
PLTO: A Link-Time Optimiz er for the Intel IA-32
Architecture

�

Benjamin Schwarz Saumya Debray Gregory Andrews Matthew Legendre
Department of Computer Science

University of Arizona
Tucson, AZ 85721�

bschwarz, debray, greg, legendre � @cs.arizona.edu

ABSTRACT
This paperdescribesPLTO, a link-time instrumentationandopti-
mizationtool wehavedevelopedfor theIntel IA-32 architecture.A
numberof characteristicsof thisarchitecturecomplicatethetaskof
link-time optimization.Theseincludea largenumberof op-codes
andaddressing modes,which increasesthecomplexity of program
analysis;variable-length instructions,whichcomplicatesdisassem-
bly of machinecode;a paucityof availableregisters,which limits
the extent of someoptimizations;and a relianceon using mem-
ory locationsfor holdingvaluesandfor parameterpassing, which
complicatesprogramanalysisandoptimization. We describehow
PLTO addressestheseproblemsandtheresultingperformanceim-
provementsit is ableto achieve.

1. INTRODUCTION
Resultsfrom a number of recentprojectsindicatethatpost-link-

timecodeoptimizationof executableprogramscanyieldsignificant
improvements in performance,even for programsthat have been
subjectedto extensive compile-timecodeoptimization[6, 14, 16,
17]. Much of this work hasbeencarriedout in thecontext of pro-
cessorswith RISCarchitectures,which typically have a relatively
smallsetof op-codesandaddressingmodesanda largenumberof
general-purposeregisters.By contrast,CISCarchitecturessuchas
thewidely-usedIntel IA-32 have characteristicsthatmake thetask
of link-time codemodificationandoptimizationconsiderably more
challenging. Examplesof theseincludealargenumberof op-codes
andaddressing modes,which increasesthecomplexity of program
analysis;variable-length instructions,whichcomplicatesdisassem-
bly of machinecode;a paucityof availableregisters,which limits
the extent of someoptimizations;and a relianceon using mem-
ory locationsfor holdingvaluesandfor parameterpassing, which
complicatesprogramanalysisandoptimization.

This paperdescribesPLTO, a link-time instrumentationandop-
timizationtool we have developedfor theIntel IA-32 architecture.
We describehow PLTO addressesthe problemsmentioned above
andthe resultingperformance improvements it is ableto achieve.
We focus purely on static optimization; dynamic optimization,
wherecodetransformationsarecarriedout at runtime,is not (yet)
considered.Our goalis to carryout aggressive whole-programop-
timization,possiblyincludingstaticallylinkedlibraries[1]. For this
reason,we cannotrule out thepresenceof hand-optimizedassem-
bly codethat might not adhereto the applicationbinary interface
(ABI) for thesystemor thatmight not follow familiar conventions
suchasasingleentrypointperfunction.Consequently, weattempt
to make asfew assumptionsaspossibleabouttheinput executable
�
This work wassupported in part by the NationalScienceFoun-

dationunder grantsASC-9720738,CCR-0073394, EIA-0080123,
andCCR-0113633.

code. For example,we do not assumethat thecodeusesany spe-
cific codeidioms that a particularcompilermay generateor that
it adheresto standardcalling conventions. The main contribution
of this paperis to describethe analysesandcodetransformations
we usefor link-time optimizationwheresuchoptimizationis non-
trivial, both becauseof architecturalfeaturesthat make it harder
to reasonaboutthestructureandbehavior of executablefiles, and
becauseof our desireto handle a wide variety of executables, in-
cludingthosecontaining staticallylinkedlibrariesandhand-coded
assemblyroutines.

2. SYSTEM OVERVIEW
The PLTO systemconsistsof a front end for readingin exe-

cutables,modules for code transformations,and a back end for
emitting machinecode. At presentPLTO optimizesx86 executa-
bles,in theExecutableandLinkableFormat(ELF), underRedHat
Linux. To enhance portability, we usethe GNU Binary File De-
scriptorLibrary (libbfd); supportingotherexecutableformats,
e.g.,theCOFF(CommonObjectFile Format)formatusedin Win-
dowsexecutables,would requiremakingonly minorchangesto the
front end. PLTO requiresthat the input executable containreloca-
tion information (this currently implies statically linked executa-
bles,sincethelinkerld refusesto retainrelocationinformationfor
non-statically-linked executables).Relocationinformationis used
to distinguishbetweenaddressesand non-addressconstants;this
distinctionis essentialbecausecodeaddressesmustbeupdatedto
reflect the resultsof optimizations,while the valuesof constants
cannot be changed. Most linkers, if not all, can be instructedto
leave relocationinformationinsidetheexecutable.

An executablefile is processedin two stagesto producean op-
timized versionof the program. In the first stage,describedin
Section4, PLTO insertsinstrumentationcode into the binary to
gatherexecutionprofiles. The userthenexecutesthe resultingin-
strumentedbinary on a training input set to producerepresenta-
tive weightsfor theedgesin theinterproceduralcontrolflow graph
(ICFG) of theprogram.In thesecond stage,PLTO usestheseedge
profilesto analyzeandtransformtheprogramasfollows:

ICFG Construction and Simplification. PLTO first disas-
semblesall segmentscontainingcode, createsa single in-
structionstream,and constructsan interprocedural control
flow graphfor the entireprogram. It usesrelocationinfor-
mationandknowledge aboutinstructionsemanticsto guide
thesesteps. PLTO thenexaminesthe initial ICFG to elimi-
nateunreachable code;oftenup to 10%of theinstructionsin
theoriginal programcanberemoved. We do this optimiza-
tion now (andagainlater)because it reducesthe numberof
calling contexts for many functionsandthusimproveslater
analyses.

Code Optimization. PLTO then begins trying to simplify
codeby performingaroundof constant propagationthrough
registersandtheruntimestack. Constantoperandsof arith-
meticinstructionsarethenreplacedby immediateconstants,
while conditional brancheswith constant operandsaresim-
plified away by deletingthe control flow edgethat will not
be taken. This reducesthe numberof registerandmemory
referencesandusuallyresultsin moredeadandunreachable
codethat canlaterbe eliminated.Next, we inline functions
that meetcertaincriteria (seeSection5.1 for details). This
reducesthe numberof calling contexts and opensthe way
for asecondroundof constantpropagation.This is followed
by load/storeforwarding to reducethe numberof memory
loads(seeSection5.2). Finally, PLTO doeslivenessanalyses
of registers,the runtimestack,andtheprogramstatusword
(PSW),asdiscussedin Section3.5. This livenessinforma-
tion is usedto eliminateinstructionsthatstoreeitherto dead
registersor to deadlocationson thestack.

Repair and Layout. During thecourseof its optimizations,
PLTO is likely to ruin any attemptthelinkerorcompilermade
to schedule instructionsintelligently. In addition, no-ops
insertedby the compiler for alignment purposes have been
eliminated.Consequently, PLTO redoesinstructionschedul-
ing andalignmentin orderto improve decodingandexecu-
tion efficiency. Basicblocksarealsopositionedto improve
instructioncacheutilization and reducethe frequency with
which jumpsaretaken [15]. Alignment no-ops areinserted
whereappropriateto improve instruction-fetchhit rates.Fi-
nally, relocationinformationis usedto updateany addresses
thatarereferencedin theexecutable,andthebinaryis written
out.

Sections3 and5 describethe most interestinganalysesandopti-
mizationsthatPLTO performs.

3. ANALYSES
PLTO usesa numberof different analyses to support the opti-

mizationsit carriesout. This sectiondescribesthemostimportant
of theseanalyses.

3.1 Disassemblyand Control Flow Analysis
Disassemblybegins at theentry point of the program,asspeci-

fied in theheaderof theexecutablefile. Instructionsaredisassem-
bled in sequence, as they are encountered(see[3]). One poten-
tial problemthatarisesis thatof dataor alignmentbytesappearing
in codesegments,which cancomplicatethedisassemblingof ma-
chinecode.As anexample, in oneof thestringlibrariesonoursys-
tem(RedHatLinux), we foundthattheprogrammerhadinserteda
NULL byte (0x00) at onepoint, presumably for alignment. Un-
fortunately, duringdisassemblythis lookslike a valid add instruc-
tion; becauseof the IA-32 architecture’s variable-length instruc-
tions, this causestherestof thedisassemblyfrom thatpoint on to
be erroneous.To dealwith suchproblems,PLTO currently looks
for targetsof jumpsandrelocationsthat may point to the middle
of another instruction. If there is a jump into the middle of an
alreadydisassembledinstruction,thenan error wasmadein con-
structingtheinstructionstream.In this casePLTO repairstheerror
andrestartsthedisassemblyprocessfrom thetargetof thejump or
relocation.

Oncedisassembly is complete,PLTO constructsaninterprocedu-
ral controlflow graph(ICFG)for theprogram.Severalissuescom-
plicatetheconstructionof the ICFG: indirectcalls, indirect jumps
throughtables,and dataappearingin segments,suchas.text,
that aretypically reserved for instructions. Indirect calls through
registersare modeledusing a specialpseudo-node in the ICFG,

�
HELL. This nodebelongsto a specialpseudo-function, � HELL.

Both
�

HELL and � HELL areusedby many of theanalyses andopti-
mizationsto represent worst-casescenarios.For example,

�
HELL is

assumedto useall registers,defineall registers,andpossiblywrite
to all possible(writable) memorylocations,possiblyoverwriting
datain thestackframesof any callers.This ensuresthatall analy-
sesperformedby PLTO areconservative.

Indirect jumpsthrougha tableof addressesareoftengenerated
by a compilerfor multi-way branches,suchasswitch constructs
in C. PLTO attemptsto recover thepossibletargetsof theseindirect
jumpsby tracingbackwards throughthe instructionstreamto find
the sizeandbaseaddressof the table,using the boundscheckto
infer thetablesize[5]. Jumpswhosetargetscannot beresolvedare
modeledusingthespecialnode

�
HELL.

3.2 Stack Analysis
Oneof ouroptimizationgoalsfor PLTO is toallow functioninlin-

ing andthe subsequent propagationof the actualparametersfrom
thecall site into the(cloned)bodyof theinlined function.1 In par-
ticular, we want to beableto optimizeaway conditionalbranches
in theinlinedcodebasedonconstantarguments in thecaller. Since
function argumentsarepassedon the stackin the IA-32 architec-
ture,thisrequirestheability to reasonaboutthecaller’sstackframe
and its relationshipto the callee’s stackframe. This is donevia
stackanalysis.To thebestof ourknowledge,thisanalysisis novel:
othercomparablebinaryrewriting systemsdonot implementasim-
ilar analysis.

The ideacan be illustratedby the following sourcecodefrag-
ments:

int f(...) void g(int x, int y)
{ {

... ...
g(123, 456); if (y != 0) ...

} }

At themachinecodelevel, the codefor thesefunctionsresembles
thefollowing:

f: ...
push $456 # push arg 2
push $123 # push arg 1
call g
addl $8, %esp # pop args
...

g: push %ebp # save old frame ptr
movl %esp, %ebp # update frame ptr
subl $32, %esp # allocate stack frame
...
movl 8(%ebp), %eax # load y
testl %eax, %eax # y != 0 ?
jne ...
...
leave # deallocate frame
ret

We would like to inline g() into the body of f(), propagatethe
valueof the(constant)second argument into theinlined body, and
therebyeliminatethetestandconditionalbranchcorresponding to
thestatement‘if (y != 0) ...,’ aswell asthepush opera-
tion(s)at thecall sitefor parameterpassing.To do this,we have to
beableto infer thefollowing aboutthelocation � written to by the
instruction‘push $456’ in f():

1. � is the sameas that referencedby the instruction ‘movl
8(%ebp), %eax’ in g(), in orderto propagatethevalue
of theargumentinto thebodyof g().

1We expectthecompilerto have alreadycarriedout any compile-
time inlining it is ableto. Our focusis on inlining acrossmodule
andlibrary boundaries.

2. � is notoverwrittenby any prior storeoperationswithin g().

3. � becomesdeadonceall referencesto it in thebody of g()
have beenreplacedby theconstantvalueof theargument.

To make theseinferences,we have to beableto determinethepo-
sition of thelocation � addressedby theinstruction‘push $456’
relative to boththe“old” framepointerin f() aswell asthe“new”
framepointer in g() andto reasonaboutthe livenessof specific
memorylocationswithin the stackframeof f() after the call to
g() hasbeeninlined. Wedo thisusingastackanalysisthatallows
usto modelthestackframeof afunctionasanarrayof words;sub-
sequent analysesthenreasonaboutthe contents,liveness,etc.,of
locationswithin this array.

To determinethesizeof afunction’sstackframe,weexaminethe
basicblocksof thefunctionandcomputethemaximumvalueof the
differencebetweentheframepointerregister%ebp andthetop-of-
stackpointerregister%esp. Theessentialintuition is to keeptrack
of operationsthat updatethe stackandframepointers. Whenwe
cometo a functioncall, wecannot in generalassumethatthestack
will havethesameheightonreturnfrom thecalleeasit did onentry
to it. Hence,to determinethesizeof thestackframewhencontrol
returnsfrom the callee,we have to take into account the behavior
of the callee. To this end, we first carry out a well-behavedness
analysisto identify functionsthatleavethestackat thesameheight
asit hadwhenthefunctionwasentered.

A function f is saidto bewell-behavedif thereis no netchange
in the height of the runtime stackdue to the executionof f , for
all possibleexecutionpathsthrough f . Well-behavednessanalysis
is donein two phases.First, we mark aswell-behaved all those
functionsthat � i � pushthe framepointer%ebp on entry; and � ii �
executetheleave instructionimmediatelybeforereturningto the
caller. The effect of this combination is to restorethe stackand
framepointersto thevaluesthey hadjustbeforeentryto f . Second,
asdescribedbelow, wepropagateinformationaboutchangesin the
heightof theruntimestackdueto theexecutionof eachbasicblock
in theprogramandusethis to identify functionswheretheruntime
stackis at thesameheighton returnasit wason entry.

Given informationaboutwell-behavednessof functions, we an-
alyzeeachfunction to determinethe (maximum)sizeof its stack
frame(including the spacefor actualparameters,which is shared
with thecaller). This is doneasonewould expect. We first deter-
mine,for eachbasicblock in the function,thechange in thestack
size due to the executionof that block. This is then propagated
throughthecontrolflow graphof thefunction. If a basicblock has
morethanonepredecessor, anddifferentincomingedgeshave dif-
ferentvaluesfor thechangein stacksizealongthatexecutionpath,
thenthe stackframeheightat the entry to that block is setto un-
known. This procedureis iterated,in a mannervery similar to that
for constantpropagation,until thestackheightat theentry to, and
exit from, eachbasicblock hasstabilized.This allows usto deter-
mine thechange in stacksizeat theentry to eachblock relative to
that at entry to the function, and thencethe maximumsizeof its
stackframe.

3.3 Use-Depthand Kill-Depth Analysis
The relatively small numberof compiler-visible generalpur-

poseregistersin the IA-32 architectureoften causesvaluesto be
placedin (or spilled to) a function’s stackframe. In the absence
of any otherinformation,programanalysesmustmake worst-case
assumptions abouttheeffectsof functioncallson suchvalues.For
example, constantpropagation(Section3.4) must assumethat a
functioncall candestroy all suchvalues,becausea functionmight
write to any memorylocation,while stacklivenessanalysis(Sec-
tion 3.5) must assumethat stack locationsare live becausethey
may be accessedby a functioncall. Suchworst-caseassumptions

canaffect theprecisionof our analysesquitesignificantly. To ad-
dressthis,we useusedepthandkill depthanalysesto estimatethe
effect of functioncallson theruntimestack.

The usedepthof a function is eithera non-negative integer or
thevalue∞; it representsanupperboundon thedepthin thestack,
relative to thetop of stackwhenthefunctionis called,from which
thefunctionmayreada value.Thepsuedo-function � HELL, which
is usedto model indirect function calls, is assumedto have a use
depthof ∞. Theusedepthof theotherfunctionsin theprogramare
computedin two phases:

1. [Localanalysis.] Theinstructionsin eachfunctionareexam-
inedto determinefrom how fardown thestackthey mayload
a value. Indirect loadsareassumedto be ableto load from
any location,andresult in a usedepthof ∞. This forms an
initial approximation to theusedepthof eachfunction.

2. [Iterative propagation.] Usedepthinformationis iteratively
propagatedalongthecall graphof theprogramfrom calleeto
caller. In a given iteration,considera function f whoseuse
depthis currently set to m. Supposethat f calls functions
g1 �
	
	
	
� gk from call sitesC1 �
	
	
	
� Ck respectively, andthatthe
usedepthsof thefunctionsg1 �
	
	
	
� gk aresetto n1 �
	
	
	
� nk re-
spectively. Moreover, suppose that the height of f ’s stack
frame,determinedfrom thestackanalysisdescribedin Sec-
tion 3.2, at the call site Ci is pi , 1 � i � k. Let di be the
maximumdepthin thestackthatcanbeaccessedby thecall
to gi , 1 � i � k, relative to the stacktop at the time f was
called.We computedi asfollows:

– If pi � unknown, we do not know how large f ’s stack
frameis at thatcall site. In this case,thedeepest loca-
tion in thestackthat canbe accessedby a load opera-
tion in thecalleegi cannotbedeeperthanni relative to
thetopof thestackatthecall siteCi in f . It followsthat
this locationcannotbedeeperthatni relative to thetop
of the stackwhen f wascalled(since f ’s stackframe
cannot have negative size).Sowe setdi � ni .

– If pi
� unknown, we have two possibilities.If pi � ni ,
thenloadoperationswithin thecalleecannotaccessany
stack location outside f ’s stackframe. On the other
hand, if pi � ni thenthedeepestlocationaccessed by a
loadoperationwithin gi , relative to thestacktop at the
pointwhen f wascalled,is atmostni � pi . In thiscase,
therefore,we have di � max� 0 � ni � pi � .

Theusedepthof f is thenupdatedtomax� m� d1 ��	
	
	
� dk � 	 This
is repeateduntil a fixpoint is reachedand the usedepthof
every functionstabilizes.

The kill depthof a function is analogous to that of usedepth: it
is eithera non-negative integer or the value ∞, andrepresentsan
upperboundon the depth in the stack, relative to the top of the
stackwhenthefunctionis called,to which thatfunctionmaywrite
avalue.Thecomputationof kill depthsis exactlyanalogousto that
of usedepths.

3.4 Constant Propagation
Our experience with the alto system[14] showed that constant

propagation—which at link time propagatesaddresses and con-
stantargumentsacrossfunction and module boundaries—canbe
an importantsourceof performance improvementsresultingfrom
link-time optimization. To carry out constant propagationon ma-
chinecode,however, it is necessaryto specify, in someform, the
semanticsof the instructionsof the underlyingarchitecture.The

IA-32 instructionsetcontainsa largenumber (over 300)of differ-
entinstruction� classes,2 makingthisa tediousandtime-consuming
proposition. It turns out, however, that a relatively small num-
ber of different instructionclassesaccount for the vast majority
of all instructionsactuallyencounteredin executablefiles in prac-
tice. PLTO thereforeusessemanticknowledgeaboutonly a small
subsetof all possibleIA-32 instructionclasses,basedon anexam-
inationof thestaticanddynamicdistribution of instructionsin the
codefor all of the SPEC-95 benchmark programs;the remaining
instructionclassesaretreatedconservatively andtheir resultstaken
to be unknown. This allows us to handlethe vastmajority of in-
structionsencounteredin practicewithout requiringan exorbitant
implementationeffort. This resultsin some31differentinstruction
classesthat are consideredby the constant propagator;however,
with knowledgeaboutthesemanticsof these31 instructionclasses
it is ableto processall of our benchmarkswithout significantloss
of information.

The constantpropagationalgorithm PLTO usesis straightfor-
wardconditionalconstantpropagation[19]; processorstatusword
(PSW)bitsaretreatedasone-bitregisters.Thenotionof kill depth,
discussedin Section3.3, is usedto estimatethe effect of function
calls on the runtimestack. This allows us to limit the amountof
stackwhosecontentshave to be invalidatedduring constantprop-
agationwhena function call is encountered. For example,if the
calleehasa kill depthof 8, thenonly the top 8 bytesof the stack
canbeaffected,andthevaluesof deeperlocationsneednot bedis-
cardedby theconstantpropagator.

3.5 Li venessAnalysis
TheIA-32 haseightgeneralpurposeregisters—sixaregenerally

available to a compiler; two arereserved for the stackandframe
pointer. This small setof usableregistersresultsin the compiler
generatingcodethat operatesdirectly on memory, ratherthanex-
plicitly loading, modifying andstoringvalues. For this reason,it
is insufficient to restrictlivenessanalysesto registers.To this end,
PLTO models andanalyzestheruntimestackin additionto theset
of registers. For livenessanalysispurposes,moreover, PSWbits
aretreatedasone-bitregisters.

PLTO usesa standardcontext sensitive approach to computing
register livenessinformation[9, 12]. Muth found that on a RISC
architecture,theCompaqAlpha,theuseof acontext sensitive live-
nessanalysisincreasedthe numberof deadregistersavailableper
basicblock in the SPECint-95 benchmarksuite, on the average,
from about 3.0to 5.2,comparedto acontext insensitiveapproach—
an increaseof about70% [12]. By contrast,in PLTO a context-
sensitive analysisfinds an averageof 1.8 deadregistersper basic
block in the SPECint-95 suite, up from 1.67 deadregistersper
blockobtainedwith acontext-insensitiveanalysis:animprovement
of only 7.8%.This incrementalimprovement increaseis muchless
thanMuth’s usingalto, but this is not entirely surprisinggiven
thattherearesofew registersto work with.

It turnsout thatwhena functionstorescallee-saved registersto
thestack(via push instructionsuponentry),theuseof thesereg-
isterspropagatesbackto thecaller. This resultsin thecallee-saved
registersbeinglive in blocksprior to the functioncall. A straight-
forward livenessanalysisdoesnot recognize thatcallee-savedreg-
istersarerestored(viapop instructionsonfunctionexit) prior to re-
turningcontrol to thecaller. Onewould like to know thatalthough
theseregistersareused,their valuesarenot examinedexcept for
thesave on entryandrestoreon exit. To solve this problem,PLTO

performsa localanalysisfor eachfunctionto determineif acallee-

2An instructionclasscorresponds, roughly, to an operation,e.g.,
add or load; within a particular instruction class there may be
several different op-codes, specifyingdifferent kinds or sizesof
operands.

saved registeris used. It is usedif the contents of the registerare
used(ignoring the actionof saving the register)beforebeingde-
fined,if thelocationto which it wasstoredon thestackis used,or
if theregisteris restoredandthenused.Theresultsfrom thelocal
analysisare then iteratively propagatedalong the call graphuntil
a fixpoint is reached.Indirect loadsthroughregistersare treated
conservatively—we assumethat they could comefrom anywhere,
includingslotson thestack.Ourcontext sensitiveanalysisis tuned
to subtracttheregistersthatPLTO findsasbeingcallee-savedfrom
thesetof registersusedby thatfunction.

PLTO’s livenessanalysisof the runtimestackis similar to that
of registers,with 4-byteslotson thestacktakingtheir place.Indi-
rectloadsfrom registersaretreatedconservatively—they mayload
from anywhere, including the stack. Indirect storesthroughreg-
istersarealsotreatedconservatively; in mostcaseswe cansafely
say that they definenothing, i.e., any live stackslot remainslive
afteranindirectstore.Theanalysisis interprocedural, andusesthe
usedepthof a function, discussedin Section3.3, to estimatethe
may-usebehavior for functioncalls.

4. INSTRUMENTATION
Many of theoptimizationscarriedoutby PLTO rely on low-level

profile information.SinceRedHat Linux doesnot currentlycome
with instrumentationtoolsfor gatheringsuchlow-level profiles,we
have built this functionality into PLTO.

A command-line optioncanbeusedto instructPLTO to addin-
strumentationcodefor gatheringedgeprofiles.This causesthe in-
sertionof profiling blocksalongeachedgein the interprocedural
control flow graphof the original program.Eachsuchblock con-
tainscodeto updatea (64-bit) counter that recordsthe numberof
timesthecorrespondingedgehasbeentraversed.Thedatasection
of theprogram is expandedto accommodate thesecounters.PLTO

alsoaddsa procedure to thecodethatwrites theedgeprofilesto a
file, andinsertsacall to thisprocedure justbeforetheprogramexit
point. Theprofilesgatheredby executingthis instrumentedbinary
on representative training input aresubsequently readin by PLTO

andusedto guideoptimizationdecisions.
PLTO alsosupportsthegatheringanduseof valueprofiles[13].

A value profile for a variablex at a programpoint p is a partial
probability distribution of thevaluestakenon by x at p. If this dis-
tribution is found to besufficiently skewed to a particularvaluea,
we cangeneratespecializedcodewhenthe valueof x is a at pro-
grampoint p. In particular, whencontrolreachesp wetestwhether
x hasvaluea and,if so, branchto the specializedcode. Whether
suchspecializationis worthwhile is determinedusinga low-level
cost-benefitanalysis[13]. We usegoal-directedvalueprofiling to
reducethe cost of gatheringvalue profiles [18]. The resultsde-
scribedin this paper, however, did not rely on valueprofiles.

5. OPTIMIZA TIONS
PLTO performsnumerous codeoptimizations,assummarizedin

Section2. Below we describesomeof themoreimportantof these
optimizations.

5.1 Inlining
Inlining isawell-known optimizationwhereacall to afunction f

is replacedby acopy of thebodyof thecallee f [2, 8]. Wheninlin-
ing iscarriedoutonexecutableprogramsafterlinking, thegoalis to
inline acrossmoduleandlibrary boundaries.Themainbenefitsof
inlining—apartfrom locality effectsarisingfrom bringingthecode
for thecallerandcalleeclosertogetherin memory—arethree-fold.
The first is to eliminate the function call/returnoverhead. Usu-
ally, inlining a function call getsrid of 2–5 instructions: the call
andreturninstructions,and—if the calleeis not a leaf function—
instructionsto allocatea stackframeon entryanddeallocateit on

return.Thesecondbenefitis to reduceor eliminatetheoverheadof
argument� passingby eliminatingpush operationsat the call site
andmemoryloadswithin thecallee.Thethird benefitis to exploit
callsite-specificinformation in the callee. For example,constant
argumentvaluescanbeexploitedto eliminateconditional branches
within the calleethat usethosevalues;andmemoryaliasingrela-
tionshipsbetweenthe caller’s codeandthe callee’s codemay be-
comeeasierto determineafter inlining, whenthey would refer to
the samestackframeratherthan two different frames. The main
potentialdisadvantageto inlining is codegrowth; doing inlining
withoutattendingto its effectsoncachebehavior canhaveasignif-
icantnegative effect on programperformance(this is dramatically
evident in, for example,theSPECint-95 benchmarkprogramgo).

The criteria usedfor inlining within PLTO areas follows. If a
function hasa single call site, or if its body containsat most 5
instructions,it is alwaysinlined,sincethiscannotresultin any code
growth. Otherwise,afunction f is inlinedinto acall siteC provided
thateachof thefollowing hold:

1. The inlining can be expectedto yield a reasonable perfor-
manceimprovement. Weconsider two possibilities.Thefirst
is thatC is a “hot” call site,i.e., it is executedsufficiently of-
tenthatthebenefit of eliminatingtheoverheadsof parameter
passingandcontrol transferis likely to be significant. The
secondis thatC passesconstantarguments to f , and f uses
its argumentsor passesthemto otherfunctionsthatusethem,
suchthat optimizing f ’s codeusinginformationaboutcon-
stantargumentsatC canyield performancebenefits.

2. Inlining f into C will not causeexcessive codegrowth or
interferewith otheroptimizationswithin PLTO. Under this
criterionwecheck, for example,thatC is nota recursive call
andthat the inlining will not adverselyaffect stackanalysis
(Section3.2). Thecachemodelwe useto estimatetheeffect
of inlining ontheinstructioncacheutilizationof theprogram
canbethought of asasimplifiedversionof McFarling’s[11].

Wearecurrentlyinvestigatingtechniquesto improveourestimation
of thebenefitsof knowing constantargumentsto a function.

5.2 Load/Store Forwarding
Load/storeforwardingis anoptimizationthatattemptsto elimi-

nateunnecessaryloadoperationsfrom memory. Theideais to find
a pair of instructionsI andJ suchthat: � i � I is a load instruction
r0 ��������� ����� ; � ii � J loadsa register r1 from, or storesr1 to, the
location � ; � iii � J dominatesI ; and � iv � we canguaranteethat the
contents of memorylocation � do not changebetweenJ andI . In
thiscase,providedthatsomeadditionalconditionsaresatisfied,we
canreplacetheloadoperationI by aregister-to-registermove from
r1 to r0 (or, if r0 � r1, simplyeliminateI). Theoptimizationcanbe
thought of asa specialcaseof commonsubexpressionelimination.

The implementationof load/storeforwardingin PLTO works as
follows. We considersituationsof theform

/* Block B1 */ J : r1 ������� � ����� or � �"!�#$� %�& � r1 �
. . .

/* Block Bn */ I : r0 ������� � �����
wherethesequenceof basicblocksB1 	
	
	 Bn formsanextendedba-
sic block. In otherwords,if we tracebackfrom Bn up to B1, each
block along the way (exceptpossiblyB1) hasexactly oneprede-
cessor. To ensurethat the contentsof location � arenot modified
betweeninstructionsJ and I , we examineeachstore instruction
betweentheseinstructionsto seewhetherthe target locationmay
overlap� . Thisisdoneusingthefollowing memorydisambiguation
rules:

1. anindirectmemoryreferencecanoverlapany othermemory
reference;

2. an absolutememorylocationdoesnot overlapa stackloca-
tion; and

3. two memoryreferencesarenon-overlappingif they usethe
samebaseandindex registers,andthesamescalefactor, but
have differentdisplacements.

If r0
� r1, we have to inserta registermove instructionto copy r1
into r0; this is insertedaslatein theextendedbasicblock B1 	
	
	 Bn
aspossible,while ensuringthat at the insertionpoint r1 still con-
tains the value loadedfrom location � and that register r0 is not
live at thatpoint. As a pragmaticmeasurewe allow only onesuch
copy operationto be insertedper loadoperationbeingeliminated;
this hasthe effect of allowing at most one of the registersr0 or
r1 (none,if r0 � r1) to be modifiedbetweeninstructionsJ and I .
We alsoensurethat the executionfrequency of the programpoint
wherethiscopy operationis insertedis low enough,relative to that
of instructionI , sothatits runtimecostdoesnot exceedthebenefit
of eliminatinginstructionI .

5.3 CMOV Intr oduction
TheIntel P6processorincorporatessomeinstructionsnot found

in olderPentiumprocessors,includingconditional move (CMOV)
instructionsfor integer andfloating point operands. The effect of
a CMOV instructionis to copy its sourceoperandto its destination
if the conditionspecifiedholds. If PLTO encountersa branchin-
structionwhoseonly effect is to conditionally jump over a move
operation,it optimizesthis to replacethe conditionalbranchand
move operationwith an appropriateCMOV instruction. The ef-
fect of this optimizationis to eliminatepotentially unpredictable
branches. Among the SPECint-95 benchmarks, the m88ksimpro-
gram experiencesa significantperformanceimprovement due to
this optimization.

6. EXPERIMENT AL RESULTS
We evaluated the performanceimprovements obtained from

PLTO using the SPECint-95 benchmarksuite. Our experiments
wererun on an otherwiseunloaded 600 MHz PentiumIII system
with 128MB of mainmemoryrunningRedHatLinux 6.2.Thepro-
gramswerecompiledwith gccversionegcs-2.91.66atoptimization
level-O3. TheprogramswereprofiledusingtheSPECtrainingin-
puts,optimizedby PLTO usingtheseprofiles,andthentimedonthe
SPECreferenceinputs.

Theexecutiontimesfor ourprograms,beforeandafteroptimiza-
tion, areshown in Table1. Eachnumber wasobtainedby running
the corresponding executable 7 times,discardingthe highestand
lowesttimes,andcomputing thearithmeticmeanof theremaining
5 times.Thelastline of Table1 shows theaveragespeedimprove-
mentobtained, computedasthegeometricmeanof thespeedratios
for the individual programs.The m88ksimbenchmarkobtainsthe
greatestperformanceimprovementof a little over 15%,while the
gcc, vortex, and perl benchmarksobtain improvementsof 8.6%,
7.4%,and6.4%respectively. On average,we seeanimprovement
of 6.2%.

Wealsomeasuredtheeffectsof PLTO onthelow-level execution
behavior of programs. TheseweremeasuredusingtheRabbitper-
formancecounterslibrary [10], with eachnumber obtainedasthe
averageof threerunson anotherwiseunloadedmachine.Someof
theresultsareshown in Figure1:

Memory Operations : Improvementsin the numberof memory
operationsareshown in Figure1(a). For several programs,
PLTO is ableto achieve significantreductionsin thenumber
of memoryoperations,dueprimarily to the effectsof inlin-
ing andload/storeforwarding,with li achieving a reduction
of over 9% andvortex a reductionof over 7%. On average,
thenumber of memoryoperationsis reducedby about 5.6%.

Program ExecutionTime (secs) Ratio
Original (T0) Optimized(T1) T1 ' T0

compress 116.96 113.89 0.974
gcc 79.89 72.98 0.914
go 123.12 121.05 0.983
ijpeg 128.56 127.45 0.991
li 100.45 94.79 0.944
m88ksim 115.27 97.63 0.847
perl 77.30 72.38 0.936
vortex 132.75 122.95 0.926

GEOMETRIC MEAN: 0.938

Table 1: Execution time impr ovements due to PLTO

Taken Branches : Thenumberof takenbranches,shown in Figure
1(b),is reduceddramatically, by about 64.5%ontheaverage.
This is due primarily to codelayout. The vortex program
experiences the greatestimprovement, with a reductionof
closeto 74%.

Mispredicted Branches : The improvement in the number of
mispredictedbranchesis shown in Figure 1(c). Most of
the benchmarks experiencesignificantimprovementsin the
number of branchmispredictions,with m88ksimandvortex
having improvementsof around30%, while gcc and perl
experiencesmaller—but still significant—improvementsof
over 12%. Overall, the programsexperiencea 12.7%im-
provement in thenumberof mispredictedbranches.

Instruction Fetches : Thenumberof instructionfetchesdecreases
for all programs,asshown in Figure1(d). The largestim-
provements are seenfor m88ksim, with a 13.6%reduction
in the numberof instructionsfetched,andm88ksim, with a
7.9%reduction.Theaveragereductionin thenumber of in-
structionsfetchedis 5.5%.

Instruction Cache Misses : Changes in thenumber of instruction
cachemissesareshown in Figure1(e). Unfortunately, these
numbers aresignificantlyworsethanwe would like: several
programsexperience significantincreasesin the number of
i-cachemisses,with go incurringa 121%increase,andli in-
curring a 12-fold(!) increase.On theotherhand,somepro-
gramsexhibit significantreductions in thenumberof i-cache
misses,with m88ksimandperl experiencingimprovements
of 76.5%and36%respectively. Overall, theprogramssuffer
a 15.3%increasein thenumberof i-cachemisses.

Wearecurrentlyinvestigatingthereasonsfor theseincreases,
andanticipatefurther improvements in theoverall speedups
PLTO is able to achieve when this problem has beenad-
dressed.

An interestingaspectof ourexperienceswith PLTO wasin thein-
teractionbetweencodelayoutandtheBranchTargetBuffer (BTB)
managementalgorithm. Our experimentsindicatedthat profile-
guidedcodelayout using the Pettis-Hansenalgorithm[15] led to
a hugeincrease(by roughly two ordersof magnitude)in thenum-
berof BTB misses.This initially raisedthepossibilitythatprofile-
guidedcodelayoutmayhavebeeninadvertantlyintroducingsignif-
icant runtimeoverheads arisingfrom theseBTB misses.We even-
tually trackedtheproblemdown to thefact thaton thePentiumIII
processor, a conditionalbranchdoesnot entertheBTB until it has
beentaken. Recall that the Pettis-Hansencodelayout algorithm
is set up so that conditionalbranches fall through—i.e., are not
taken—wherever possible.Eachsuchbranchcan, therefore,give

compress
gcc go

ijpeg li

m88ksim perl
vorte

x
0.0

5.0

10.0

im
pr

ov
em

en
t (

%
)

average(

(a) Memoryoperations

compress
gcc go

ijpeg li

m88ksim perl
vorte

x
0.0

20.0

40.0

60.0

im
pr

ov
em

en
t (

%
)

average(

(b) Branchestaken

compress
gcc go

ijpeg li

m88ksim perl
vorte

x
0.0

10.0

20.0

30.0

im
pr

ov
em

en
t (

%
)

0.0

10.0

20.0

30.0

im
pr

ov
em

en
t (

%
)

average(

(c) Branchesmispredicted

compress
gcc go

ijpeg li

m88ksim perl
vorte

x
0.0

5.0

10.0

15.0

im
pr

ov
em

en
t (

%
)

average(

(d) Instructionfetches

compress
gcc go

ijpeg li

m88ksim perl
vorte

x
-150

-100

-50

0

50

100

im
pr

ov
em

en
t (

%
)

-150

-100

-50

0

50

100

im
pr

ov
em

en
t (

%
)

average(

Seetext for remarkson i-cachemissesfor li

(e) I-cachemisses

Figure1: Effects of PLTO on Low Level Program Behavior

rise to a BTB misseachtime it is encountereduntil eventually it
enters) theBTB (if it does).Fortunately, it turnsout thatin thispar-
ticular casetheBTB missdoesnot incur any performancepenalty.
However—apartfrom thefact thatthis behavior wasinitially quite
disconcerting—it alsomeansthat the “unpenalized”BTB misses
arisingfrom profile-guidedcodelayoutcanmaskBTB misseselse-
wherein theprogramthatdo incur a performancepenalty, thereby
makingit harderto identify andrectify thelatter.

7. RELATED WORK
Binaryrewriting andlink-time codeoptimizationhavebeencon-

sideredby a numberof researchers.Thework mostcloselyrelated
to oursarethosefocusingonstaticoptimizationof executable bina-
ries.Mostof thework in thiscontext, includingSpike[6], alto [14],
andOM [17], hasfocusedon RISCarchitecturessuchastheCom-
paqAlpha. Comparedto suchRISCarchitectures,the Intel IA-32
architecturetargetedby PLTO offers very different challengesto
link-time optimization.

The Etch system,like PLTO, is aimedat modifying IA-32 exe-
cutables[16]. Its primarygoalappearsto beinstrumentationrather
thanoptimization.It implementsa relatively smallsetof optimiza-
tions;theonly onespecificallymentionedby theauthorsis profile-
guidedcodelayout. Othersystemsaimedat instrumentationand
analysisof IA-32 programsincludeNT-Atom andHiProf [7].

Also relatedis UQBT, a binarytranslationsystemthatis ableto
processIA-32 executables[4]. The primary focusof this work is
on the translationof executableprogramsacrossplatformsrather
thanaggressive optimizationwithin thecontext of aparticularplat-
form. This differencein focusbetweenUQBT andPLTO leadsto
significantdifferencesin their internalarchitecturesaswell asthe
assumptions they make aboutinput binaries;in particular, UQBT
doesnot attemptto optimizecodethat doesnot conformto high-
level specifications,suchashand-optimizedassemblycodewithin
libraries.

8. CONCLUSIONS
We have describedPLTO, a link-time optimizerfor theIntel IA-

32 architecture.Thegoalof our systemis to optimizeexecutables
thathave beenaggressively optimizedby thecompiler, andwhich
may containstatically linked libraries and/orhand-optimized as-
semblycodethatneednot adhereto higherlevel conventions.Our
systemimplementsseveral analyses that are, to the best of our
knowledge, new: examples include the stackanalysis,usedepth
andkill depthanalyses,etc.Wecurrentlyobtainreasonable perfor-
manceimprovementson medium-sizedprograms, asexemplified
by theSPECint-95benchmarksuite,which experiencea speedim-
provement of a little over 6% on theaverage.

9. REFERENCES
[1] G. R. Andrews,S.K. Debray, B. W. Schwarz,andM. P.

Legendre,“Using Link-Time Optimizationto Improve the
Performanceof MPI Programs”,manuscript,Dept.of
ComputerScience,TheUniversityof Arizona,Tucson,April
2001.

[2] A. Ayers,R. Schooler, andR. Gottlieb,“Aggressive
Inlining”, Proc.SIGPLAN’97 Conferenceon Programming
Language DesignandImplementation, June1997,
pp.134–145.

[3] C. CifuentesandK. J.Gough,“Decompilation of Binary
Programs”,Software—PracticeandExperience, Vol. 25,No.
7, July 1995, pp.811–829.

[4] C. Cifuentes,M. VanEmmerik,D. Ung,D. Simon,andT.
Washington,“PreliminaryExperienceswith theUQBT

Binary TranslationFramework”, Proc.Workshop on Binary
Translation, Oct.1999, pp.12–22.

[5] C. CifuentesandM. VanEmmerik.“Recovery of JumpTable
CaseStatementsfrom Binary Code,” Scienceof Computer
Programming, Vol. 40, Issue2-3,July 2001,pp.171–188.

[6] R. Cohn,D. Goodwin,P. G. Lowney, andN. Rubin,
“Optimizing Alpha Executableson Windows NT with
Spike”, Digital Technical Journal, Vol. 9, No. 4, 1997,
pp.3–20.

[7] CompaqCorp.,ReleaseNotesfor NT-Atom1.53, April 1999.
www.support.compaq.com/amt/perftools/
153relnote.txt.

[8] J.W. DavidsonandA. M. Holler, “SubprogramInlining: A
Studyof its Effectson ProgramExecutionTime”, IEEE
Transactionson Software Engineeringvol. 18 no.2,
Feb. 1992, pp.89–102.

[9] D. W. Goodwin,“Interprocedural dataflow analysisin an
executableoptimizer”, In Proc.ACM SIGPLAN’97
Conferenceon ProgrammingLanguage Designand
Implementation, June1997,pp.122–133.

[10] D. Heller, “Rabbit—A PerformanceCountersLibrary for
Intel/AMD ProcessorsandLinux”, ScalableComputing
Laboratory, AmesLaboratory, U.S.D.O.E.,Iowa State
University.
http://www.scl.ameslab.gov/Projects/Rabbit

[11] S.McFarling, “ProcedureMerging with InstructionCaches”,
Proc.SIGPLAN’91 Conferenceon ProgrammingLanguage
DesignandImplementation, June1991, pp.71–79.

[12] R. Muth, “RegisterLivenessAnalysisof ExecutableCode”,
Manuscript, Dept.of ComputerScience,TheUniversityof
Arizona,Nov. 1997.Availableat
www.cs.arizona.edu/alto/papers/liveness.ps.

[13] R. Muth, S.Watterson,andS.K. Debray, “Code
Specializationbasedon ValueProfiles”,Proc.7th.
International StaticAnalysisSymposium(SAS2000), June
2000.SpringerLNCSvol. 1824,pp.340–359.

[14] R. Muth, S.K. Debray, S.Watterson,andK. De Bosschere,
“alto : A Link-Time Optimizerfor theCompaqAlpha”,
Software PracticeandExperience, Vol. 31,January2001,
pp.67–101.

[15] K. PettisandR. C. Hansen,“Profile-GuidedCode
Positioning”,Proc.SIGPLAN’90 Conferenceon
ProgrammingLanguage DesignandImplementation, June
1990,pp.16–27.

[16] T. Romer, G. Voelker, D. Lee,A. Wolman,W. Wong,H.
Levy, B. N. Bershad,andJ.B. Chen,“Instrumentationand
Optimizationof Win32/IntelExecutables”,1997USENIX
Windows NT Workshop, August1997,pp.1–8.

[17] A. Srivastava andD. W. Wall, “A PracticalSystemfor
IntermoduleCodeOptimizationat Link-Time”, Journal of
ProgrammingLanguages, March1993, pp.1–18.

[18] S.A. WattersonandS.K. Debray, Goal-DirectedValue
Profiling.Proc.2001International Conferenceon Compiler
Construction(CC2001), April 2001, pp.319–333.

[19] M. N. WegmanandF. K. Zadeck,“Constant Propagation
with Conditional Branches”,ACM Transactionson
ProgrammingLanguagesandSystems, Vol. 13,No. 2, April
1991,pp.181–210.

