
CSc 422/522 — Homework 1

due Tuesday, February 6

Problems 1 through 4 are worth five points each.Problems 5 through 7 are worth 10 points each.
Graduate students are to solve all problems (50 points); undergraduates are to solve any
combination of problems that adds up to 40 points.

You may discuss the meanings of questions with classmates, but the work you turn in must be
yours alone.Explain clearly and succinctly what you are doing; don’t just give an answer.

For the programming assignments, turn in well-commented listings of your programs.We will
not be using electronic turnin for this assignment.Every program should have a descriptive
header comment that includes your name.See also the other Presentation Points on the class Web
page.

1. MPDbook, Exercise 2.10.

2. MPDbook, Exercise 2.15.

3. MPDbook, Exercise 2.16.

4. MPDbook, Exercise 2.19.

5. If M is ann × n matrix, the transpose ofM is a matrixT such thatM[i,j] = T[j,i] for all i
andj. Write an iterative parallel program in MPD to compute the transpose of a matrixin place.
Do not use an extra matrix. UsePR processes and assume thatn is a multiple ofPR. The values
of n andPR should be command-line arguments. Initializethe matrix to any values you wish; I
suggest using values that make it easy for you to check that your answer is correct.

6. Considerthe parallel recursive quadrature program described in the text and given in MPD
programquad.co.mpd.

(a) Modify the program so that it approximates the value of � using either of the functions in
Exercise 1.6. The program should have the same three command-line arguments and it
should write the same output.

(b) Modify your answer to (a) as described in Exercise 1.7, part (a).The threshhold valueT
should be a fourth command-line argument.

(c) Modify your answer to (b) so that it uses an array ofT processes. Divide the interval froma
to b into T parts, have each process approximate the area of one part, then add the results.
Use the sequential recursive algorithm within each part.

Execute all three programs using the same arguments and report the results.Vary epsilon andT
to see how they affect the accuracy of the result and the execution time.



7. Considerthe following simple problem: Given two input files, output aperfect shuffle of the
two files. Aperfect shuffle is an interleaving that contains the first line from input file 1, then the
first line from input file 2, then the second line from input file 1, then the second line from input
file 2, and so on.(If the input files are the same, this has the effect of duplicating every line.) If
one file is longer than the other, append the extra lines to the end of the output.

(a) Writea sequential MPD program to solve this problem.

(b) Modify your program to use the "co insidewhile" style as described in Section 2.2 of the
textbook. Thethree independent activities are reading fromfilename1, reading from
filename2, and writing to standard output.Usedouble buffering for each input file—i.e.,
read and write different buffers, then swap their roles.

If shuffle is the name of your executable file, then both programs should be invoked with two
command-line arguments:

shuffle filename1 filename2

The programs should write to standard output.

Note: The MPD implementation by default lets a process run until it blocks, then it executes
another process, and so on.This makes execution pretty deterministic on a single processor. You
can force MPD to reschedule a process—and hence get a better simulation of true concurrency—
in either of two ways. Oneis put calls ofnap(0) in the bodies of loops.The second is to use the
-L option with the MPD linker (mpdl). In particular, if shuffle is the name of your main (only)
resource, first compile your program, then execute "mpdl -L 1 shuffle". Theexecutable now
resides ina.out.


