
Toba: Java for Applications

Todd Proebsting, Gregg Townsend,
Patrick Bridges, John Hartman,
Tim Newsham, Scott Watterson

The University of Arizona

A Way-Ahead-of-Time Compiler

2

Overview

� The Java language is gaining prominence
� Java is designed for interpretation
� Toba precompiles Java programs

to cut execution time by 2/3
� Toba trades flexibility for speed

3

Toba: An Independent Project

� Compatible with Java language spec
� Different implementation internals
� Different C interface

4

Full Language Support

� Java specifies (among other things):
� array bounds checking
� thread support
� garbage collection
� exception handling

� These feature affect performance
� some compilers omit them

5

Original Java Model

� Interpretation
� Just-in-time (JIT) compilation

Java
source

class
files

execution

� Compile for abstract Java Virtual Machine
6

Toba: WAT Compilation

�Quick startup – no JIT compilation
� Fast execution – better optimization

Java
source

class
files

machine
code

executionexecution

� Compile JVM code to machine code

x

7

Applicability of Toba

� Not for applets
� not architecture-independent
� machine code can’t be trusted

� For stand-alone applications
� Java compiler
� “server side” programs
� many other possibilities

8

Using Toba

Java source code
javac

class files
toba

C code
C compiler

object code
ld (with runtime system)

executable file

9

The Translator

� A 5000-line Java program
� Reads class files
�Writes (mostly) ANSI C code

� data structure definitions
� static initialization
� executable method code

� Uses long long for 64-bit ints

10

Runtime Datatypes

� Primitive Java types map to C types
� e.g.: char –> unsigned short

� Reference types map to void *
� the pointer addresses an allocated object
� Toba does not use handles

11

Java Objects

instance
variables

object pointer object instance class descriptor

class
attributes

method
table

class
variables

12

Runtime Class Descriptor

� Common attributes
� name, flags, superclass, etc.

�Method table
� function pointers and hash values

� Class (static) variables

13

Subclass Descriptor

� Duplicates and extends superclass layout

class attributes
method

table

T’s class variables

class attributes
inherited and

overridden methods

U’s class variables
U’s new methods

class T class U extends T

14

Code Generation

�One .c / .h pair for each class
�One function per method
� Each method is translated independently

� a key difference from Harissa

15

JVM is Stack-Based

iload_2 (push var2)
iload_3 (push var3)
iadd (add)
istore_1 (pop & store)

a = b + c;
Java JVM

16

C Code Models Stack

i1 = iv2;
i2 = iv3;
i1 = i1 + i2;
iv1 = i1;

C

iload_2
iload_3
iadd
istore_1

JVM

� i1, i2 are first two integer stack positions
� iv1, iv2, iv3 are Java local variables

17

Naive But Effective

� The generated code is simpleminded
� C compilers produce efficient code

18

Control Flow

� Use C goto statements when possible
� conditional and unconditional jumps

� Use switch when target is not fixed
� JVM ret instruction is an indirect jump

19

Three Kinds of Method Calls

� Static method
� direct call to C function

� Instance method
� indirect call through method table

� Interface method
� search for matching name and signature
� use hashcode for quicker searching

20

Java Exceptions

� Java programs can throw and catch
exceptions across method boundaries

� Exceptions are thrown by
� explicit code
� execution errors

� Toba uses setjmp / longjmp

21

Exception Setup

� A method that catches exceptions
� calls setjmp on entry
� maintains a PC variable

� No overhead if no catch

22

Exception Dispatching

� throw executes a longjmp
to the innermost setjmp point

� Dispatching is based on exception class
and PC

� Unselected exceptions are rethrown

23

The Runtime System

� Java library (API) from Sun
� Toba runtime system (C code)

� 3000 lines of API support
� 3000 lines of language support

� Boehm-Demers-Weiser
conservative garbage collector

� BISS AWT (window toolkit)
� Thread package

24

Garbage Collection

� Use Boehm-Demers-Weiser collector
� A free conservative collector
�Originally needed minor changes

for Java finalization
� Now used off-the-shelf

25

Threads and Synchronization

� Thread layer interfaces to system
� Solaris threads supported now
�Others in works
� Thread support impacts performance

even when not used

26

Performance Measurements

� Benchmarks use software tools
found on the net

� Toba is compared with three other
full implementations:
� JDK: the original Sun interpreter
� Sun JIT: a Sun just-in-time compiler
� Guava: an independent JIT compiler

27

Micro-Benchmarks

� UCSD microbenchmarks isolate
specific language features

� Toba is generally faster than others
� Guava interface calls 16% faster
� A few others <10% faster
� Toba wins most comparisons

28

Application Performance

0 0.2 0.4 0.6 0.8 1

Guava

Sun JIT

Toba

Execution Time Relative to JDK

JavaLex
java_cup
javac
espresso
toba

.28

.39

.31

.24

.34

.55

.63

.59

.53

.51

.50

.98

.56

.52

.70

29

The Effect of Thread Support

0 0.2 0.4 0.6 0.8 1

Harissa

without

Toba

Execution Time relative to JDK

JavaLex
java_cup
javac
espresso
toba

Toba

threads

.28

.39

.31

.24

.34

.16

.23

.20

.17

.17

–
.15
.16
.14
.13

30

Toba and Harissa

� Toba has thread support
� Harissa does class hierarchy analysis,

inlining, and optimization
� Different exception handling approach
� Different null-pointer checking

31

Current Status

� Full implementation for Solaris
� SGI has ported to Irix with pthreads
� Partial implementation for Linux, NT

(no threads, no AWT)
� Source code is on the Web

32

Future Work

� JIT compiler
� JDK version 1.1
�More full ports, using POSIX threads

33

Software Distribution

� Source code and documentation:
http: // www.cs.arizona.edu /

sumatra / toba /

* Toba is a large lake on Sumatra,
 the island just west of Java.

