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Abstract

Compiler Design courses are a common component of most
modern Computer Science undergraduate curricula. At the
same time, however, compiler design has become a highly
specialized topic, and it is not clear that a significant num-
ber of Computer Science students will find themselves de-
signing compilers professionally. This paper argues that the
principles, techniques, and tools discussed in compiler de-
sign courses are nevertheless applicable to a wide variety of
situations that would generally not be considered to be com-
piler design. Generalizing the content of compiler design
courses to emphasize this broad applicability can make them
more relevant to students.

1 Introduction

Compiler design courses are a common component of Com-
puter Science undergraduate curricula at most universities.
Students typically study a variety of topics about compiler
design theory, such as LR(1) parsing or attribute grammars,
and implement a compiler for some (smallish) subset of a
language such as C or Java. It seems unlikely, however,
that typical computer science students will apply, in their
day-to-day professional lives, the arcana of LR(1) parse ta-
ble construction or graph-coloring-based register allocators.
The vast majority of these students are unlikely to ever de-
sign a compiler, in the conventional sense of that term: i.e.,
something that generates machine code from a high-level
program. My impression is that students are aware of this,
consider compiler design to be less “relevant” to their tech-
nical education than, say, courses on operating systems or
networking, and thereby put correspondingly less time and
effort into studying compiler design.

�

This work was supported in part by the National Science
Foundation under grants EIA-0080123 and CCR-0113633.

It turns out, however, that many of the techniques and al-
gorithms used by compilers are actually much more broadly
applicable than just for translating high-level programming
languages to asembly or machine code. Emphasizing this
aspect of compiler design—and illustrating it with a wide
variety of examples during the course—can bring home to
students that the material taught in a compiler design course
in fact has a great deal of relevance to a variety of compu-
tational problems well outside what one typically thinks of
as compilation problems. The idea is to consider compil-
ers as just one instance of translators, broadly, from (almost)
any arbitrary source language to (almost) any arbitrary tar-
get language, rather than in the more narrowly defined tra-
ditional view of compilers where the input is a program in a
high-level computer programming language and the output
is low-level assembly or machine code.

There are many examples of such translators—discussed
later in this paper—that fall outside the traditional model
of compilers; a lot of them don’t involve programming lan-
guages at all. In each of these cases, however, the translation
process has roughly the same structure: an input string is de-
composed into tokens; the token sequence is grouped into
“phrases” whose structure is specified by (something akin
to) a context-free grammar; and these phrases are finally
mapped to the output sequence in a manner determined by
their structure and the context in which they occur. Many
of the issues that arise, including the ways in which the in-
put can be organized into tokens and phrases and the ways
in which such phrases can be represented and manipulated,
are very similar across all of these examples. Focusing on
these commonalities makes it possible to present many tradi-
tional compiler techniques, e.g., buffer management for lex-
ical analysis, parsing techniques for context-free languages,
and attribute evaluation and propagation in parse trees, in a
much more general setting that emphasizes their relevance
to a significantly wider range of applications. It also shows
how compiler development tools such as lex and yacc can be
applied for many translation problems that students do not
typically see as compilation problems.

In addition to illustrating conceptual similarities between su-
perficially very different translation problems, a discussion
of the commonalities and differences between various such
translation problems can help clarify the kinds of situations
where one can reasonably expect (or not expect) to con-
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Figure 1: (a) A (partial) grammar for graph specifications for dot; (b) a sample graph specification; (c) the graph drawing
produced by dot for the specification in (b)

struct such translators. For example, we can identify spe-
cific technical reasons, e.g., metaphor and ambiguity, that
make it impossible to construct an automatic translator that
is able to translate arbitrary pieces of English text into, say,
French; but this allows us to conclude that in specific situa-
tions where features such as ambiguity and metaphor can be
eliminated, e.g., in technical manuals, it may be possible to
construct automatic translators for natural languages using
techniques derived from compiler design.

The remainder of this paper considers how different com-
ponents of a traditional compiler can be generalized along
these lines. We have used this approach in the undergradu-
ate Compiler Design course at the University of Arizona for
several years.

2 Some Example Translation Problems

The previous section suggested a generalized view of trans-
lators. In this section we discuss two specific examples of
such systems in more detail in order to make the analogies
to compilers nore explicit.

2.1 Dot: A Graph-Drawing Tool

Dot is a tool that reads in a textual specification for a (di-
rected or undirected) graph and produces a drawing of that
graph, e.g., in the form of a PostScript file [1]. The input
to dot is a text string—it turns out that these strings can be
described by a context-free grammar, i.e., form a context-
free language—while the output is a string that is a picto-
rial representation of the graph. This is illustrated in Figure
1: Fig. 1(a) shows part of the grammar for dot inputs, Fig.
1(b) shows a sample input for dot, and Fig. 1(c) shows the
drawing for the graph of Fig. 1(b) produced by dot (the ac-
tual output produced by dot is a PostScript file which, when
viewed, yields the picture shown).

The actions carried out by dot when processing an input file
such as that shown in Figure 1(b) are as follows:

1. Read in the graph specification using context-free parsing
techniques.

2. Check for semantic consistency between components of
the specification. For example, edge op must be ‘->’ for a
graph of type digraph and ‘--’ for one of type graph.

3. Construct an internal representation of the graph specified.

4. Determine the “output” representation of this graph, i.e.,
where different nodes and edges will be placed and how
they will look.

5. Modify the output representation to improve its appear-
ance, e.g., by reducing the number of unnecessary edge
crossings (where one edge crosses over another) where
possible.

6. Generate the final PostScript for the graph.

It is not difficult to see that there is a close correspondence
between this sequence of actions and those of a compiler:
step (1) above corresponds to the lexical analysis and parsing
phase of the compiler; step (2) to type checking; step (3) to
syntax tree construction; step (4) to code generation; step
(5) to code optimization; and step (6) to code generation.
A similar comment applies to other drawing tools such as
jgraph [4] and gnuplot.

2.2 Translating LaTeX to HTML

LaTeX [2] is a typesetting system that is widely used for doc-
ument formatting (at least in academia); HTML is a markup
language used for specifying the appearance of web pages on
the Internet. While superficially similar in that they both de-
scribe the appearance of documents, the two languages have
very different syntax—fragments of context-free grammars
for the respective syntaxes are shown in Figure 2—and are
considerably different in their features and strengths.

Nevertheless, authors who prepare documents using LaTeX
may then want to create web pages from them by translating
them to HTML. To this end, several tools are available for
translating Latex documents to HTML (e.g., see [3, 5]).

Such translators typically proceed as follows:

1. Read in the LaTeX document using context-free parsing
techniques.



document � hdr preamble body
hdr � docCls DocOpts { class }
docCls � \documentclass
DocOpts � ‘[’ doc opt list ‘]’ � ε
preamble � �����
body � begn doc secn list end doc
begn doc � \begin{document}
end doc � \end{document}
secn list � secn secn list � ε
secn � secn hdr para list�����

(a) LaTeX

document � <html> head body </html>
head � <head> title </head> � ε
title � <title> word list </title>
body � <body> body opts > objlist </body> � ε
body opts � body opt list � ε
body opt list � body opt ‘,’ body opt list � body opt
body opt � bgcolor = color � �����
objlist � obj objlist � ε
obj � para � table � list � image � �����

�����

(b) HTML

Figure 2: Context-free grammar fragments for LaTeX and HTML documents

2. Construct internal representations of portions of the docu-
ment, as necessary.

3. Process the LaTeX constructs and output the correspond-
ing HTML.

The sequence of steps here is somewhat different from that
of a graph-drawing tool or a compiler, primarily because the
source and target languages are semantically much closer in
this case, simplifying the translation process considerably.
Nevertheless there are a number of similarities, primarily in
the initial lexical analysis and parsing phase (step (1) above)
and the final HTML generation (step (3) above), which is
carried out by what is in effect a recursive tree walk. How-
ever, the translation is not entirely trivial, since we have to
deal with the problem of handling LaTeX features, such as
mathematical symbols, pictures, etc., that are not supported
by HTML. This is typically done by resorting to GIF or
JPEG images of the corresponding constructs. This requires
the construction of an appropriate internal representation for
the LaTeX construct and then transforming this to an image
(step (2) above); the corresponding compiler analog is that of
code generation for language features—such as inheritance
and virtual function calls in an object-oriented language—
that are not directly supported by the target architecture.

In the undergraduate compiler design course at the Univer-
sity of Arizona, the 0th programming assignment has the stu-
dents use lex and yacc to implement, in roughly 1 1

2 weeks, a
translator from (a subset of) LaTeX to (a subset of) HTML.
At that point, most students know very little about LaTeX,
many don’t know a lot about HTML, and none of them know
anything about lex and yacc. The goals of the assignment
are twofold: first, to get the students acquainted with lex
and yacc, in preparation for a more traditional project imple-
menting a compiler for a subset of C; and second, to illustrate
the applicability of these tools to other translation problems.
We use discussion sessions and on-line tutorials to give them
just enough acquaintance with LaTeX and HTML so that the
students know what they are doing. We revisit the problem
in classroom discussions at the end of the term, when they
are much better versed with these tools (lex and yacc); stu-
dents often seem quite surprised and pleased to realize that
they are now equipped to implement a nontrivial and practi-
cally useful piece of software, for a significant fragment of
LaTeX, reasonably quickly and without a great deal of effort.

3 Phases of a Compiler

The execution of a compiler conceptually consists of four
phases: � i � lexical analysis and parsing; � ii � semantic anal-
ysis; � iii � code generation; and � iv � code optimization. This
section discusses each such phase with regard to how its
ideas, concepts, and techniques can be useful in translation
problems outside the realm of traditional compilation.

3.1 Lexical Analysis and Parsing

Lexical analysis refers to the process of examining the input
to be translated and dividing it into groups of adjacent char-
acters, called “tokens,” that form the units for the remain-
der of the translation process. Conceptually, this is analo-
gous to examining a stream of English text such as this doc-
ument, character by character, and grouping the characters
into units such as words, numbers, and punctuation. This is
typically done using regular expressions to specify the struc-
ture of tokens, and using the corresponding finite state ma-
chines to carry out pattern matching against the sequence
of input characters being examined. Since this is the only
phase of a compiler where the input is examined a charac-
ter at a time, lexical analysis tends to be amongst the most
expensive components of the compilation process; compil-
ers employ sophisticated buffer management techniques to
reduce the cost of lexical analysis as far as possible. Further,
given the well-understood nature of regular expressions and
finite automata, tools, such as lex and flex, have been devel-
oped that can automatically generate lexical analyzers given
a set of regular expressions that specify the structure of the
tokens to be recognized. These tools incorporate the buffer
management techniques mentioned above, making the gen-
eration of lexical analyzers a relatively straightforward and
painless process.

Parsing, or syntax analysis, is the process of imposing struc-
ture on the sequence of tokens obtained from lexical anal-
ysis. It is conceptually akin to taking a sequence of words
and punctuation obtained from the tokenization of a docu-
ment and constructing sentences from it, together with in-
formation about the structures of those sentences, e.g., the
subject, object, modifiers, etc. The syntactic structure of
programming languages is typically specified using context-
free grammars, with the parsing process then being carried
out using pushdown automata obtained from those gram-
mars. The result of parsing is a representation of the syn-
tactic structure of the input program, typically in the form of



a structure called the parse tree. Again, the theory of context-
free parsing is well understood, and tools, such as yacc and
bison, can take (suitable) grammar specifications and gener-
ate parsers from them.

For many translation problems—particularly those where the
input consists of ASCII text—the tokens can be specified as
regular expressions. This makes it possible to directly ap-
ply tools and techniques developed for lexical analysis to
handle tokenization for such problems. Similarly, the syn-
tactic structure of such token sequences can very often be
expressed in the form of context-free grammars, making it
possible to use off-the-shelf parser generators such as yacc
or bison to construct parsers for them.

A specific example of such a non-compiler problem that can
be handled using lexical and syntax analysis techniques and
tools borrowed from Compiler Design is that of database
query translation, from a domain-specific natural-language-
based query language convenient for humans to a language
such as SQL supported by commercial database systems.
My personal acquaintance with such a problem is in the
context of a local company that makes software for hospi-
tals and medical applications. I was told me of a product
they were working on to allow doctors to quickly look up
patient records, medication histories, etc., from a central-
ized database. Recognizing the unlikelihood of having doc-
tors learn SQL, they designed a simple natural-language-like
domain-specific query language for this application, strug-
gling long and hard to build an ad hoc front end for this
language, where a lex-and-yacc front-end would have been
much quicker to build, and perhaps sturdier. (I wish I could
say that I prevailed upon them to use The Right Tools for
their project; unfortunately, the manager involved had nei-
ther the time nor the inclination to look into lex and yacc.)

The observation that the front-end issues for many transla-
tion problems closely resemble those of a compiler’s is not
particularly deep. The conclusion that follows, that tech-
niques and tools developed for compiler front ends may be
applicable to other translation problems as well, also does
not come as a great surprise. However, students often seem
to compartmentalize their knowledge, and thereby find it dif-
ficult to apply lessons from compiler design courses to other
translation problems unless the underlying similarities be-
tween the problems are pointed out explicitly and repeatedly.
Once they see the similarities, however, they find that us-
ing tools and techniques from compiler design can be very
helpful. As an example, a few years ago, while teaching
an undergrauate course on Formal Languages and Automata
Theory, I asked one of my teaching assistants to write a soft-
ware package to allow our students to specify various sorts
of automata in the form of a text file and then simulate their
behavior on input strings. Despite being a bright student and
talented programmer, he struggled unsuccessfully with the
construction of a front end for over a week, after which I
suggested that he use lex and yacc to construct the front end.
Once he was able to abstract away from specifications for
automata and view this as just another translation problem,
he was able to program up the front end in under a day.

3.2 Semantic Analysis

Semantic analysis refers to the computation and propaga-
tion of information that is not part of the context-free syn-
tax of the language. In a compiler, this might refer to the
type or scope of a variable. A common way of handling
such information is using “attribute grammars,” which as-
sociate properties (“attributes”) with grammar symbols and
specify rules, called semantic rules, for computing their val-
ues. These rules in effect specify the flow of information
between different points in the parse tree for a program.

Not surprisingly, information has to be propagated along the
parse tree for many other translation problems as well. An
example that we discuss in class involves displaying HTML
documents in a browser. The input in this case is an HTML
document, with tags such as <b> ����� </b> and <i> ����� </i>
that affect the way specific characters are displayed, as well
as the amount of space taken by a group of characters (a
boldface character is typically wider than one that is not).
The output is the sequence of characters being displayed in
the browser window. Among the problems to be addressed is
the determination of when the line being displayed is “long
enough,” making it necessary to emit a line break character.
This makes it necessary to figure out how to compute and
propagate semantic information about the font in use at any
particular point in the text as well as the line length in the
display window up to that point.

While this problem is straightforward when restricted to sim-
ple text with a few different fonts, it becomes considerably
more complex when other kinds of objects, e.g., images and
tables, are allowed. Thinking about it in terms of attributes
and semantic rules provides a systematic approach to ad-
dressing the problem, and makes it easier to figure out what
information needs to be propagated, how, and between which
points. While at first glance the problem seems very far re-
moved from programming language compilation, ideas and
techniques from compiler design carry over quite directly to
produce a clean solution to a technically nontrivial problem.

3.3 Code Generation

Code generation in a compiler is the process of traversing
the tree representation of a program to generate assembly or
machine code for the target machine. More generally, how-
ever, we can think of this as an instance of the process of
translating from a representation of a source language entity
to that of a corresponding target language entity. This view
accommodates many other translation problems, and allows
us to think of them within a coherent framework.

Typically, code generation involves a post-order traversal of
the tree representation of the input program. This means
that the children of a node a in the tree—which represent
the operands of the operation at node a—are processed first,
i.e., have code generated to compute their values. After this,
node a is processed to generate code for its operation; this
can be code that uses the values computed by the child nodes
to compute some other value (e.g., if a is an arithmetic oper-
ation), or it can be “glue” code that incorporates additional
instructions to manage the correct control flow with the code



for a’s children (e.g., if a represents an if-then-else or a loop).
The essential intuition here is that the node a specifies how
(the values computed by the code generated for) its children
are to be used.

This intuition can easily be transferred to other translation
problems. When translating a technical manual from English
to German, say, this involves traversing the tree representa-
tion of the original English sentences. The actions at a par-
ticular node of the tree, then, might involve determining the
order in which the translated fragments from the child nodes
are assembled, e.g., with verbs moved towards the end of the
sentence. When translating a natural-language query from a
user into an SQL query for a back-end database, this might
involve mapping user-level constructs (e.g., “which account
has the highest balance?”) to the appropriate SQL constructs
(“select ...”). The correspondence is not difficult to
see once it is pointed out. However, by generalizing the ac-
tions of the back end of a compiler, from the narrow do-
main of emitting assembly code for a microprocessor to the
broader domain of producing a target language entity, we
can understand the essential similarities between the back-
end actions for a variety of translation problems.

3.4 Optimization

Compiler courses traditionally treat optimization in terms of
code transformations that make the program run faster. A
more general view is that optimization aims to reduce the
“cost” of the generated code for some cost measure of inter-
est. Traditionally, the cost measure most often used has been
execution time; however, even within mainstream compiler
research, other measures of cost have recently been gaining
credence: these include code size (for limited-memory pro-
cessors, e.g., in embedded and mobile systems) and energy
usage (e.g., for battery-operated portable computers).

When we generalize to other translation problems, it may
still make sense to consider the “cost” of a representation.
As an example, the graph drawing tool dot [1] takes a tex-
tual specification of a graph as input and produces a pictorial
representation of the graph, e.g., as a JPEG or PostScript
file, as output. Since a picture with many edges crossing one
another is harder to understand than one with fewer edge
crossings, dot tries to “optimize” the pictorial representation
it produces by changing the layouts of vertices and edges so
as to reduce the number of edge crossings. Conceptually, this
is exactly analogous to the optimization phase of a compiler.
Other such examples of “optimization” include eliminating
double negatives, or transforming passive voice sentences to
active voice in machine translation of natural languages.

If the only effect of drawing these parallels was to point out
analogies between components of different translation prob-
lems, they would have limited utility. It turns out that we can
use these analogies to illustrate deeper aspects of the trans-
lation process than is usually covered in a typical compiler
course. For example, dataflow analyses are often discussed
as a collection of algorithms—e.g., for liveness, or reaching
definitions—without the observation that the raison d’ être
for these analyses is to infer invariants about the behavior
of a program; such invariants can then be used to support

optimizations or other transformations in a way that guaran-
tees “semantic equivalence” between the original and trans-
formed representations. In other words, these analyses arise
out of questions of the form “what properties have to hold
such that we can carry out some specific sort of transforma-
tion that we believe may be profitable?” Transferred to other
translation problems, we can ask similar questions about in-
variants necessary to guarantee semantic equivalence—or,
even more generally, preserve some property of interest—
when carrying out “optimizations” such as restructuring a
natural language sentence, or changing the layout of a graph.

4 Conclusions
Compiler design courses typically focus narrowly on the
translation of high-level programming languages into low-
level assembly or machine code. Given that the majority
of computer science students are unlikely yo be involved in
compiler design as a day-to-day professional activity, this
limits the relevance of such courses to the students’ even-
tual careers. However, it is possible to generalize the tradi-
tional view and consider the problem of translating from a
source language to a target language, where both the source
and target languages are defined broadly, e.g., need not even
be programming languages. Such a generalized view in-
cludes many translation problems, e.g., document formatting
or graph drawing, that are not traditionally viewed as “com-
piler problems.” Viewing such translation problems in this
way allows us to identify and understand essential underly-
ing commonalities of the translation process.
This has several benefits, among them that the use of tools
such as lex and yacc to generate the front end of a transla-
tor reduces development time, and that by relying on well-
understood techniques and avoiding ad hoc approaches to
the lexical analysis and parsing problems, reliability is en-
hanced. Overall, therefore, students benefit from having a
deeper understanding of a variety of translation problems;
being able to apply techniques and tools developed for com-
pilers to other translation problems; and thereby being able
to produce better code more quickly.
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