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Abstract 

Watermarking embeds a secret message into a cover mes- 
sage. In media watermarking the secret is usually a copy- 
right notice and the cover a digital image. Watermarking an 
object discourages intellectual property theft, or when such 
theft has occurred, allows us to prove ownership. 

The Software Watermarking problem can be described as 
follows. Embed a structure W into a program P such that: 
W can be reliably located and extracted from P even after 
P has been subjected to code transformations such as trans- 
lation, optimization and obfuscation; W is stealthy; W has 
a high data rate; embedding W into P does not adversely 
affect the performance of P; and W has a mathematical 
property that allows us to argue that its presence in P is 
the result of deliberate actions. 

In the first part of the paper we construct an informal 
taxonomy of software watermarking techniques. In the sec- 
ond part we formalize these results. Finally, we propose a 
new software watermarking technique in which a dynamic 
graphic watermark is stored in the execution state of a pro- 
gram. 

1 Introduction 

Apart from Grover [16] and a few recent US patents [10,21, 
28,331, very little (publicly available) information seems to 
exist on software watermarking in which a copyright notice 
or customer identification number is embedded into a pro- 
gram. This is in contrast to media watermarking which is a 
very active area of research [4,6,22,30]. 

In the present paper we will try to bring together what 
little information does exist in the form of a taxonomy of 
software watermarking techniques, provide a formalization 
of software watermarking, and present new results on dy- 
namic data structure watermarking. 
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1.1 Attacks on Watermarking Systems 

The strength of any steganographic system is a function of 
its data rate, stealth, and resilience. The data rate expresses 
the quantity of hidden data that can be embedded within the 
cover message, the stealth expresses how imperceptible the 
embedded data is to an observer, and the resilience expresses 
the hidden message’s degree of immunity to attack by an 
adverstiy. All steganographic systems exhibit a trade-off 
between these three metrics in that a high data rate implies 
low stealth and resilience. For example, the resilience of a 
watermark can easily be increased by exploiting redundancy 
(i.e. including it several times in the host message) but this 
will result in a reduction in bandwidth. 

To evaluate the quality of a watermarking scheme we 
must also know how well it stands up to diflerent types of 
attacks. In general, no steganographic scheme is immune to 
all attacks, and often several techniques have to be employed 
simultaneously to attain the required degree of resilience. 
In [6] Bender writes about media watermarking: “[] all of 
the proposed methods have limitations. The goal of achiev- 
ing protection of large amounts of embedded data against 
intentional attempts at removal may be unobtainable.” 

To illustrate these concepts we will assume the following 
scenario. Alice watermarks a host object c3 with watermark 
W and key K, and then sells 0 to Bob. Before Bob can sell 
0 on to Douglas he must ensure that the watermark has 
been rendered useless, or else Alice will be able to prove that 
her intellectual property rights have been violated. Figure 1 
shows the three principal kinds of attacks Bob can launch 
against the watermark: 

subtractive attack If Bob can detect the presence and 
(approximate) location of W, he may try to crop it out 
of 0. An effective subtractive attack is one where the 
cropped object has retained enough original content to 
still be of value to Bob. 

distortive attack If Bob cannot locate W and is willing to 
accept some degradation in quality of 0, he can apply 
distortive transformations uniformly over the object 
and, hence, to any watermark it may contain. An effec- 
tive distortive attack is one where Alice can no longer 
detect the degraded watermark, but the degraded ob- 
ject still has value to Bob. 

additive attack Finally, Bob can augment 0 by inserting 
his own watermark W’ (or several such marks). An 
effective additive attack is one in which Bob’s mark 
completely overrides Alice’s original mark so that it 
can no longer be extracted, or where it is impossible to 
detect that Alice’s mark temporally precedes Bob%. 
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(a) At @ Alice creates a watermarked object O’, by adding watermark W using key K: to her original 

object 0. At @ Bob steals a copy of 0’ and Charles extracts its watermark using K: to show that 
0’ is owned by Alice. 

(b) @ shows an effective subtractive attack, where Bob successfully removes W from 0’. @ shows 
an effective additive attack, where Bob adds new watermarks WI and Ws to make it hard for 
Charles to prove that W is Alice’s original watermark. @ shows an effective distortiwe attack, 
where Bob transforms 0’ (and W) to make it difficult for Charles to detect or extract W. At @ 
Charles attempts to extract W from the distorted object, and either fails completely or gets a 
distorted watermark. 

Alice Bob 

(c) At @I Alice adds tamperproofing 7 to her watermark. @ shows an ineffective subtractive attack, 
where Bob tries to remove W from 0”, but, due to the tamper-proofing, 0”’ is rendered useless. 

(d) At @ Alice creates several versions of 0, each with a different fingerprint (serial-number) 7. @ 
shows a collusive attack, where Bob is able to remove the fingerprint by comparing Or, 02, and 0s. 

Figure 1: Attacks on watermarks and counter-measures against such attacks. 
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Alice might, in some cases, be able to tamperproofher ob- 
ject against attacks from Bob. Tamperproofing is any tech- 
nique used by Alice specifically to render de-watermarking 
attacks ineffective. 

Most media watermarking schemes seem vulnerable to 
attack by distortion. For example, image transforms (such 
as cropping and lossy compression) will distort an image 
enough to render many watermarks unrecoverable [4,30]. 

1.2 Attacks on Fingerprinting Systems 

Fingerprinting is similar to watermarking, except a different 
secret message is embedded in every distributed cover mes- 
sage. This may allow us not only to detect when theft has 
occurred, but also to trace the copyright violator. A typi- 
cal fingerprint would include vendor, product, and customer 
identification numbers. 

Fingerprinting objects makes them vulnerable to collu- 
sion attacks. As shown in Figure l(d), an adversary might 
attempt to gain access to several fingerprinted copies of an 
object, compare them to determine the location of the fin- 
gerprints, and, as a result, be able to reconstruct the original 
object. 

1.3 Software Watermarking 

Our interest is the watermarking and fingerprinting of soft- 
ware. Although much has been written about protection 
against software piracy [2,18-20,26,27,34], software water- 
marking is an area that has received very little attention. 
This is unfortunate since software piracy is estimated to be 
a 15 billion dollar per year business [3,24,25,35]. 

There are three main issues at stake when designing a 
software watermarking technique: 

required data rate How large is the watermark or finger- 
print compared to the size of the program? 

form of cover program Will the program be distributed 
in a typed architecture-neutral virtual machine code or 
an untyped native binary code? 

expected threat-model What kinds of de-watermarking 
attacks can we expect from Bob? 

There are also logistic issues that need to be addressed. For 
example, how do we generate and distribute a large number 
of uniquely fingerprinted programs, and how do we handle 
bug-reports for these? This paper will ignore such compli- 
cations. 

In this paper we will assume that Alice’s object 0 is 
an application distributed to Bob as a collection of Java 
class files. As we shall see, watermarking Java class files 
is at the same time easier and harder than watermarking 
stripped native object code. It is harder because class files 
are simple for an adversary to decompile [32] and analyze. 
It is easier because Java’s strong typing allows us to rely on 
the integrity of heap-allocated data structures. 

We will furthermore assume that a watermark or finger- 
print can be encoded in no more than a thousand bits. Much 
smaller fingerprints will be sufficient in many cases. A 64-bit 
fingerprint, for example, would allow us to encode a 32-bit 
customer number, and 16 bits each of vendor and product 
identification. 

Finally, we will assume a threat-model consisting pri- 
marily of distortive attacks, in the form of various types 
of semantics-preserving code transformations. Ideally, we 
would like our watermarks to survive translation (such as 

compilation, decompilation, and binary translation [12]), op- 
timization, and obfuscation [7-91. 

Based on these assumptions, we will examine various 
software watermarking techniques and attempt to answer 
the following questions: 

In what kind of language structure should the water- 
mark be embedded? 

How do we extract the watermark and prove that it is 
ours? 

How do we prevent Bob from distorting the watermark? 

How does the watermark affect the performance of the 
program? 

The remainder of the paper is structured as follows. In 
Section 2 we discuss static watermarking, in which marks 
are stored directly into the data or code sections of a native 
executable or class file. In Section 3 we turn to dynamic 
watermarking, in which marks are stored in the run-time 
structures of a program. In Section 4 we construct a formal 
model of software watermarking. In Section 5 we present a 
new dynamic watermarking technique that encodes water- 
marks in dynamic linked data structures. We show that this 
method, when properly tamperproofed, is resilient against 
many types of distortive de-watermarking attacks. In Sec- 
tion 6 we discuss the implications of our results and in Sec- 
tion 7 we summarize. 

2 Static Software Watermarking 

Static watermarks are stored in the application executable 
itself. In a Unix environment this is typically within the 
initialized data section (where static strings are stored), the 
text section (executable code), or the symbol section (de- 
bugging information) of the executable. In the case of Java, 
information could be hidden in any of the many sections of 
the class file format: constant pool table, method table, line 
number table, etc. 

In our software watermark taxonomy we will distinguish 
between two basic types of static watermarks (see Figure 2): 
code watermarks which are stored in the section of the ex- 
ecutable that contains instructions, and data watermarks 
which are stored in any other section, including headers, 
string sections, debugging information sections, etc. 

2.1 Static Data Watermarks 

Data watermarks (Figure 2 0) are very common since they 
are easy to construct and recognize. For example, the JPEG 
group’s copyright notice can be easily extracted from the 
Netscape binary: 

> strings /usr/local/bin/netscape I \ 
grep -i copyright 

Copyright (C> 1995, Thomas C. Lane 

Moskowitz [28] describes a data watermarking method in 
which the watermark is embedded in an image (or other 
digital media such as audio or video) using one of the many 
media watermarking algorithms. This image is then stored 
in the static data section of the program. 

Unfortunately, static data watermarks are highly suscep- 
tible to distortive attacks by obfuscation. In the simplest 
case, an automatic obfuscator might break up all strings 
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char V; 
switch e { 

case 1 : v = ‘C’ 
case 5 : IJ = ‘0’ 
case 6 : v = ‘p’ 
case 8 : v = ‘y’ 
case 9 : v = ‘R’ 

. . . . . . 

if Input == Z ( 
DisplaylTeamPic) 

0' String V; 
if Input == Z { 

V[ll='C'; V[3]='P'; 

V[Zl='O'; V[4]='Y'; 

V[61='1'; V[5]='R'; 
. . . . . . . 

push 'C' 
. . . . 
push '0' 

push 'P' 
. . . . 
push 'Y' 

push 'R' 
. . . . 

Figure 2: Static (0 and 0) and dynamic (0, @ and 0) watermarks. In @ Alice embeds a watermark in the initialized 
data (string) section of her program. In @ the watermark is embedded in the text (code) section of the program. In @ the 
watermark is embedded in the unexpected behavior (an “Easter Egg”) of the program when it is run with input Z. In @ the 
watermark gets embedded in a global variable V when the program is run with input 1. In @ the watermark is embedded in 
the execution trace when the program is run with input 1. 

(and other static data) into substrings which are then scat- 
tered over the executable. This makes watermark recogni- 
tion nearly impossible. 

An even more sophisticated de-watermarking attack is 
to convert all static data into a program that produces the 
data [8]. 

2.2 Code Watermarks 

Media watermarks are commonly embedded in redundant 
bits, bits which we cannot detect due to the imperfection 
of our human perception. Code watermarks can be con- 
structed in a similar way, since object code also contains 
redundant information. For example, if there are no data or 
control dependencies between two adjacent statements Si 
and Ss, they can be flipped in either order. A watermark- 
ing bit could then be encoded in whether Si and SZ are in 
lexicographic order or not. 

There are many variations of this technique. When liti- 
gating against software pirates who had copied their PC-AT 
ROM, IBM [13] argued that the order in which registers were 
pushed and popped constituted a signature of their software. 
Similarly, by reordering the branches of an m-branch case- 
statement we can encode log,(m!) ZZ. log,(&$m/e)“‘) = 
O(m log m) watermarking bits. 

Davidson [lo] describes a similar code watermark in 
which a software serial number is encoded in the basic block 
sequence of a program’s control flow graphs. 

Many code watermarks are susceptible to simple dis- 
tortive de-watermarking attacks. For example, Davidson’s 
method is easily destroyed by many locality-improving opti- 
mizations, such as described in Davidson [ll]. This method 
also provides no protection against additive attacks; if we 
reorganize the basic block structure to encode our own wa- 
termark it is clear the original watermark can no longer be 

retrieved. 
Many code obfuscation techniques [8,9] will also success- 

fully thwart the recognition of code watermarks. For exam- 
ple, Davidson’s method relies on one being able to reliably 
recognize the individual basic blocks of a control flow graph. 
But, it is easy to break up a basic block by inserting an 
opaquely true predicated branch: 

void PO { void PO { 
s1; s1; 

sz; 

s3; s s3; 

if VT> SZ; 

. . . . . . 

1 1 

The construction of strong opaque predicates is discussed 
in [9]. 

2.3 Tamperproofing Static Watermarks 

Our experience with obfuscation tells us that all static struc- 
tures of a program can be successfully scrambled by obfus- 
cating transformations. And, in cases where obfuscation 
is deemed too expensive, inlining and outlining [8], various 
forms of loop transformations [5] and code motion are all 
well-known optimization techniques that will easily destroy 
static code watermarks. 

Moskowitz [28] describes how their software watermark- 
ing method (which embeds the watermark within an image 
included with the application) can be tamperproofed. The 
idea is to also embed an “essential” piece of code within the 
image. This code is occasionally extracted and executed, 
making the program fail if the image (and hence the water- 
mark) has been tampered with. Unfortunately, generating 
and executing code on the fly is unusual and unstealthy be- 
havior for most applications. 
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A further complication is the difficulty of tamperproofing 
code watermarks against these types of semantics-preserving 
transformations. This is particularly true in Java, since, 
for security reasons, Java programs are not able to in- 
spect their own code. In other words, in Java we can- 
not write ‘if (instruction #99 ! = “add”) die ()l. Even 
in languages like C where this is possible, such code would 
be highly unusual (since it examines the code rather than 
the data segment of the executing program) and unstealthy. 

As a result, in spite of their simplicity and popularity, 
we believe static watermarks to be inherently flawed. 

3 Dynamic Software Watermarking 

As we have seen, static watermarks suffer from being eas- 
ily attacked by semantics-preserving transformations. We 
therefore now turn to dynamic watermarks which have re- 
ceived even less attention than static ones. Dynamic wa- 
termarks are stored in a program’s execution state, rather 
than in the program code itself. As we shall see, this makes 
(some of) them easier to tamperproof against obfuscating 
transformations. 

There are three kinds of dynamic watermarks. In each 
case, the application 0 is run with a predetermined input 
sequence Z=Zi...Zk which makes the application enter a 
state which represents the watermark. The methods differ 
in which part of the program state the watermark is stored, 
and in the way it is extracted. 

In our taxonomy we will distinguish between three dy- 
namic watermarking techniques (see Figure 2): Easter Egg 
Watermarks, Data Structure Watermarks, and Ex- 
ecution Trace Watermarks. While Easter Egg water- 
marks are very popular [29], there seem to be no published 
accounts of data structure or execution trace watermarks. 

3.1 Easter Egg Watermark 

Figure 2 @ shows a watermark encoded in an Easter Egg, a 
piece of code that gets activated for a highly unusual input to 
the application. The defining characteristic of an Easter Egg 
watermark is that it performs some action that is immedi- 
ately perceptible by the user, making watermark extraction 
trivial. Typically, the code will display a copyright message 
or an unexpected image on the screen. For example, enter- 
ing the URL ‘about :mozills? in N8tSCap8 4.0 will make a 
fire-breathing creature appear [29]. 

The main problem with Easter Egg watermarks is that 
they seem to be easy to locate. There are even several web- 
site repositories of such watermarks. Unless the effects of the 
Easter Egg are really subtle (in which case it will be hard to 
argue that they indeed constitute a watermark and are not 
the consequence of bugs or random programmer choices), 
it is often immediately clear when a watermark has been 
found. Once the right input sequence has been discovered, 
standard debugging techniques will allow us to trace the 
location of the watermark in the executable and then remove 
or disable it completely. 

3.2 Dynamic Data Structure Watermark 

Figure 2 @ shows a watermark being embedded within the 
state (global, heap, and stack data, etc.) of a program 0 as 
it is being run with a particular input 1. The watermark is 
extracted by examining the current values held in O’s vari- 
ables, after the end of the input sequence has been reached. 

This can be done using either a dedicated watermark extrac- 
tion routine which is linked in with the executing program, 
or by running the program under a debugger. 

Data structure watermarks have some nice properties. 
In particular, since no output is ever produced it is not im- 
mediately evident to an adversary when the special input 
sequence Z has been entered. This is in contrast to Easter 
Egg watermarks, where, at least in theory, it would be pos- 
sible to generate input sequences at random and wait for 
some “unexpected” output to be produced. Furthermore, 
since the recognition routine is not shipped within the ap- 
plication (it is linked in during watermark extraction), there 
is little information in the executable itself as to where the 
watermark may be located. 

Unfortunately, data structure watermarks are also sus- 
ceptible to attacks by obfuscation. Several obfuscating 
transformations have been devised which will effectively de- 
stroy the dynamic state and make watermark recognition 
impossible. In [8] we show how one variable can be split into 
several variables. This transformation requires us to provide 
functions f and f -’ for converting between the original and 
the split data representations, and functions gcB that imple- 
ment any built-in operator @ on the new split representa- 
tion: 

main0 { main0 { 

T z,y.z; 
x te; 
... t x; 

& 

Tl xl,x2.yl,y2.zl,z2; 
x1,x2 + fkE{1,2}(e)i 

. . . t f_‘(xl,x2); 
x t y@z; x1,x2 t g@(yl, y2,zl,z2); 

] . 1 

For example, to split a boolean variable x into two short 
variables (xl, x2) we let T=bool, Tl=short, True = (0,l) or 
(l,O), and False = (0,O) or (1,l). We furthermore have 
to provide new implementations of any built-in operators: 

(short .short) fr (boo1 x)={return x?(O, 1): (O,O)} 
(short ,short) f2 (boo1 x)={return x?(l, 0): (1,l)) 
boo1 f-‘(short xl,x2)={return xl*x2==1} 
(short, short) g ‘&(short xl,x2.yl.y2)={ 

return ((xl~x2)&(yl~y2>~,0)}. 

In a similar manner, several variables can be merged into 
one. We have to provide functions fk and f;’ to insert 
and extract the original variable k from the merged data 
representation, and functions gf that implement any built- 
in operator @ on variable k in the new representation: 

main0 { main0 { 

T y.z; Tl z; 
x f-e; 

-K 
z t f,(z,e); 

y&e; -7 z + fdz,e); 
... t x; . . . t f-‘(z); 
x +-x$c; z + g.$(z,c) ; 

1 1 

For example, to merge two 32-bit x and y integers into a 
64-bit integer z we let T=unsigned int32 and Tl=unsigned 
int64, and provide new implementations of the built-in op- 
erators on the merged type: 

Tl f,(Tl z, T x)=(return z&FFFFFFFFOOOOOOOOrelx} 
T1 fr(T1 z. T y)={return y<<32 I z&FFFFFFFFis} 
T f.J’(Tl z)={return z&FFFFFFFFrs} 
T G1(T1 z)={return z>>32} 
Tl gz(Tl z, T c)={return f=(z,c* f:‘(z))) 

Other transformations will merge or split arrays, modify 
the inheritance hierarchy of an object oriented program, etc. 
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3.3 Dynamic Execution Trace Watermark 4.1 Watermark Recognition 

In Figure 2 0 a watermark is embedded within the trace 
(either instructions or addresses, or both) of the program as 
it is being run with a particular input 1. The watermark 
is extracted by monitoring some (possibly statistical) prop- 
erty of the address trace and/or the sequence of operators 
executed. 

The obfuscating transformations that we have already 
presented, as well as many optimizing and translating trans- 
formations, will effectively obliterate any structure embed- 
ded in an instruction trace. An even more potent, and 
more expensive, transformation is to convert a section of 
code (Java bytecode in our case) into a d$j%rent virtual ma- 
chine code. The new code is then executed by a virtual 
machine interpreter (included with the obfuscated applica- 
tion) which is specialized to handle this particular virtual 
machine code? 

void PO { 

The resilience of a watermark w in a program P,,, will be 
defined in terms of the de-watermarking attacks that can be 
launched against P,. Attacks are program transformations 
that can be semantics-preserving (if they preserve input- 
output behavior), state-preserving (if internal state is pre- 
served), or cropping (if input-output behavior is not pre- 
served). 

DEFINITION 3 (PROGRAM TRANSFORMATIONS) Let T be 
the set of transformations from programs to programs. 

T 88rn C T is the set of semantics-preserving transforma- 
tions, T,t,t C % is the set of state-preserving transforma- 
tions, and TCrcrop c T is the set of transformations which do 
not preserve semantics: 

void PO { 
s1; 

sz ; 

S,; , 

Stack S; sp t 0; pc to; 
C t (oPs,oPB,oP1,...); 
for(; ;> 

switch C[pc++] of { 

OPl : Top, ; break; 

OP2 : Top,; break; 
. . . 

T Sem = {t : T 1 P E P,I E dam(P), 
dam(P) = dom(t(P)), 
out(P, I) = out(t(P), I)}. 

T stat = {t : T 1 P E P,I E dam(P), 
S(P, I) = W(P),I)). 

T crop = {t : ‘II’ / 3P E P,31 E dam(P), 
(1 G dom(t(P))v 
out(P, 0 # out(V?, I))). 

0 

While the behavior of the the new virtual machine running 
the obfuscated program will be the same as the original pro- 
gram, i.e. 

the execution trace will be completely different. In most 
cases this will not be a practical attack because of the extra 
overhead of interpretation. 

4 A Formal Model of Software Watermarking 

In the next section we will be constructing new techniques 
which are resilient to a variety of semantics-preserving de- 
watermarking attacks. Before we do so we will formalize 
our notion of a watermark and what it means to recognize a 
watermark in a program. 

In order to be able to legally argue ownership of a water- 
marked program, we must be able to show that our recog- 
nition of the watermark is not a chance occurrence: 

DEFINITION 1 (SOFTWARE WATERMARK) Let W be a set of 
mathematical structures, and p a predicate such that VW E 
W : p(w). We choose p and W such that the probability of 
p(z) for a random z e W is small. 0 

As we have seen, watermarks can be embedded both in 
the program text and in the state of the program as it is run 
with a particular set of inputs. Furthermore, attacks can be 
launched both on the program text and the state. 

DEFINITION 2 (PROGRAMS) Let P be the set of programs. 
P, is an embedding of a watermark w E W into P E P. 

Let dam(P) be the set of input sequences accepted by P. 
Let out(P, I) be the output of P on input 1. 

Let S(P,I) be the internal state of program P (drawn 
from a set of states S) after having processed input I. Let 
IS(P, I)1 be the size of this state, in accessible words. 0 

‘This technique is similar to Proebsting’s superoperators [31]. 

State-preservation implies semantics-preservation but many 
transformations (such as code optimizing transformations) 
will preserve semantics but not state, i.e. T,t,t C ‘IT,,,. 

In [30] Peticolas writes: “the problem [with watermark- 
ing] is not so much inserting the marks as recognizing them 
afterwards”. Hence, the strength of a watermark is defined 
with respect to the set of transformations under which the 
watermark can be recognized: 

DEFINITION 4 (WATERMARK RECOGNITION) A watermark 
w E W in a program P,,, E IF’ is recognizable wrt a set of 
transformations T C T if there exists a recognizer 

RT:(PxS)+W 

and an input I such that 

Vt E 2’ : p(RT(t(Pw), S(t(Pw), I))) = P(W). 

0 

This definition allows us to distinguish several useful sub- 
classes of recognizers: 

l RQ (Pw , S(P,,, , I)) is a trivial recognizer that is not guar- 
anteed to recognize w if any transformations have been 
performed on P,,, . 

7&,,, (Pw , S(P,,, , I)) is a strong recognizer that is re- 
silient to any semantics-preserving transformation. 

RT( P, , S( P,,, , I)) is an ideal recognizer that is resilient 
to any transformation. 

R,T(P,, 0) is a static recognizer that can only examine 
the text of Pw, not its execution state. 

RT(@, S(P,,,, I)) is a pure dynamic recognizer that can 
only examine the execution state of Pw, not its text. 
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4.2 Watermark Resilience 4.4 Watermark Data Rate 

We are particularly interested in evaluating the strength of a 
watermark written dynamically into the state of a program. 
Such watermarks may be attacked by adversaries who write 
other information into the state. If the watermark can only 
be obliterated by adversaries that increase the size of the 
program’s dynamic state by a factor T, then we say the wa- 
termark is r-space resilient: 

It is essential that the watermark encodes as much infor- 
mation as possible, while at the same time not increasing 
the size of the program text or the working set size of the 
executing program. 

DEFINITION 5 (WATERMARK T-SPACE RESILIENCE) A wa- 
termark w E W in a program program P, is r-space re- 
silient wrt a set of transformations T c T if there exists a 
recognizer RT and an input I such that 

DEFINITION 9 (WATERMARK CODING EFFICIENCY) 
H(w) = log, [WI is the entropy of w, in bits, when w is 
drawn with uniform probability from W. 

Let IPI, P E P be the size (in words) of P as expressed 
in some encoding. 

Let IS( = maxredom(P) IS(P,I)I be the least upper 
bound on the size of P’s internal state. 

An embedding of P, of w in P has a high static data rate 
if \Jt E T : (p(RT(t(Pw), S(t(Pw),I))) #P(W)) * 

Note that any l-space resilient watermark has a strong 
recognizer. However, if r > 1, our parameter r is a measure 
of the weakness of the watermarking system. 

H(w) 
max(l,lP,l - [PI) ’ ” 

An embedding P, of w in P has a high dynamic data 
rate if 

H(w) 
max(l, IS( - IS(P ’ ” 

cl 

Some watermarks that are written-in the program text 
or static data are susceptible to attacks that increase the 
static size of the code: 

Note that data rate is measured in “hidden bits” per “extra” 
word added in the watermarking process. 

DEFINITION 6 (WATERMARK T-SIZE RESILIENCE) A water- 
mark w E W in a program program P, is r-size resilient wrt 
a set of transformations T c % if there exists a recognizer 
RT and an input I such that 

vt E T : (P(RT(t(Pw), s(t(p~~),I))) #P(W)) * 

Ww)l 
IPWI Lr 

0 

Finally, many attacks on a watermarked program P, will 
increase its runtime; however if the runtime is increased too 
much (for at least one input in the domain of P) then the 
attack is not particularly worrisome: 

DEFINITION 7 (WATERMARK r-RUNTIME RESILIENCE) A 
watermark w E W in a program P, is r-runtime resilient 
wrt a set of transformations T C T if there exists a 
recognizer & and an input I such that 

Vt E T : (P(RT(t(Pw),S(Pw 1))) # P(W)) * 

3i E dom(P) Time(W’w), i) , r 
Time(P,, i) - 

0 

4.3 Watermark Stealth 

Certain types of watermarks are vulnerable to attack by sta- 
tistical analysis. If the static or dynamic instruction mix of 
P, is radically different from what one would expect from a 
program of Pw’s type, we may suspect that the watermark 
might be hidden in the more frequently occurring instruc- 
tions. 

DEFINITION 8 (WATERMARK STEALTH) A watermark w is 
statically stealthy for program P wrt statistical measure M, 
if M(P) - M(P,) is insignificant. 

Similarly, a watermark w is dynamically stealthy if 
M(S(P, I)) - M(S(P,, I)) is insignificant. 0 

5 Dynamic Graph Watermarking 

As we have seen from the previous discussion, all soft- 
ware watermarking techniques (with the exception of Easter 
Egg watermarks) are susceptible to distortive attacks by 
semantics-preserving transformations. This is similar to the 
situation in media watermarking. 

In this section we will discuss, in detail, new techniques 
for embedding software watermarks in dynamic data struc- 
tures. It is our belief that these techniques are the most 
promising for withstanding distortive de-watermarking at- 
tacks. In particular, we will see that it is possible to ex- 
actly describe the types of attacks that are possible against 
this method, and devise counter-measures that will protect 
against reasonable levels of attack. 

5.1 Overview 

The central idea of Dynamic Graph Watermarking is to em- 
bed a watermark in the topology of a dynamically built graph 
structure. Because of pointer abasing effects, code which 
manipulates dynamic graph structures is hard to analyze. 
As a result, semantics-preserving transformations that make 
fundamental changes to a graph will be hard to construct. 
Moreover, it is easier to tamperproof such structures than 
tamperproofing code or scalar data. 

Figure 3 illustrates our technique. The signature prop- 
erty p(w) we propose to embed in a graph-watermark w is 
that the topology of the graph represents the product n of 
two large primes P and Q. To prove the legal origin of P,, 
the recognizer extracts n from P,, and factors n. A sim- 
ilar signature property based on public-key cryptography 
has been proposed by Samson [33] for a static watermarking 
scheme. Obviously, p(w) can be based on other hard graph 
problems, such as the lattice problems described in [1,14]. 

As always, the main problem of watermarking is recog- 
nizing and extracting the mark. To extract w from P, our 
recognizer RT(@, S(P,, I)) will primarily examine the run- 
time object heap as the program is being run with the water- 
mark key input sequence I. When the end of this sequence 
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P t prime0 

Q t prime0 
ntPxQ 

(a) At 0, Alice selects n, the product of two large primes P and Q. At 0, n is embedded in the topology of a graph G. 
At 0, a program W which builds G is constructed. 

if (Tampered(W)) if (Tampered( 

(b) At 0, W is embedded into the original program 0, such that when 00 is run with Z as input, G is built. Also, 
a recognizer R which can identify G on the heap, is constructed. At 0, tamperproofing is added, to prevent de- 
watermarking attacks. At 0, the application (including the watermark, tamperproofing code, and recognizer) is 
obfuscated to prevent attacks by pattern-matching. 

if (Tampered( if (Tampered( 

PxQ=n 
3 

0 n 

a z 

(c) At 0, the recognizer is removed from the application to make 03, the version of 0 that Alice sells. At 0, Charles 
links in ‘R with 03. At 0, 04 is run with Z as input, and the recognizer ‘R produces n. Charles proves ownership of 
03 by factoring n. 

Figure 3: Overview of proposed dynamic graph watermarking scheme. 

is reached we know that one of the (possibly many) linked 
object structures on the heap will represent w. The main 
difficulty will be to recognize our graph out of the many 
other structures on the heap. In the next few sections we 
will discuss this and other issues in more detail. 

5.2 Embedding the Watermark 

In this section we show two ways of embedding a number 
n in the topology of a graph G. There are obviously many 
ways of doing this, and, in fact, a watermarking tool should 
have a library of many such techniques to choose from to 
prevent attacks by pattern-matching. 

5.2.1 Radix-k Encoding 

Figure 4(a) illustrates a Radix-k encoding in a circular 
linked list. An extra pointer field encodes a base-k digit 

in the length of the path from the node back to itself. A 
null-pointer encodes a 0, a self-pointer a 1, a pointer to the 
next node encodes a 2, etc. 

A list of length m can encode any integer in the range 
0.. . (m + l)m - 1. The list requires 2m + 1 extra words, if 
we assume no overhead heap cells. The dynamic bit-rate is 
log,(m + 1)“/(2m + 1) M (log, m)/2. For m = 255 we can 
hide 255 x 8 = 2040 bits in 511 words of storage, or 4 hidden 
bits per word. 

The static data rate is harder to determine, since this 
will depend heavily on the encoding. As an example, we will 
consider Java bytecode. Allocating a node and initializing 
two pointer fields requires a 24-byte bytecode sequence. To 
hide a 2040-bit watermark we build a 255-element list which 
requires 24 x 255 = 6120 bytes of straight-line bytecode, for 
a static bit-rate of 0.33 hidden bits per byte. 
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(a) Radix-6 encoding. The right pointer 
field holds the next field, the left 
pointer encodes a base-k digit. 

(b) Enumeration encoding. These 
are the lst, 2nd, 22nd, and 48th 
trees in an enumeration of the ori- 
ented trees with seven vertices. 

Figure 4: Graphic embeddings of watermarks. 

(c) Enumeration encoding in a 
planted plane cubic tree on 
2m = 8 nodes. 

5.2.2 Enumeration Encoding 

Our second embedding method uses results from graph enu- 
meration [17]. The idea is to let the watermark number n 
be represented by the index of the watermark graph G in 
some convenient enumeration. This requires us to be able 
to 

1. given n, generate the n:th graph in the enumeration, 
and 

2. given G, extract its index n in the enumeration. 

Both operations must be efficient, since we expect n to be 
large. This rules out many classes of graphs due to the 
intractability of sub-graph isomorphism. 

Several restricted classes of graphs allow efficient enu- 
meration and indexing. For example, we can let G be an ori- 
ented “parent-pointer” tree, in which case it is enumerable 
by the techniques described in Knuth [23, Section 2.3.4.41. 

The number a, of oriented trees with m nodes is 
asymptotically a, = c(l/c~y)~-l/n~/~ + 0((l/(r)“/n5’2) for 
c M 0.44 and l/o = 2.956. Thus we can encode an ar- 
bitrary 1024-bit integer n in a graphic watermark with 
1024/lag, 2.956 z 655 extra words. This is a dynamic bit- 
rate of 1024/1.56 z 1.56 hidden bits per word.2 

We construct an index n for any enumerable graph in 
the usual way, that is, by ordering the operations in the 
enumeration. For example, we might index the m-node trees 
in “largest subtree first” order, in which case the path of 
length m - 1 would be assigned index 1. Indices 2 through 
a,,,_1 would be assigned to the other trees in which there is a 
single subtree connected to the root node. Indices a,-1 + 1 
through a,,,_1 + a,,,_2 would be assigned to the trees with 
exactly two subtrees connected to the root node, such that 
one of the subtrees has exactly m - 2 nodes. The next 
a,,,_3az = a,,,_3 indices would be assigned to trees with 
exactly two subtrees connected to the root node, such that 
one of the subtrees has exactly m - 3 nodes. See Figure 4(b) 
for an example. 

‘This assumes that the graph is stored on an untraced heap. In 
languages with only traced heaps extra pointers will be necessary to 
avoid leaves being collected. 

5.3 Recognizing the Watermark 

In Figure 3(b) we select the length k of the input sequence Z 
and separate G into k components, Gi .. . Gk. The code to 
build these components, WI . . ’ Wh, is then inserted into the 
application, such that when the end of the input sequence 
Z=Zr . . ‘& is reached, all graph components have been built 
and assembled into the complete watermark (Figure 5(a)). 

It might seem that in order to identify G we would need 
to examine all reachable heap objects, which, of course, 
would be intractable. In fact, Figure 5(b) shows that we 
can do better than that. If we assume that G has a dis- 
tinguished node (this is the case of the embeddings in the 
previous section), and this root node is part of Gk, we only 
have to examine the nodes built during the processing of zk. 

5.4 Attacks Against the Watermark 

One nice consequence of our approach is that the translat- 
ing, optimizing, and obfuscating transformations discussed 
in Sections 2 and 3 will have no effect on the heap-allocated 
structures that are being built. There are, however, other 
techniques which can obfuscate dynamic data, particularly 
for languages with typed object code, like Java. There are 
four types of obfuscating transformations that we will need 
to tamperproof against. An adversary can 

add extra pointers to the nodes of linked structures 
(Figure 6(a)). This will make it hard for the recognizer 
to identify the real graph edges within a lot of extra 
bogus pointer fields. 

rename and reorder the fields in the node, again making 
it hard to recognize the real watermark (Figure 6(b)). 

add levels of indirection, for example by splitting nodes 
into several linked parts (Figure 6(c)). 

add extra bogus nodes pointing into our graph, pre- 
venting us from finding the root. 

Figure 6(d) illustrates a combination of such attacks. 
With the exception of renaming and reordering, these at- 

tacks can have some very serious consequences for the mem- 
ory requirement of an adversary’s de-watermarked program. 
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if (input = 11) G1 = .“; 
if (input = 12) Gz = ...; 
if (input = Zs> Gs = Gz CB G3 ; 

. . . . . . 

if (input = &> G = G1 @ G3 $ ‘..; 

(a) Code to build the watermark graph. Each input in the (b) The complete watermark graph and its components. 
key sequence builds one graph component. After zk The root node (colored black) is built during pro- 
has been processed, the entire graph has been built. cessing of the last key input, 1,. 

Figure 5: Building and recognizing the watermark graph. 

For example, splitting a node costs one pointer cell plus the 
usual object overhead (2-3 words in Java). Furthermore, 
since we are assuming that an adversary will not know in 
which dynamic structure our watermark is hidden, he is go- 
ing to have to apply the transformations uniformly over the 
entire program in order to be certain the watermark has 
been obliterated. In other words, programs with high allo- 
cation rate are likely to be resilient to these types of attacks, 
since the de-watermarked program will have a much higher 
memory requirement than the original one. 

5.5 Tamperproofing the Watermark 

A variety of techniques can be used to protect the water- 
mark graph against attack. The most attractive methods 
are those where the structure of the graph itself renders cer- 
tain types of attacks ineffective. The parent-pointer repre- 
sentation of Figure 4(b), for example, is resilient to renaming 
and reordering attacks since each node only has one pointer. 
Figure 7 shows another representation which, at the expense 
of a lower data rate, will increase a graphic watermark’s re- 
silience to node-splitting attacks. 

5.5.1 Tamperproofing by Reflection 

The reflection capabilities of Java (and other languages like 
Modula-3 and Icon) give us a simple way of tamperproofing 
a graph watermark against many types of attack. Assume 
that we have a graph node Node: 

class Node {public int a; public Node car, cdr;} 

Then the Java reflection class lets us check the integrity of 
this type at runtime: 

Field[] F = Node.class.getFields.0; 
if (F.length != 3) die(); 
if (FL11 .getType() != Node.class) die0; 

To prevent reordering and renaming attacks we can ac- 
cess watermark pointers through reflection. For example, 
rather than Q. car=V’, we let car be represented by the first 
relevant pointer in the node 0: 

Field[] F = Node.class.getFields(); 
int n=O; 
for(int i=O; i<F.length; i++) 

if (F[il.getTypeO.isAssignableFrom(Node.class)) 
{ F[il.set(O. V); break; } 

Obviously, this type of code is unstealthy in a program that 
does not otherwise use reflection. 

5.5.2 Cropping Attacks 

So far, we have assumed that all attacks preserve the se- 
mantics of P,,, . This is reasonable, since if the adversary has 
no knowledge of the location of w his only hope is to ap- 
ply semantics-preserving transformations uniformly over all 
of P,. If, however, the adversary can locate the code that 
builds the watermarking graph G, he can easily destroy it by 
adding extra nodes or edges. To thwart this kind of attack, 
P, should occasionally check the integrity of G. 

For example, consider the class G, of planted plane cubic 
trees on m leaf nodes ~1,212,. . . , w,, as enumerated in [15] 
and illustrated in Figure 4(c). Such trees have m-l internal 
nodes and one root node vc, so there are 2m nodes in each 
w E G,. We would represent w by using 2m objects, where 
each object holds two pointers 1 and r; this data structure 
requires 4m words. A leaf node v; is recognizable by its 
self-loop r(‘ui) = 21;. The root node ue can be found from 
any leaf node by following Z-links. Furthermore, the leaf 
node indices are discoverable by following an m-cycle on l- 
links: Z(ui) = u(i+r) mod *. This watermark has a bit-rate 
of (log, ]{w : w E G,}1)/4m M (2m - 1.51og, m)/4m = 0.5. 
The planarity restriction may be tested for each internal 
node z by confirming that the left-most child of z’s right 
subtree is l-linked to the right-most child of its left subtree. 

6 Discussion 

Because software watermarking is a new field, many funda- 
mental issues have yet to be resolved. From a practical point 
of view, the most important question is what constitutes a 
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class T { 
int a; 
T car; 
T cdr; 

1 

class T { 
int a; 
T car; 
T bogusl; 
T cdr; 
T bogus2; 

1 

(a) Add bogus pointer fields to all nodes of type T. 

class T { 
int a; 
T car; 
T cdr; 

1 

(b) Rename and reorder fields in all nodes of type T. 

class T { 
int a; 

class T { Tl bogus; 

int a; 
T car; 
T cdr; 

3 kass Ti { 
T car; 

1 T cdr; 
n = new T; ) a: 55 

n = new T; bogus: 
n. bogus = new Tl; 

(c) Add a level of indirection by splitting all nodes of type T in two. 

(d) Example obfuscation attack against the watermark graph in 0. The adversary renames and re- 
orders node pointer fields (@I), adds a bogus pointer field B (@I), and splits nodes by adding a bogus 
pointer field A (@I). Finally, in @ bogus pointers into the graph obscure the root node. 

Figure 6: Obfuscation attacks against graphic watermarks. 
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Figure 7: Tamperproofing against node-splitting. At @ we expand each node of our original watermark tree into a 4-cycle. 
At @) an adversary splits two nodes. The structure of the graph ensures that these nodes will fall on a cycle. At @ the 
recognizer shrinks the biconnected components of the underlying (undirected) graph. The result is a graph isomorphic to our 
original watermark. 

reasonable threat-model. In this paper we have identified 
several types of threats: 

1. 

2. 

3. 

4. 

5. 

Distortive attacks by semantics-preserving transforma- 
tions such as translation, optimization, and obfusca- 
tion. 

Statistical attacks which attempt to locate a watermark 
by identifying anomalies in the distribution of instruc- 
tions or computations. 

Collusive attacks which attempt to locate a fingerprint 
by comparing several differently fingerprinted copies of 
a program. 

Cropping attacks which remove a located watermark 
or extract an individual module from a watermarked 
application. 

Additive attacks which insert new bogus watermarks 
into an already watermarked program. 

None of the methods we have presented are immune to all 
types of attacks. Easter Egg watermarks and dynamic graph 
watermarks are highly resilient against distortive attacks, 
but, by their very nature, they watermark complete appli- 
cations, not individual modules. Hence, cropping a partic- 
ularly valuable module from an application for illegal reuse 
is likely to be a successful attack against these methods. 

Static watermarks, on the other hand, are easily dupli- 
cated many times in an application and can thus be made 
to protect individual modules or even parts of modules. Un- 
fortunately, static watermarks are highly susceptible to dis- 
tortive attacks. 

Whether a statistical attack is successful or not will de- 
pend on the nature of the watermark, and the nature of 
the application. Dynamic graph watermarks are stealthy 
in typical object-oriented programs which tend to create 
large and complex heap structures. They would be very 
unstealthy, and hence susceptible to statistical attacks, in 
programs that are primarily numerical in nature. David- 
son’s [lo] method (in which a serial number is encoded in 
the order of basic blocks) is also prone to statistical attacks 
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since the resulting control flow graphs tend to appear con- 
voluted and sub-optimal. 

It is interesting to note that the problems we face in 
software watermarking are often quite different from those 
that arise in watermarking media. The reason is the flu- 
idity of software, which allows us to make quite sweeping 
changes to the text of a program without changing its be- 
havior. For example, it is quite difficult to protect against a 
collusive attack on an image fingerprint, since, by their very 
nature, all fingerprinted copies must appear identical. Soft- 
ware watermarks do not face this problem. We can easily 
protect against collusive attacks by applying a different set 
of obfuscating transformations to each distributed copy of 
an application. Thus, comparing several fingerprinted copies 
of the same application is unlikely to reveal the location of 
the fingerprint, since the text of each distributed copy will 
appear completely different. 

For similar reasons, distortive attacks are a less serious 
threat to media watermarks than to software watermarks. 
A distortive attack on a media object is restricted to making 
imperceptible changes, whereas an obfuscation attack on a 
program is only restricted to preserving its semantics. 

We are aware of no media or software watermarking tech- 
nique that is immune to additive attacks. 

7 Conclusion 

Software watermarking is the process of embedding a large 
number into a program such that: (a) the number can be 
reliably retrieved after the program has been subjected to 
program transformations, (b) the embedding is impercepti- 
ble to an adversary, and (c) the embedding does not degrade 
the performance of the program. 

This is a challenging problem that, to the best of our 
knowledge, has not previously been addressed in the aca- 
demic literature. The few published accounts of which we 
are aware (mostly software patents) describe schemes in 
which watermarks or fingerprints are embedded in the object 
code of a program. These static techniques are susceptible 
to attacks such as translation, optimization, or obfuscation. 

In this paper we have constructed a taxonomy of software 



watermarking techniques based on how marks are embed- 
ded, retrieved, and attacked. We have furthermore provided 
a formalization of software watermarking that we believe will 
form the basis for further research in the field. The most 
interesting result, however, is a new family of software wa- 
termarking techniques in which marks are embedded within 
the topology of dynamic heap data structures. 
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