Toba: Java for Applications
A Way-Ahead-of-Time Compiler

Todd Proebsting, Gregg Townsend,
Patrick Bridges, John Hartman,
Tim Newsham, Scott Watterson

The University of Arizona

Toba: An Independent Project

3

Compatible with Java language spec
Different implementation internals
Different C interface

Original Java Model

5

Compile for abstract Java Virtual Machine

Java c!ass
source |—| files
execution
Interpretation

Just-in-time (JIT) compilation

Overview

2

The Java language is gaining prominence
Java is designed for interpretation

Toba precompiles Java programs
to cut execution time by 2/3

Toba trades flexibility for speed

Full Language Support

Java specifies (among other things):
array bounds checking
thread support
garbage collection
exception handling

These feature affect performance
some compilers omit them

Toba: WAT Compilation

Compile JVM code to machine code

Java class machine
source |—| files |——| code
exeXz‘ion execution

Quick startup — no JIT compilation
Fast execution — better optimization

Applicability of Toba

Not for applets

not architecture-independent

machine code can’t be trusted

For stand-alone applications

Java compiler

“server side” programs
many other possibilities

The Translator

A 5000-line Java program

Reads class files

Writes (mostly) ANSI C code
data structure definitions
static initialization
executable method code

Uses long long for 64-bit ints

Java Objects

1

object pointer

object instance

class descriptor

-

-

instance
variables

class
attributes

method
table

class
variables

Using Toba
| Java source code |
] javac
| class files |
l toba
| C code |
C compiler

| object code |

Id (with runtime system)

| executable file |

Runtime Datatypes

Primitive Java types map to C types
e.g.: char — unsigned short
Reference types map to void *

the pointer addresses an allocated object
Toba does not use handles

Runtime Class Descriptor

Common attributes

name, flags, superclass, etc.
Method table

function pointers and hash values
Class (static) variables

Subclass Descriptor Code Generation

13

Duplicates and extends superclass layout One .c / .h pair for each class
One function per method

class T class U extends T Each method is translated independently
class attributes class attributes a key difference from Harissa
method inherited and
table ——| overridden methods

U’s new methods
U’s class variables

T’s class variables

JVM is Stack-Based C Code Models Stack
JVM C
Java JVM - —
a=b+c; |—/|iload_2 (push var2) ::823_(23 T :; : :&23
iload_3 (push var3) iadd i1 =i +i2:
jadd (add) istore_1 vl =i1;
istore_1 | (pop & store)

i1, i2 are first two integer stack positions
iv1, iv2, iv3 are Java local variables

Naive But Effective Control Flow

The gen_erated code is S_impleminded Use C goto statements when possible
C compilers produce efficient code conditional and unconditional jumps
Use switch when target is not fixed
JVM ret instruction is an indirect jump

Three Kinds of Method Calls

Static method
direct call to C function
Instance method

indirect call through method table
Interface method

search for matching name and signature
use hashcode for quicker searching

Exception Setup

21

A method that catches exceptions
calls setjmp on entry
maintains a PC variable

No overhead if no catch

The Runtime System

23

Java library (API) from Sun
Toba runtime system (C code)
3000 lines of API support
3000 lines of language support
Boehm-Demers-Weiser
conservative garbage collector
BISS AWT (window toolkit)
Thread package

Java Exceptions

20

Java programs can throw and catch
exceptions across method boundaries
Exceptions are thrown by
explicit code
execution errors

Toba uses setjmp / longjmp

Exception Dispatching

22

throw executes a longjmp
to the innermost setjmp point

Dispatching is based on exception class
and PC

Unselected exceptions are rethrown

Garbage Collection

24

Use Boehm-Demers-Weiser collector
A free conservative collector

Originally needed minor changes
for Java finalization

Now used off-the-shelf

Threads and Synchronization

25

Thread layer interfaces to system
Solaris threads supported now
Others in works

Thread support impacts performance
even when not used

Micro-Benchmarks

UCSD microbenchmarks isolate
specific language features

Toba is generally faster than others
Guava interface calls 16% faster
A few others <10% faster
Toba wins most comparisons

The Effect of Thread Support

Tob Zg? m Javalex
oba Zgz Ojava_cup
T '16 H javac
'thObat 23 0 espresso
withou -
a7 mtoba
threads 17
Hari }_g
arissa 18
13
0 0.2 0.4 0.6 0.8

Execution Time relative to JDK

Performance Measurements

26

Benchmarks use software tools
found on the net

Toba is compared with three other
full implementations:
JDK: the original Sun interpreter
Sun JIT: a Sun just-in-time compiler
Guava: an independent JIT compiler

Application Performance

28

28 | WJavalex
3 Ojava_cup
‘34 | Hjavac

55 | Oespresso
: mtoba

Toba

Sun JIT

Guava .
.52
.70

0 0.2 0.4 0.6 0.8 1
Execution Time Relative to JDK

Toba and Harissa

30

Toba has thread support

Harissa does class hierarchy analysis,
inlining, and optimization

Different exception handling approach

Different null-pointer checking

Current Status Future Work

Full implementation for Solaris JIT compiler
SGI has ported to Irix with pthreads JDK version 1.1
Partial implementation for Linux, NT More full ports, using POSIX threads

(no threads, no AWT)
Source code is on the Web

Software Distribution

Source code and documeptation:
http: // www.cs.arizona.edu /
sumatra / toba /

* Toba is a large lake on Sumatra,
the island just west of Java.

