;

while (true) {
boolean b = x%y == 0;
if (b) break;
temp = x%y;
X =y;
y = temp;

@ Use the E()/D() scheme above to encode the integer
variables.

@ What kind of encoding would work well here?
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Algorithm OBFBDKMRYV ,,m: Number-theoretic tricks

typedef int T4;

#define N4 (53*59)

T4 E4(int e,int p) {return p*N4+e;}

int D4(T4 e) {return e%N4;}

T4 ADD4(T4 a, T4 b) {return a+b;}

T4 MUL4(T4 a, T4 b) {return ax*xb;}

BOOL LT4(T4 a, T4 b) {return D4(a)<D4(b);}

@ An integer y is represented as N x p + y, where N is the
product of two close primes, and p is a random value.

@ Addition and multiplication are performed in obfuscated space.
@ Comparisons require deobfuscation.

@ Parameterized obfuscation: create a family of representation
by choosing different values for p.
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Operating on differently obfuscated integers

int x = 7; T3 x = E3(7);

int v = 6; T4 v = E4(6,3);

v o= x % v; lj> v = MUL4 (E4(D3(x),5),v);
X =V + X; x = ADD3(E3(D4(v)),E3(8));

printf ("%i\n",x); printf ("%i\n",D3(x));

o If two differently obfuscated integers need to be operated on,
then one needs to be first deobfuscated and then
re-obfuscated to the correct representation.
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Algorithm OBFBDKMRV (;ypt0: Encrypting integers

DES_key_schedule ks;
DES_cblock key ={0x12,0x34,0x56,0x78...};

typedef struct {int x; int y;} T7;
T7 E7(int e) {
T7 block = (T7){e,0};
DES_ecb_encrypt ((DES_cblock*)&block,
(DES_cblock*)&block ,&ks ,DES_ENCRYPT) ;
return block;}
int D7(T7 e) {
DES_ecb_encrypt ((DES_cblock*)&e,
(DES_cblock*)&e ,&ks ,DES_DECRYPT);
return e.x;}
T7 ADD7(T7 a,T7 b) {return E7(D7(a)+D7(b));}
T7 MUL7(T7 a,T7 b) {return E7(D7(a)*D7(b));}

BOOL LT7(T7 a,T7 b) {returm D7(a)<D7(b);}
. J
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Algorithm OBFBDKMRV (;ypt0: Encrypting integers

@ You can't perform arithmetic operations on values encrypted
by DES directly!
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@ You can't perform arithmetic operations on values encrypted
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@ Decrypt the operands, perform arithmetic, re-encrypt the
result = bad.
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Algorithm OBFBDKMRV (;ypt0: Encrypting integers

@ You can't perform arithmetic operations on values encrypted
by DES directly!

@ Decrypt the operands, perform arithmetic, re-encrypt the
result = bad.

@ Overhead!
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Counted loops using encryption

typedef struct {int x; int y;} T8;
T8 E8(T8 e) {
DES_ecb_encrypt ((DES_cblockx*)&e,
(DES_cblock*)&e,&ks ,DES_ENCRYPT);
return e;}
T8 D8(T8 e) {
DES_ecb_encrypt ((DES_cblockx*)&e,
(DES_cblock*)&e,&ks ,DES_DECRYPT);
return e;}
BOOL NE8(T8 a,T8 b) {return memcmp (&a,&b,sizeof (T8))!=0;}
Y,

N\

@ This representation only supports the not-equal comparison on
encrypted values.
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Counted loops using encryption

printf ("HERE\n");

>

T8 v = E8(E8(E8(E8((T8){42,42}))));
while (NE8(v,(T8){42,42})) {
printf ("HERE\n");
v = D8(v);

[for(i=0;i<5;i++) }

@ Allows you to construct simple counted loops inside the
encrypted domain.

@ The code in pink can be computed at obfuscation time.
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RSA is homomorphic in multiplication

@ To multiply two values that have been encrypted with RSA
you just multiply the encrypted values:

E(x-y)= E(x)-E(y).
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RSA is homomorphic in multiplication

@ To multiply two values that have been encrypted with RSA
you just multiply the encrypted values:

E(x-y)=E(x)-E(y).
@ RSA definition:
C = Mémodn
M C9 mod p

n Pq
ed = 1mod(p—1)(g—1)

@ M is the cleartext message, C the cryptotext, e is the public
modulus, d is the private modulus, p and g are primes.

@ RSA is homomorphic in multiplication:
(M5 mod n)-(M3 mod n) = (M;-M3) mod n = (M;-M>)® mod n.
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RSA is homomorphic in multiplication

(typedef int T9;

#define M 33

T9 E9(int e) {return (((exe)M)*e)¥%M;}

int D9(T9 e) {int t=(((ex*e)¥%M)*e)%M;
return (((t*t)%M)*e)¥%M;}

T9 ADD9(T9 a,T9 b) {return E9((D9(a)+D9(b)));}

T9 MUL9(T9 a,T9 b) {return (ax*b)%M;}

BOOL LT9(T9 a,T9 b) {return D9(a)<D9(b);}

@ The modulus M is 33, the public exponent 3, the private
exponent 7.

@ You can only represent numbers smaller than the modulus.

@ RSA is not homomorphic in addition!
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Transform addition in counted loops to use multiplication.

for(i=1;i<6;i++)
printf ("HERE\n");

L

for (i=E9(1);i!=E9(32);i=MUL9(i,E9(2))) J

printf ("HERE\n");

o It's easy to transform simple counted for-loops to use
multiplication

@ You never have to deobfuscate the loop variable, unless its
value is used inside the loop.
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Encoding literal data

o Literal data often carries much semantic information:

o "Please enter your password:"
o OxA17BCO7ATESF. . .FF67 (maybe a cryptographic key??7?)
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Encoding literal data

Literal data often carries much semantic information:

o "Please enter your password:"
o OxA17BCO7ATESF. . .FF67 (maybe a cryptographic key??7?)

Split up in pieces.

Xor with a constant.

Avoid ever reconstituting the literal in cleartext! (What about
printf?)

Print each character one at a time?
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Convert literals to code — Mealy machine

@ Encode the strings "MIMI" and "MILA" in a finite state
transducer (a Mealy machine)
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Convert literals to code — Mealy machine

@ Encode the strings "MIMI" and "MILA" in a finite state
transducer (a Mealy machine)

@ The machine takes a bitstring and a state transition table as
input and and generates a string as output.

@ Mealy(10,) produces "MIMI".
® Mealy(1102) produces "MILA".
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Convert literals to code — Mealy machine

(int next [][2] =
{{1,2},
{3,0},

i l::> {3,2}};
char out[][2] =

{ { ‘m? s L } s
{ 140 040 } s
{ ’a’,’b’ }:}.

i/o . . .
@ sy — s; means in state sy on input i transfer to state s; and
produce an o.

® next[state|[input]=next state
® out|state][input]=output
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Mealy machine — table driven

char* mealy(int v) {

char* str=(char*)malloc (10);

int state=0,1len=0;

while (state!=3) {
int input = 1&v; v >>= 1;
str[len++]=out [state] [input];
state = next[state] [input];

}

str[len]="\0";

return str;
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Mealy machine — hardcoded

char* mealy(int v) { )
char* str=(char*)malloc(10);
int state=0,1len=0;
while (1) {
int input = 1&v; v >>= 1;
switch (state) {
case 0: state=(input==0)71:2;
str[len++]=(input==0)7’m’:’1’; break;
case 1: state=(input==0)73:0;
str[len++]=’i’; break;
case 2: state=(input==0)73:2;
str[len++]=(input==0)7’a’:’b’; break;
case 3: str[len]=’\0’; return str;
}
}
}
. J
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Breaking abstractions



Algorithm
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Modifying instruction encodings




Algorithm OBFAJV: Modifying instruction encodings

@ Obfuscate the instruction set architecture!
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Algorithm OBFAJV: Modifying instruction encodings

@ Obfuscate the instruction set architecture!
@ Now, can't run on the bare metal.

@ But, we can run on a virtual machine!
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Algorithm OBFAJV: Modifying instruction encodings

@ Produce diverse programs by generating a unique interpreter
and a unique instruction set for every distributed copy of a
program.
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Algorithm OBFAJV: Modifying instruction encodings

@ Produce diverse programs by generating a unique interpreter
and a unique instruction set for every distributed copy of a
program.

@ Every program should encode instructions differently, and for
this encoding to change at runtime.

@ The attacker will find that the instruction encoding change as
he chooses different execution paths!
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Example code

0

PUSHC 2
PUSHC 5
ADD
PRINT
SWAP O
PUSHC 2
PUSHC 5
ADD
PRINT

EXIT
-

PUSHC c pushes the 3-bit constant c,

ADD adds the two top elements on the stack,

PRINT prints and pops the top element on the stack, and
EXIT stops execution.

SWAP n mean “from here on, the instruction set changes.” n
is the node in the instruction decoding tree.

e © © ¢ ¢
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Instruction decoding tree

SWAP EXIT

@ Internal nodes (pink) point to left and right subtrees,
@ Leaves (blue) contain references to the code that implements
the opcode semantics.
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Instruction decoding tree

SWAP EXIT

@ Internal nodes (pink) point to left and right subtrees,

@ Leaves (blue) contain references to the code that implements
the opcode semantics.

e (0,0,1,1,1,1,0) = PUSHC (0,1,1), PRINT.
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How to diversify?

@ To diversify:
© generate a decoding three
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How to diversify?

@ To diversify:

© generate a decoding three
@ translate each instruction from the original program into the
new encoding.

@ Resulting encoding is variable length!
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Changing encoding at runtime!

@ The SWAP instruction changes the instruction encoding on the
fly, at runtime!
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Changing encoding at runtime!

@ The SWAP instruction changes the instruction encoding on the
fly, at runtime!

@ SWAP n just swaps the children of node n.
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PUSHC

5 ADD

0, 0, 0, i, o, 1, 1, O,
SWAP
1, 1, 0, 0, 0
PUSHC PUSHC 5
= —N— = —_—N—
1, 0, 1, i, o0, 1,
ADD PRINT EXIT
— —_— —
0, 0, 0, o, 1, 1, 1

PRINT



-
class Node{}

class Internal extends Node{
public Node left,right;
public Internal(Node left, Node right) {
this.left = left; this.right=right;
}
public void swap () {
Node tmp = left; left=right; right=tmp;
}
}
class Leaf extends Node {
public int operator;
public Leaf (int operator) {
this.operator=operator;

}




static Node[] tree = new Node[9];
static {

tree[1]=new Leaf (0); // PUSHC
tree[3]=new Leaf (1); // ADD
tree [6]=new Leaf (2); // PRINT
tree [7]=new Leaf (3); // SWAP
tree[8]=new Leaf (4); // EXIT

tree [6]=new Internal (treel[7],tree[8]);
tree[4]=new Internal (tree[5],treel[6]);
tree[2]=new Internal (tree[3],treel[4]);
tree [0]=new Internal (treel[1],treel[2]);




static int progll={0,0,1,0,0,1,0,1,1,0,1,1,0,
1,1,1,0,0,0,0,
1,0,1,0,1,1,0,1,0,0,0,1,0,0,1,1,1%};

> > B > >

> > s H ) 3

static int pc = 0;




-

static int decode() {
Node t = tree[0];
while (t instanceof Internal)
t = (proglpc++]1==0)7((Internal)t).left
:((Internal)t).right;
return ((Leaf)t).operator;
}
static int operand () {
return 4*progl[pc++]+2*xprogl[pc++]+proglpc++];
}




static void interpret () {

int stack/[]

while (true) {

new int[10]; int sp = -1;

switch (decode()) {

case 0

case 1

case 2

case 3

case 4

stack [++spl=operand ();

break; // PUSHC

stack [sp-1]+=stack[spl; sp--;
break; // ADD
System.out.println(stack([sp--1);
break; // PRINT
((Internal)tree[operand ()]).swap();
break; // SWAP

return; // EXIT




Algorithm OBFAJV: Modifying instruction encodings

@ Attack: find the interpreter, ignore the changes to encodings!
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Algorithm OBFAJV: Modifying instruction encodings

@ Attack: find the interpreter, ignore the changes to encodings!
@ Must make sure that every instruction semantics is different.

@ Merge several instructions into new ones with unique and
unknown semantics.

@ The authors of report slowdown factors of between 50 and
3500.
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