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A Way-Ahead-of-Time Compiler
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Overview

� The Java language is gaining prominence
� Java is designed for interpretation
� Toba precompiles Java programs

to cut execution time by 2/3
� Toba trades flexibility for speed
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Toba: An Independent Project

� Compatible with Java language spec
� Different implementation internals
� Different C interface
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Full Language Support

� Java specifies (among other things):
� array bounds checking
� thread support
� garbage collection
� exception handling

� These feature affect performance
� some compilers omit them
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Original Java Model

� Interpretation
� Just-in-time (JIT) compilation
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source
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files

execution

� Compile for abstract Java Virtual Machine
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Toba: WAT Compilation

�Quick startup – no JIT compilation
� Fast execution – better optimization
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� Compile JVM code to machine code

x
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Applicability of Toba

� Not for applets
� not architecture-independent
� machine code can’t be trusted

� For stand-alone applications
� Java compiler
� “server side” programs
� many other possibilities
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Using Toba

Java source code
javac

class files
toba

C code
C compiler

object code
ld  (with runtime system)

executable file
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The Translator

� A 5000-line Java program
� Reads class files
�Writes (mostly) ANSI C code

� data structure definitions
� static initialization
� executable method code

� Uses long long for 64-bit ints
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Runtime Datatypes

� Primitive Java types map to C types
� e.g.: char –> unsigned short

� Reference types map to void *
� the pointer addresses an allocated object
� Toba does not use handles
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Java Objects

instance
variables

object pointer object instance class descriptor
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Runtime Class Descriptor

� Common attributes
� name, flags, superclass, etc.

�Method table
� function pointers and hash values

� Class (static) variables
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Subclass Descriptor

� Duplicates and extends superclass layout

class attributes
method

table

T’s class variables

class attributes
inherited and

overridden methods

U’s class variables
U’s new methods

class T class U extends T
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Code Generation

�One .c / .h pair for each class
�One function per method
� Each method is translated independently

� a key difference from Harissa
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JVM is Stack-Based

iload_2   (push var2)
iload_3   (push var3)
iadd   (add)
istore_1   (pop & store)

a = b + c;
Java JVM
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C Code Models Stack

i1 = iv2;
i2 = iv3;
i1 = i1 + i2;
iv1 = i1;

C

iload_2
iload_3
iadd
istore_1

JVM

� i1, i2 are first two integer stack positions
� iv1, iv2, iv3 are Java local variables
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Naive But Effective

� The generated code is simpleminded
� C compilers produce efficient code

18

Control Flow

� Use C goto statements when possible
� conditional and unconditional jumps

� Use switch when target is not fixed
� JVM ret instruction is an indirect jump
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Three Kinds of Method Calls

� Static method
� direct call to C function

� Instance method
� indirect call through method table

� Interface method
� search for matching name and signature
� use hashcode for quicker searching
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Java Exceptions

� Java programs can throw and catch 
exceptions across method boundaries

� Exceptions are thrown by
� explicit code
� execution errors

� Toba uses setjmp / longjmp
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Exception Setup

� A method that catches exceptions
� calls setjmp on entry
� maintains a PC variable

� No overhead if no catch
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Exception Dispatching

� throw executes a longjmp
to the innermost setjmp point 

� Dispatching is based on exception class 
and PC

� Unselected exceptions are rethrown
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The Runtime System

� Java library (API) from Sun
� Toba runtime system (C code)

� 3000 lines of API support
� 3000 lines of language support

� Boehm-Demers-Weiser
conservative garbage collector

� BISS AWT (window toolkit)
� Thread package
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Garbage Collection

� Use Boehm-Demers-Weiser collector
� A free conservative collector
�Originally needed minor changes

for Java finalization
� Now used off-the-shelf
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Threads and Synchronization

� Thread layer interfaces to system
� Solaris threads supported now
�Others in works
� Thread support impacts performance

even when not used
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Performance Measurements

� Benchmarks use software tools
found on the net

� Toba is compared with three other
full implementations:
� JDK:  the original Sun interpreter
� Sun JIT:  a Sun just-in-time compiler
� Guava:  an independent JIT compiler
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Micro-Benchmarks

� UCSD microbenchmarks isolate
specific language features

� Toba is generally faster than others
� Guava interface calls 16% faster
� A few others <10% faster
� Toba wins most comparisons
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Application Performance
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The Effect of Thread Support
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Toba and Harissa

� Toba has thread support
� Harissa does class hierarchy analysis, 

inlining, and optimization
� Different exception handling approach
� Different null-pointer checking
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Current Status

� Full implementation for Solaris
� SGI has ported to Irix with pthreads
� Partial implementation for Linux, NT

(no threads, no AWT)
� Source code is on the Web
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Future Work

� JIT compiler
� JDK version 1.1
�More full ports, using POSIX threads
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Software Distribution

� Source code and documentation:
http: // www.cs.arizona.edu /

sumatra / toba /

* Toba is a large lake on Sumatra,
  the island just west of Java.


