Precise Garbage Collection in C

PANKHURI

February 16, 2011

e © 6 6 ¢ ¢ ¢ ¢

Problem Statement.

Precise / Conservative Garbage Collection.
What will Magpie do 7

C semantics and Precise GC.

When will Magpie fail 7

Design and Implementation.

Results.

Conclusion.

GC Algorithms

@ Conservative
@ Numerical Values interpreted as Live Pointers.
o Mistake dead pointers as root leaving objects in heap
indefinitely.
@ Precise
o Requires exact information about whether a given word is a
pointer?
¢ Counts references toward reachability only for words:

@ Whose static type is a pointer type.
@ Variables that are in scope.

C Semantics and Precise GC

@ Pointer Manipulation.

@ Pointer arithmetic.

o Save Pointers?

o Integer == Pointers ? Pointers == Integer
@ Unconverted Libraries.

@ Will functions save refrences?
o callbacks ?

@ Explicit Deallocation.
s->p = unconverted_malloc();

unconverted_free(s->p);
do_some_allocating_work();

What information GC needs?

@ Which words in the heap are root references?
@ Where references exist in each kind of object?
@ What kind of object each object in the heap is?

Input File

Driver .
'g A
5 ¢ o
€ Source .
£ Cleaning Peg?lstent
Simplification ore

Callgraph

Finalization
[) 0
D " D 2 Overloading Garbage Mark/Repair
2, Allocation | > Structure 2 Analysis c Collector 2 Generation
g Analysis g Analysis T © Generation o
e ol
§ Conlgmntlon £ confirmation & P:;f;:': | S MarkRe, palr 5 A‘:::::'Im
2 ul 2 GuI T 4 latd
T = Analysis Consolidation
«] © ¥ Stack
Root
Saving

Collector Output File

Allocation Analysis

@ Determines what kind of object each allocation point creates.

@ Magpie uses this information to tag allocated objects as
having a particular type.
@ This tag is used by mark and repair functions to generate

appropriate traversal functions.

For example, the allocations
p = (int*)malloc(sizeof(int)*n);
a = (int**)malloc(sizeof(int*)*m);

are converted to
p = (int*)GC_malloc(sizeof(int)*n, gc_atomic_tag);
a = (int**)GC_malloc(sizeof(int*)*m, gc_array_tag);

Structure Analysis

@ Determines which words in an object kind are pointers.
@ Magpie uses this information to generate traversal functions.

@ The mark function is used to traverse a structure or array
during the mark phase of a collection.

@ Repair function is used to update pointers when objects are

moved.
Example:
structa { Void gc_mark_struct_a(void*x_) { void gc_repair_struct_a(void*x_) {
int*x; struct a* tmp = (struct a*) x_; struct a* tmp = (struct a*) x_;
int*y; GC_mark(tmp->x); GC_repair(&tmp->x);
)i GC_mark(tmp->y); GC_repair(&tmp->y);
} }

Call graph analysis

@ Generates a conservative approximation of what functions
each function calls.

@ Magpie uses this information to eliminate roots in the local
stack.

Tracking local variables

@ |dentifies the pointers on the stack and communicates to
garbage collector.

@ It performs this communication by generating code to create
shadow stack frames on the C stack.

@ Collector traverses them to find the pointers in the normal C
stack.
@ There are 4 kinds of frame supported by Magpie:

Simple Frame
Array Frame
Tagged Frame
Complex Frame

<

¢ ¢ ¢

Stack Frames

Simple Frames:

Array Frames:

prev. frame

prev. frame

length + bits 00

length + bits 01

var/field address

start address

var/field address

length

var/field address

start address

length

Tagged Frames:

prev. frame

Complex Frames:

length + bits 10

prev. frame

start address

length + bits 11

tag

start address

start address

traverser address

tag

info

info

Example

Example:

// ORIGINAL

int cheeseburger(int* x) {
add_cheese(x);
return x[17];

}

// TRANSFORMED

int cheeseburger(int* x) {
void* gc_stack_frame[3];
/* chain to previous frame: */
void* last_stack_frame = GC_last_stack_frame();
gc_stack_frame[0] = last_stack_frame;
/* number of elements + shape category: */
gc_stack_frame[1] = (1 << 2) + GC_POINTER_TYPE;
/* variable address: */
gc_stack_frame[2] = &x;
/* install frame: */
GC_set_stack_frame(gc_stack_frame);
add_fcheese(x) ;
/* restore old GC frame */
GC_set_stack_frame(last_stack_frame);
return x[17];

Handling Unions

@ When a type contains a union of pointer and non-pointer
types,GC need to follow and update a pointer variant only
when it is active.

@ The active variant of a union is tracked using an extra byte
outside of the object.

@ This byte is set whenever a field of the union is assigned or its
address is taken.

@ Mark and repair functions consult the byte to determine
whether to follow or repair the pointer variant.

union { ai=1; ai=1;

inti; iwork(&a); GC_autotag_union(&a, 0);
int*p; ap-=gq; iwork(&a);

Ja; pwork(&a); ap=q;

GC_autotag_union(&a, 1);
pwork(&a);

Results

Experience with PLT Scheme.
Performance :

450 1) For benchmarks that spend relatively little time

400 conservative

_ precise - collecting, the conservative GC can be up to 20%

g 350 j L
z m faster than precise GC. This is mostly due to the
g 20 / overhead of registering stack-based pointers and

= 200 - other cooperation with the GC.

£ 150 /
“:5)3 /““ """ o 2) Programs that allocate significantly tend to run
0 2 4 6 8 10 12 faster with precise GC, due to its lower allocation
Iterations overhead and faster generational-collection cycles.

Figure 2. Running DrScheme inside DrScheme 3) Thus, the benchmarks illustrate that we pay a

price in base performance when building on a C
infrastructure with precise GC compared to using
conservative GC.

@ Experience with C programs

@ Experience with Linux Kernel.

Conclusion

@ In most cases, Magpie performs within 20 percent (faster or
slower) than the original C code .

@ Requires no more effort than the existing Conservative
collector.

@ Removes memory spikes created by Conservative GC.

