
Parameterized Diamond Tiling for Stencil Computations
with Chapel parallel iterators

Ian J. Bertolacci
Colorado State University

Ft. Collins, Colorado
ibertola@cs.colostate.edu

Catherine Olschanowsky
Colorado State University

Ft. Collins, Colorado
cathie@cs.colostate.edu

Ben Harshbarger
Cray Inc.

Seattle, Washington
bharshbarg@cray.com

Bradford L. Chamberlain
Cray Inc.

Seattle, Washington
bradc@cray.com

David G. Wonnacott
Haverford College

Haverford, Pennsylvania
davew@cs.haverford.edu

Michelle Mills Strout
Colorado State University

Ft. Collins, Colorado
mstrout@cs.colostate.edu

ABSTRACT
Stencil computations figure prominently in the core kernels
of many scientific computations, such as partial differential
equation solvers. Parallel scaling of stencil computations
can be significantly improved on multicore processors using
advanced tiling techniques that include the time dimension,
such as diamond tiling. Such techniques are difficult to in-
clude in general purpose optimizing compilers because of the
need for inter-procedural pointer and array data-flow analy-
sis, plus the need to tune scheduling strategies and tile size
parameters for each pairing of stencil computation and ma-
chine.

Since a fully automatic solution is problematic, we pro-
pose to provide parameterized space and time tiling iter-
ators through libraries. Ideally, the execution schedule or
tiling code will be expressed orthogonally to the computa-
tion. This supports code reuse, easier tuning, and improved
programmer productivity. Chapel iterators provide this ca-
pability implicitly. We present an advanced, parameterized
tiling approach that we have implemented using Chapel par-
allel iterators. We show how such iterators can be used by
programmers in stencil computations with multiple spatial
dimensions. We also demonstrate that these new iterators
provide better scaling than a traditional data parallel sched-
ule.

Categories and Subject Descriptors
D.3.3 [Language Constructs and Features]: Control
structures; D.3.4 [Processors]: Code generation, Optimiza-
tion

Keywords
stencil computations, diamond tiling, Chapel, parallel iter-
ators, separation of concerns

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICS’15, June 8–11, 2015, Newport Beach, CA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3559-1/15/06 ...$15.00.
http://dx.doi.org/10.1145/2751205.275122.

1. INTRODUCTION
Stencil computations are ubiquitous in scientific simula-

tion applications, often composing the most time-intensive
kernels of the application. Advanced optimization tech-
niques, such as diamond tiling [1] reduce memory band-
width pressure, which is crucial to efficient scaling and is
becoming more important as memory hierarchies deepen and
the bandwidth-to-flops ratio decreases [18]. However, apply-
ing complex tiling techniques manually to application code
obfuscates the core computational kernels and causes code
maintenance issues by complicating the control flow. Ad-
ditionally, tiling techniques require architecture-specific tile
size selection, and the inclusion of such tuning parameters
within the primary specification of a computational kernel
thwarts performance portability. This work provides solu-
tions to the challenges associated with diamond tiling using
a framework that can be extended to other advanced tiling
techniques.

Loop tiling [17] changes the execution order of the itera-
tions of a loop nest to improve data locality, which in turn
reduces memory bandwidth pressure. Tiling has been shown
to improve both single-processor performance and the scal-
ability of performance on parallel systems. Including the
time dimension in the tiling takes further advantage of the
available locality in stencil operations [14,24,25,30,31]. Dia-
mond tiling further improves performance by allowing work
on tiles to begin simultaneously, thus increasing available
parallelism.

Most optimizing compilers do not include diamond tiling
techniques. Even when a compiler can perform this opti-
mization on a small benchmark, it may fail to do so on a
larger code due to program analysis limitations. This leaves
application developers no choice but to include such tiling
transformations in the primary specification of the computa-
tion. This is undesirable for two reasons: (1) The tiling loop
structures obfuscate the original stencil computation to the
point of making them virtually unrecognizable [21]. (2) The
size and shape of the tiles required varies with architecture;
including this diminishes portability.

The goal of this work is to enable the quick adoption of
novel tiling techniques without obfuscating application code.
This is achieved by removing the execution schedule from
the primary specification of the computation using Chapel

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

HT→
ThreadCount

S
p
ee
d
u
p

Jacobi2D Parallel Speedup

Space Tiled-C

NaiveParallel-Chapel

Diamond Tiled-C

Diamond Tiled-Chapel

Figure 1: Speedup of the Jacobi2D benchmark with re-
spect to a serial version of space tiling implemented in
C+OpenMP. Diamond tiling clearly outperforms the par-
allel space tiling version, and the version implemented with
a parameterized Chapel parallel iterator is competitive with
the comparable C+OpenMP version when the number of
threads is a multiple of the number of cores.

parallel iterators. The iterator implementation of diamond
tiling is parameterized to enable performance tuning.

1.1 Motivation for Parameterizing Tiling
Currently, applying diamond tiling requires manually in-

cluding the tiling loops in the primary expression of the
computation. The source-to-source compiler Pluto [7] can
automate diamond tiling in some cases and code generation
tools can be used to aid with this process; however, they
require tile sizes be specified for non-rectangular tiles [3,23].

Given a fixed tile size, the iteration space that results from
diamond tiling is affine. However, adding the parameter size
as a variable causes the iteration space to no longer be affine.
This is because the tile size is involved in a multiplication de-
termining the bounds of the generated loops. Current code
generation tools cannot handle non-affine iteration spaces.
Parameterizing the diamond tiling overcomes this challenge,
thereby simplifying the development and tuning workflow.

The workflow for applying diamond tiling within a stencil
computation currently involves the following steps:

1. develop the code using a standard execution schedule,
2. generate the tiling loops for a best-guess tile size,
3. manually incorporate the generated code,
4. recompile and run a performance test, and
5. improve the tile size guess and return to step 2 until

satisfactory performance has been achieved.
By parameterizing the generated code, we remove the re-
peated manual step, prevent the need for code regeneration
and recompilation, and enable auto-tuning using run-time
parameters.

1.2 Motivation for Using Iterators
The loop nests necessary for a tiled execution schedule are

complex and their direct use within application code leads
to code duplication, challenging and error-prone incorpora-
tion, and obfuscated application code. Iterators are an in-

creasingly common programming construct that solve these
challenges by providing code modularity for the loop nests
themselves. Modular code lends itself to reuse, testing, and
maintenance.

An additional benefit to this approach is that parameter-
ized iterators provide a level of performance portability. Per-
formance portability means that the code can be optimized
for various architectures without changing the primary spec-
ification of the calculations. Given that the iterator can be
parameterized for tuning parameters, in this case tile size,
the parameters can be changed to accommodate varying tar-
get architectures.

1.3 Technical Contributions
The technical contributions of this paper include:

• Parameterizing diamond tiling. We present a sys-
tematic method for creating diamond tiling code that
is parameterized for tile size and specific to the tiling
hyperplanes.
• Implementing the parameterized diamond tiling

using Chapel parallel iterators. This separates
the expression of the tiling schedule (the loop nest)
from the expression of the computation itself (the loop
body). We created a proof of concept that shows
we can develop libraries of schedules that could be
adopted by end-users.

We demonstrate that the parameterized diamond tiling
variants perform as well as fixed-size diamond tiling variants,
and reproduce results showing that diamond tiling is faster
than rectangular space tiling. The Chapel parallel itera-
tors demonstrate competitive performance while providing
significant programmability benefits over the C+OpenMP
implementations (see Figure 1). The results are discussed
in detail in Section 5. Section 7 concludes.

2. BACKGROUND
This work makes practical the use of advanced tiling tech-

niques, specifically diamond tiling, within stencil-based ap-
plications. This section provides background about stencil
applications in general, the stencil benchmarks used in this
work, standard space and time tiling techniques, and dia-
mond tiling.

2.1 Stencil Computations/Benchmarks
A stencil computation is one in which the result, or up-

date to each cell, depends on the values of some set of neigh-
bors. In this paper, we use the Jacobi 1D and 2D bench-
marks. These benchmarks are general representations of
other Jacobi-like stencils with dependencies through time
that are common in applications, such as heat and discrete
wave equations. The quintessential Jacobi stencil is the av-
erage of a Von Neumann neighborhood of depth 1 over a
series of time-steps.

A one-dimensional implementation of Jacobi can be set
up to simulate heat dissipation through a theoretical one
dimensional rod. In our implementation we set the initial
conditions to 0.0 at each end and use a random number
generator to assign values at each discreet point within the
rod. The “dissipation” is calculated using an average of each
point and its direct neighbors. It is not likely that a scien-
tific application will use a Jacobi1D calculation on its own;

x

t

Figure 2: The dataflow pattern resulting from a 1D stencil
of depth 1. The vertical axis is time.

however, this is a common case study for temporal tiling
approaches.

Figure 2 illustrates the data dependency pattern in the Ja-
cobi1D benchmark. Each cell is updated using the following
statement:

A[t,i] = (A[t-1, i-1]
+ A[t-1, i]
+ A[t-1, i+1]) / 3 ;

This operation is fully parallel within a time step. In fact
a naive parallelization of Jacobi1D surrounds this statement
with two loops, an outer time loop, and an inner space loop.
An OpenMP statement, or other programming construct for
thread-level parallelism, can be used to indicate that the
inner loop should be executed in parallel.

The 2D case can be thought of as simulating heat dissipa-
tion through a theoretical surface. Each cell in the surface
has 4 neighbors (not using diagonal neighbors). The cell
update statement is the following:

A[t,i,j] = (A[t-1,i,j-1]
+ A[t-1,i,j+1]
+ A[t-1,i,j]
+ A[t-1,i-1,j]
+ A[t-1,i+1,j]) / 5 ;

As with the Jacobi1D operation, within a single time step
the loops executing this statement are fully parallel. A naive
implementation executes one of the two space dimension
loops in parallel. One obvious improvement to this is to
collapse the space loops into a single loop and parallelize
that. We refer to this as naive parallelization. Given that
the problem size falls outside of last-level cache, it benefits
performance to apply a simple space-only tiling using rect-
angular tiles laid over the plane. This implementation is
referred to as a naive space tiling variant of the benchmark.

2.2 Rectangular Tiling in Space
Rectangular tiling breaks a large iteration space into a

set of smaller iteration spaces [17]. The goal in doing so is
to improve spatial and temporal locality. The advantages
of this for 2D data are very clear. When iterating over a
large 2D dataset applying a 5 point stencil (north, south,
east, west, self), it is likely that the north neighbor will be
pushed out of cache before the iteration comes around to the
point again (this time as self). Breaking the larger iteration
space into smaller tiles can prevent that cache miss.

2.3 Diamond Tiling
Diamond tiling [1] is a method of space-time tiling that

provides parallelism, including concurrent startup, while main-
taining data locality. The original presentation of diamond
tiling demonstrated excellent performance and scaling, beat-
ing the previous state of the art [6] that required a wavefront
startup, and, therefore, had less available parallelism.

x

t

Figure 3: Diamond Tiling with 1D data and time.

Figure 3 shows a possible diamond tiling for a 1D stencil
operation across many time steps. The available parallelism
comes in wavefronts. The first wavefront of tiles that can be
executed concurrently is the set of lower yellow tiles. This
is then followed by the first row of blue tiles, the second row
of yellow tiles, and so on. The number of tiles that compose
the width of the problem domain determines the amount of
parallelism available.

The downside of applying diamond tiling to an application
is the difficulty of implementation. Diamond tiling code —
the loop structures and bounds necessary to execute the
schedule — is determined by the slopes and the spacing of
the hyperplanes. Without a fixed procedure for creating the
code it is time consuming and error-prone (see Figure 4 for
a preview of the code complexity).

3. PARAMETERIZED DIAMOND TILING
In this section we describe a method to parameterize any

tiling for a given set of tiling hyperplanes assuming a hyper-
rectangular iteration space. First, we review how tiling hy-
perplanes are used to specify a tiling schedule and why, if the
tile sizes in those schedules are left as parameters, the sched-
ule is non-affine. Non-affine schedules cannot be handled by
existing code generators. Then, we describe a tractable pro-
cess for deriving the loops over the tiles and the loops over
iterations within such tiles while keeping the tile size a pa-
rameter.

3.1 Tiling Hyperplanes
Tiling hyperplanes determine the shape and, therefore,

the iteration space within tiles. Figure 3 illustrates the tiles
that result from two sets of hyperplanes: one set of lines
with slope −1 and the other set with slope 1. Each set of
tiling hyperplanes can be specified by a vector normal to the
hyperplanes and the distance between hyperplanes in that
set. The normal for the −1 slope hyperplanes in Figure 3 is
(1, 1) and for the 1 slope hyperplane is (−1, 1).

Given tiling hyperplanes, it is possible to specify a tiling
to a polyhedral code generator with a scattering function.
A scattering function maps the original iteration space for
a loop into a new iteration space. The code generator cre-
ates loop code that executes the computations in the new
iteration space in lexicographical order.

Assume a d-dimensional rectangular iteration space
{[i0, i1, ..., id−1] | (l0 ≤ i0 < u0)∧ ...∧(ld−1 ≤ id−1 < ud−1)}.

The scattering function for a d-dimensional tiling with hy-
perplane normals ~v0, ~v1, ..., ~vd−1 is the following:

{[i0, i1, ..., id−1]→ [k0, k1, ..., kd−1, i0, i1, ..., id−1] |
(k0 = (~v0 ·~i)/τ) ∧ ... ∧ (kd−1 = (~vd−1 ·~i)/τ)},

where k0, k1, ... kd−1 are the iterators for the new tile loops
and τ is the spacing between hyperplanes for all d sets of
tiling hyperplanes1. Using the Chinese remainder theorem,
we can remove the division by introducing remainders r0,
r1, ..., rd−1 to obtain the following:

{[i0, i1, ..., id−1]→ [k0, k1, ..., kd−1, i0, i1, ..., id−1] |
∃r0, r1, ..., rd−1, (0 ≤ r0 < τ) ∧ (τk0 + r0 = ~v0 ·~i) ∧
... ∧ (0 ≤ rd−1 < τ) ∧ (τkd−1 + rd−1 = ~vd−1 ·~i)}.

The multiplication of the tile size τ by each of the tile iter-
ators causes the scattering function to be non-affine.

3.2 Plan for Tile Size Parameterization
We could do a symbolic Fourier Motzkin elimination pro-

cess to obtain the new loop bounds, but that results in an
exponential blow-up in loop bounds. All of the extra loop
bounds result in more loop overhead.

Approaches already exist to do parametric tilings when
the tiles are rectangular. With rectangular tiling, develop-
ing a parameterized tiling can be split into two problems:
(1) expanding the iteration space so it includes all possi-
ble tile origins for a parameterized-sized tile and having the
tile loops iterate over these origins, and (2) generating pa-
rameterized tile loops that iterate over the points within a
tile [16, 22, 23]. This approach of splitting the code gener-
ation problem into loops over tiles and then loops within
tiles was also used by Goumas et al. [13] to generate code
for fixed-sized, non-rectangular tiles. The parametric tiling
techniques work with rectangular tiles and any polyhedral
iteration space, but leverage the fact that with rectangular
tiles the tile boundaries align with the iteration axes (al-
though possibly in the skewed iteration space).

Diamond tilings have hyperplanes that do not align with
the iteration space axes. It is not possible to skew the iter-
ation space to compensate without introducing holes in the
iteration space. However, since we are focused on diamond
tilings in the context of stencil computations, we can lever-
age the fact that the iteration space is rectangular to split
the problem into two similar pieces: (1) finding bounds on
the tile space (i.e., bounds on the k iterators) and (2) gen-
erating parameterized tile loops that iterate over the points
within a tile. Our solution to each of the sub-problems is
different because the tile iterators kj are iterating within
a separate tile space instead of over the tile origins in the
original iteration space.

3.3 Iterating Over Tiles
In the context of diamond tiling, the loops over tiles do

not iterate over tile origins as they do in rectangular tiling.
Rather, they loop over a separate, parameterized tile space.
The parameterized tile loops are found by characterizing a
single tile as a parameterized set and then projecting that

1Using different spacing per set of hyperplanes would be
more general, but results in less regular parallel wavefronts
of diamond tiles and causes the parameterization to be more
complex.

set on the axes of the original iteration space. A single,
representative tile can be characterized by the following set:

{[k0, k1, ..., kd−1, i0, i1, ..., id−1] |
∃r0, r1, ..., rd−1, (0 ≤ r0 < τ) ∧ (τk0 + r0 = ~v0 ·~i) ∧
... ∧ (0 ≤ rd−1 < τ) ∧ (τkd−1 + rd−1 = ~vd−1 ·~i)}.

To determine the bounds on the tile iterators k0, k1, ...,
kd−1, we project the single tile, which is parameterized by
tile size, on each of the canonical axes of the rectangular
iteration space, i0, i1, ..., id−1. With the projection, we
will have the min and max values for each tile on each axis.
Then we can make sure that if even one point of the tile
is in the iteration space, the tile is visited. The tile’s lower
bounds are inclusive, and therefore anytime the projected
tile lower bound is less than or equal to the iteration space
upper bound, the tile contains at least one iteration point
that is in the iteration space.

It is possible to compute the lower and upper bounds for
a single tile (i.e., setting all kj values to 1) projected on each
axis with a code generator as was done in ISCC [27], but the
loop bounds generated are inclusive. We did the projection
by hand to determine the real number of intersection points
on the axes. We did the projection for stencils with depth
1 in two-dimensional and three-dimensional iteration spaces
for use with Jacobi1D and Jacobi2D, but here we show the
results for the three-dimensional iteration spaces.

For the three-dimensional diamond tiling for Jacobi2D,
the hyperplanes are v0 = (1, 1, 0), v1 = (1, 0, 1), and v2 =
(1,−1,−1). Given this set of hyperplanes the iteration space
within a tile is defined as shown in Equation 1.

{[t, i, j]|∃r0, r1, r2,
(0 ≤ r0 < τ) ∧ (0 ≤ r1 < τ) ∧ (0 ≤ r2 < τ)

∧ k0τ + r0 = t+ i

∧ k1τ + r1 = t+ j

∧ k2τ + r2 = t− i− j}

(1)

Here are the projections of the parameterized tile on the
axes:

(k0 + k1 + k2)τ/3 ≤ t < (3 + k0 + k1 + k2)τ/3

(2k0 − k1 − k2 − 2)τ/3 < i < (2 + 2k0 − k1 − k2)τ/3

(2k1 − k0 − k2 − 2)τ/3 < j < (2 + 2k1 − k0 − k2)τ/3

To find the bounds for the tile-iterator loops k0, k1, and
k2, we substitute the (unique) upper (or lower) bound on
each dimension of the iteration space for the corresponding
iteration space variable. For example, to be sure to visit
every tile whose minimum t value is below the upper bound
of the iteration space (T), we substitute T for t in the above
lower bound on t, producing the upper bound on k0 of (k0 +
k1 +k2)τ/3 ≤ T . Substituting 1 for t in the upper bound on
t gives (3 + k0 + k1 + k2)τ/3 > 1. Continuing this process
for i and j, we produce the following set of constraints for
the tile iterators:

{[k0, k1, k2]|
(3 + k0 + k1 + k2)τ/3 > 1 ∧ (k0 + k1 + k2)τ/3 ≤ T
∧(2 + 2k0 − k1 − k2)τ/3 > Li

∧(2k0 − k1 − k2 − 2)τ/3 < Ui

∧(2 + 2k1 − k0 − k2)τ/3 > Lj

∧(2k1 − k0 − k2 − 2)τ/3 < Uj}

// Loop over tile wavefronts.
for (kt=ceild(3,tau)-3; kt<=floord(3*T,tau); kt++) {

// The next two loops iterate within a tile wavefront.
int k1_lb = ceild(3*Lj+2+(kt-2)*tau,tau*3);
int k1_ub = floord(3*Uj+(kt+2)*tau,tau*3);
int k2_lb = floord((2*kt-2)*tau-3*Ui+2,tau*3);
int k2_ub = floord((2+2*kt)*tau-3*Li-2,tau*3);

//Loops over tile coordinates within a parallel wavefront of tiles.
#pragma omp parallel for ...
for (k1 = k1_lb; k1 <= k1_ub; k1++) {

for (x = k2_lb; x <= k2_ub; x++) {
k2 = x - k1; // Removing k1 term from k2 upper and lower bounds enables collapse(2).

// Loop over time within a tile.
for (t = max(1, floord(kt*tau-1, 3)); t < min(T+1, tau + floord(kt*tau, 3)); t++) {

write = t & 1; // equivalent to t mod 2
read = 1 - write;

// Loops over the spatial dimensions within each tile.
for (i = max(Li,max((kt-k1-k2)*tau-t, 2*t-(2+k1+k2)*tau+2));

i <= min(Ui,min((1+kt-k1-k2)*tau-t-1, 2*t-(k1+k2)*tau)); i++) {
for (j = max(Lj,max(tau*k1-t, t-i-(1+k2)*tau+1));

j <= min(Uj,min((1+k1)*tau-t-1, t-i-k2*tau)); j++) {
A[write][x][y] = (A[read][x-1][y] + A[read][x][y-1] + ... ;

} } } } } }

Figure 4: Parameterized diamond tiled code for any 2D stencil of depth 1 that uses values from the previous time step only
(Jacobi-like data dependencies). Note that the floord function computes the integer quotient of its operands, like C’s %
operation, but unlike C’s % rounds any fractional part toward negative infinity rather than zero [28].

To create wavefronts of tiles that can be executed in par-
allel, we introduce a new tile space iterator kt = k0+k1+k2,
by solving for k0 and replacing all of the k0s in the above
bounds with kt − k1 − k2. We then determine the bounds
for the kt, k1, and k2 loops to be the following:

{[kt, k1, k2] | kt > 3/τ − 3 ∧ kt ≤ 3T/τ

∧ 3k1 > (3Lj/τ) + kt − 2

∧ 3k1 < (3Uj/τ) + kt + 2

∧ 3k2 > 2kt − 3k1 − 2− (3Ui/τ))

∧ 3k2 < 2kt − 3k1 + 2− (3Li/τ)},

which can be implemented with the outer three loops shown
in Figure 4.

3.4 Iterating within a Diamond Tile
After determining the loop bounds for the tile loops, the

next step is to determine the bounds for the loops that it-
erate over points within each tile. We start with the set
that specifies a single tile (see Equation 1). Then we do the
wavefront substitution k0 = kt − k1 − k2.

The resulting loop bounds are not affine because of the
multiplication of two parameters in three of the constraints:
k0τ , k1τ , and k2τ . To enable code generation with ISCC, we
perform a substitution. Let xt = ktτ , x1 = k1τ , and x2 =
k2τ . This is legal because the tuple (kt, k1, k2) is constant.
The resulting loop bounds over points within a tile for the
three-dimensional diamond tiling of Jacobi2D are shown in
Figure 4.

In summary, we can apply the tile size parameterization
process to any set of tiling hyperplanes (diamond or other-

wise). Therefore, other stencils that require different dia-
mond tiling hyperplanes can also benefit from this process.

4. PROVIDING TILING IN A LIBRARY
Due to the complexity of the diamond tiling loop structure

it is desirable to abstract it away from the primary speci-
fication of the algorithm. We do this by implementing the
diamond tiling code within a Chapel parallel iterator. This
section provides a brief overview of the Chapel language and
information about our implementation.

4.1 Chapel Parallel Iterators
We use Chapel parallel iterators to explore the viability of

providing advanced tiling schedules as a module. Chapel is
an open-source language currently in development at Cray
Inc.2 which is designed to simplify parallel programming for
the desktop and at scale via various language features [10,
11]. It represents a growing movement to design languages
and compilers that abstract away the complexity of develop-
ing highly parallel programs. Sample features include: forall
loops and a rich set of domains and arrays for data parallel
computations; support for task-based concurrent program-
ming including data-centric coordination between tasks via
atomic variables and sync variables with full-empty seman-
tics; and locales as a first-class language concept for rea-
soning about architectural locality. Chapel follows a mul-
tiresolution philosophy in which users can control low-level
details like parallel loop schedules or array layout and distri-
bution while making them available to others via high-level
abstractions.

As part of its productivity-oriented features, Chapel sup-

2http://chapel.cray.com

iter DiamondTileIterator(L: int, U: int, T: int, tau: int,
param tag: iterKind): 4*int
where tag == iterKind.standalone {

// Loop over tile wavefronts.
for kt in ceild(3,tau) .. floord(3*T,tau) {

// The next two loops iterate within a tile wavefront. Assumes a square iteration space.
var k1_lb: int = floord(3*L+2+(kt-2)*tau, tau*3);
var k1_ub: int = floord(3*U+(kt+2)*tau-2, tau*3);
var k2_lb: int = floord((2*kt-2)*tau-3*U+2, tau*3);
var k2_ub: int = floord((2+2*kt)*tau-3*L-2, tau*3);

// Loops over tile coordinates within a parallel wavefront of tiles.
forall k1 in k1_lb .. k1_ub {
for x in k2_lb .. k2_ub {
var k2 = x-k1;

// Loop over time within a tile.
for t in max(1,floord(kt*tau,3)) .. min(T,floord((3+kt)*tau-3,3)){

write = t & 1; // equivalent to t mod 2
read = 1 - write;

// Loops over the spatial dimensions within each tile.
for i in max(L,max((kt-k1-k2)*tau-t, 2*t-(2+k1+k2)*tau+2))

.. min(U,min((1+kt-k1-k2)*tau-t-1, 2*t-(k1+k2)*tau)) {
for j in max(L,max(tau*k1-t,t-i-(1+k2)*tau+1))

.. min(U,min((1+k1)*tau-t-1,t-i-k2*tau)){
yield (read, write, i, j);

} } } } } } }

Figure 5: 2D Diamond Tile Parallel Iterator in Chapel

ports iterators [9], inspired by those of the CLU language [19].
An iterator is a function that yields values back to its callsite
and then continues executing rather than simply returning
a single value per call like traditional functions. In this way,
iterators can be used to drive loops, or to specify the ele-
ments defining a collection. Just as traditional functions can
be used to parameterize common idioms and factor them
away from straight-line code, iterators can provide similar
software engineering benefits for loops and loop nests, im-
proving code reuse and readability.

This effort makes use of Chapel’s multiresolution philos-
ophy by specifying complex loop schedules using the lan-
guage’s features for parallel iterators and then invoking them
via high-level data parallel forall loops. In this way, the de-
tails of tile specification and scheduling can be factored away
from the parallel stencil computation loops themselves, mak-
ing it easier for application programmers to focus on their
computations without tripping over the details of tiling spec-
ification and programming.

forall (read, write, x ,y)
in DiamondTileIterator(L, U, T, tau) {

A[write, x, y] =
(A[read,x-1,y] + A[read,x,y-1] +
A[read,x ,y] + A[read,x,y+1] +
A[read,x+1,y]) / 5;

}

Figure 6: Use of the diamond tiling iterator. Contrast the
programmabilty of this with that of Figure 4.

4.2 Iterator Implementation
Figure 5 shows the iterator code for the 2D diamond tile it-

erator. Inside the body of the iterator, the code is much like
the diamond-tiled code in C shown in Figure 4. Translation
simply consists of the modification of variable declarations,
the transformation from C loop bounds to range iterations,
and the replacement of stencil calls with the yield statement.
Parallel forall loops take the place of loops with OpenMP
pragmas.

Figure 6 illustrates an invocation of the iterator. Using the
diamond tile iterator written in Chapel code is simple. Most
importantly, the computation specification is much cleaner
than if the diamond tiling iterator code were inlined in the
loop nest itself.

Consider a program that has a dozen invocations of one
of these stencil loops with slight variations in the stencil
computation. In the Chapel program, this amounts to 12
of these clean loop nests, potentially passing in different pa-
rameters such as tile size at each callsite. But in a language
like C, C++, or Fortran, there is no good option for abstract-
ing such parallel loop nests away from their uses. While one
can create serial iterators via classes/structs and support
begin()/next()/end()-style methods/functions on them, there
is no clean way to abstract the OpenMP-parallelized loops
into such methods and functions. One could create a helper
function representing the loop nest and pass a function pointer
representing the loop body into it, but this would result in
a very expensive loop body without optimizations to inline
the function pointer and specialize the loop nest function
for each callsite. Alternatively, one could use something
outside the language like pre-processor macro expansion to
create the loop nests, but this is less robust than supporting
parallel iterators in the language directly.

5. EXPERIMENTAL RESULTS
Our experimental results demonstrate that the parameter-

ized, diamond-tiled code has better performance than code
generated for specific tile sizes, and that using Chapel par-
allel iterators does not result in any appreciable overhead
when compared with C+OpenMP code. Additionally, we
reproduce results demonstrating the positive performance
impact of diamond tiling on Jacobi 1D and 2D benchmarks.
We focus on intranode parallelism, specifically leveraging
the on-chip cache hierarchy, because stencil computations
do not scale well at small core counts due to their memory
bandwidth demands.

In this section we also present our methods for selecting
tile sizes and a comparison of diamond tiling to spatial tiling
in the context of Jacobi2D.

5.1 Experimental Setup
Hardware: Experiments were run on a 2.60GHz Intel

Xeon E5-2650 v2 workstation. This machine has a single
NUMA domain, one socket containing 8 cores (16 Hyper-
Threads). Each core has its own 32K L1 data cache and
256K L2 cache. The L3 cache is 20Mb and shared among
all cores. The memory is 32Gb.

Problem Size: We tested all benchmarks with problem
sizes that exceeded L3 cache. The Jacobi1D problem size
(N=5242880, footprint=2*N*sizeof(double)) is 2 times the
size of L3. The Jacobi2D problem size (N=4096 X 4096)
is 12.8 times the size of L3. Each benchmark ran 100 time
steps.

Compilers: GCC (version 4.8.3) was used to compile all
the C+OpenMP benchmarks, as well as the back-end for
compiling the Chapel compiler. The Chapel compiler itself
(version 1.11) was retrieved from the public download page
maintained by Cray and the Chapel team3.

Compiler Options: When building the serial C and
C+OpenMP benchmarks the -O3 flag was used to opti-
mize. Chapel builds used the flags -sassertNoSlicing,
which disables unnecessary array striding calculations, and
--fast, which removes run-time safety checks and compiles
generated C code with the -O3 flag.

Baseline for Speedup: All speedup measurements are
relative to a serial C version of the same stencil.

5.2 Tiling Methods Comparison
The diamond tiling variants of the code outperformed

the naive parallel for both Jacobi1D and Jacobi2D. The
naive parallel variant for Jacobi1D was parallelized with an
OpenMP statement around the spatial loop using the default
static schedule. Figure 7 shows that the naive parallel imple-
mentation stops effectively scaling at 4 threads even though
this version tiles the spatial loops. The diamond tiling vari-
ant uses a dynamic schedule with the default chunk size be-
ing one row of tiles. Jacobi2D when diamond tiled maintains
nearly linear speedup out to 8 cores.

5.3 Fixed Verses Parameterized Tile Size Per-
formance

A key requirement for success with parameterized dia-
mond tiling is that the parameterization does not result in
a negative performance impact. Our experiments confirm
that it does not. To measure this impact we generated a

3https://github.com/chapel-lang/chapel

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

8

HT→
ThreadCount

S
p
ee
d
u
p

Jacobi1D Parallel Speedup

NaiveParallel-C

NaiveParallel-Chapel

Diamond Tiled-C

Diamond Tiled-Chapel

Figure 7: Speedup of Jacobi1D.

sampling of tile-size-specific variants of the code for a selec-
tion of tile sizes for Jacobi2D. The code was generated using
the ISCC code generator [27], which is used as the code gen-
erator for Pluto [7], PoCC4, and Polly [15]. Figure 8 shows
a comparison of the execution times for the equivalent pa-
rameterized tiling runs. We use a tile size of τ = 276 for
both of the Jacobi2D diamond tiling variants in Figure 1.

5.4 Chapel versus C Performance
There are two primary comparisons to make with respect

to Chapel performance. First, the performance differences
when using naive parallel scheduling techniques, and, sec-
ond, the differences when using diamond tiling. In both
cases Chapel’s performance is competitive with C+OpenMP’s.

A consistent performance variation was observed in the
Chapel executions. For specific thread counts, 5-12 for di-
amond tiling and 5-8 for naive parallel, repeated execution
revealed a multimodal distribution. This variation occurred
only within the Chapel executions and for both the dynamic
and static parallel schedules. The execution times in the
fastest mode of the distribution were on-par or faster than
the execution times of C+OpenMP. The Chapel team be-
lieves this to be due to a race in how Chapel tasks are as-
signed to cores resulting in an occasional load imbalance.
The Chapel development team plans to address this in a fu-
ture release. All times reported here are the average of all
execution times, each test was repeated 32 times.

The lower two lines of data in Figure 7 show that for the
Jacobi1D benchmark Chapel matches the performances of
C+OpenMP except in the 5-8 thread region. Both of these
implementations use a naive parallelization. Figure 1 shows
the same for the Jacobi2D benchmark. In this case it is
notable that the naive implementation of Chapel is outper-
forming the space-tiled variant of C+OpenMP. This can be
attributed to the parallel schedule used by Chapel. The per-
formance of the Chapel variants using diamond tiling is also
competitive with that of the C+OpenMP variants except for
the aforementioned issue in the 5-12 thread range.

4http://www.cs.ucla.edu/~pouchet/software/
pocc/

132 136 166 180 244 276 346
0

0.2

0.4

0.6

0.8

Tau

T
im
e(
S
ec
on
d
s)

Fixed vs Parameterized Tile Size

Fixed-Size(8 threads)

Param-Size (8 threads)

Fixed-Size (16 threads)

Param-Size (16 threads)

Figure 8: Fixed vs parameterized tile size performance com-
parison in C+OpenMP

5.5 Tile Size Selection
Tile size selection is an important factor in the perfor-

mance of all tiling methods. If a tile size is too big it will
fall out of cache or push another thread’s tile out of cache,
and if a tile is too small it will create unnecessary loop over-
head and will exhibit poor cache reuse. The optimal tile
size was found using an exhaustive search over the span of
reasonable tile widths. The tile width is expressed as τ . The
reasonable range of τ was determined by using a footprint
calculation and targeting each level of cache.

The memory footprints were determined by using the sin-
gle tile description for two- and three-dimensional parame-
terized diamond tiles and projecting them onto the spatial
dimensions of the computation and using ISCC [27] to com-
pute the cardinality of the set as a function of the tile size τ .
The memory footprint in bytes of a diamond tile in 1D is

footprint = (τ · 2− 1) · (2) · sizeof(type) (2)

In 2D, the footprint is

footprint = (τ2 − τ − 1) · (2) · sizeof(type) (3)

The Jacobi benchmarks store only the previous and current
time steps. Thus the multiplication by 2.

We expect that under normal operating conditions (i.e.
one task/thread per processing unit with no thread migra-
tion) that the entire memory projection of a tile (maximum
spatial bounds on the tile) will not be evicted from last-level
cache until that tile is completely finished.

Figures 9 and 10 show execution time versus tile footprint
for the Jacobi 1D and 2D benchmarks respectively. The
vertical lines represent cache occupancy for L1 and L2 with
no hyper-threading and then for L3 being shared among
8 threads and 16 threads. For Jacobi1D the optimal point
lies just beyond L1 occupancy with a τ value of 4259. The
optimal point for Jacobi2D fell within L3 (τ=276).

6. RELATED WORK
Our work extends current practice with both run-time

parametrization of diamond tiling [1], and a novel approach

0 1 2 3

·106

0

5 · 10−2

0.1

0.15

0.2 L1L2 L3/16 L3/8

Footprint(bytes)

T
im
e

Jacobi1D Tile Size Selection

OpenMP (8 threads)

OpenMP (16 threads)

Figure 9: Tile size selection done with a sweep of tile sizes
Jacobi1D.

to expressing this tiling with a Chapel parallel iterator. Re-
lated work includes various approaches to tiling through
time, other work that uses iterators/generators, and previ-
ous work that has hand-tuned stencil computations in Chapel.

6.1 Tiling through Time
Loop tiling and more specifically tiling through time is a

long-standing technique [17]. As it has increased in impor-
tance due to recent architecture trends, a number of vari-
ants have been explored; Wonnacott and Strout provide a
description of many [31].

The recent development of diamond tiling for multi-
dimensional data sets by Bandishti et al. [1] combines (we
believe, for the first time) asymptotic scalability, high per-
formance even on relatively small numbers of processors, and
full implementation in the polyhedral infrastructure that un-
derlies many automatic optimization tools such as Pluto [31].
However, the work of Bandishti et al. requires the tile size
to be known at compile time. Prior work on parameterized
tiling [23] has been limited to semi-oblique parallelepiped
tilings, and thus is not applicable to multi-dimensional di-
amond tiles. We have developed a parameterized version
of this tiling for the 2D Jacobi stencil, and expressed this
tiling in both OpenMP and as an iterator for the Chapel
language. The former provides a basis for performance com-
parison with other OpenMP tilings, and the latter provides
a clean mechanism to give programmers control of iteration-
space tiling.

6.2 Iterator Programming Constructs
Chapel’s iterators are quite similar to both Python’s gen-

erator functions [26] and the iterator functions of C# and
Visual Basic [20, 29]. Being a parallel language, Chapel
expands upon conventional approaches by adding the abil-
ity to specify iterators that can drive data parallel com-
putations such as forall loops. This is done by specifying
standalone or leader-follower iterators [12] which support
parallel loops over multiple iterators in a simultaneous—
or zippered—manner, similar to the NESL language [4, 5].

0 1 2 3

·106

0

0.2

0.4

0.6

0.8

1 L1L2 L3/16 L3/8

Footprint(bytes)

T
im
e

Jacobi2D Tile Size Selection

OpenMP (8 threads)

OpenMP (16 threads)

Figure 10: Tile size selection done with a sweep of tile sizes
Jacobi2D.

However, in NESL zippered iterations were only supported
by the compiler for a small number of built-in data types,
whereas in Chapel users have the ability to author their own
parallel zippered iterators.

6.3 Stencil Computations in Chapel
In Chapel’s formative years, Barrett et al. studied dif-

ferent ways of expressing stencil computations in Chapel,
with the eventual goal of being able to express the sweep3d
benchmark in Chapel [2]. At this point in Chapel’s his-
tory, its compiler was only just starting to generate parallel
code, preventing the study from performing compelling per-
formance studies. More recently, in [8], variants of a sten-
cil computation were implemented in Chapel to determine
which idioms generated the best performance compared to
conventional programming models. Our work differs from
this effort in that it studies tiling across time and space and
considers the programmability benefits of using parallel iter-
ators to factor complex loop structures away from the stencil
computations themselves.

7. CONCLUSIONS
Diamond tiling is an advanced scheduling method that

results in improved cache reuse and a high degree of concur-
rency. However, its adoption is hindered by its complexity
and fixed tile-size code generation constraints. We have pre-
sented a method of generating parameterized diamond tiling
and implemented it in benchmarks, showing that diamond
tiling outperforms naive schedules that are simpler to de-
velop and maintain. Additionally, we have shown that these
schedules can be implemented in the Chapel language to
take advantage of the parallel iterator construct and that
performance is competitive with that of C+OpenMP.

We have also demonstrated that Chapel parallel iterators
are an effective way to simplify the development process of
stencil computations and increase the adoption of better
schedules. Typically, the development of the stencil com-
putation and the development of the iteration schedule are
intertwined, although they have little to do with each other.

This requires that both stencil computation and iteration
schedule be modified together through the application’s life-
time, impeding improvements to performance. The use of
Chapel parallel iterators allows for separate development of
each, creating a more agile development process. The addi-
tion of a new tiling schedule only requires that the schedule
yield the appropriate values, and that new stencil codes can
reuse existing high performance schedules.

The growth of high-performance computing into the Ex-
ascale era, and the creation of scientific applications requir-
ing such computing power, poses many challenges. Among
them, Exascale applications may require further advances in
scheduling methods, and developers will benefit from ways
to explore new schedules, or adopt those of other codes,
without interfering with other aspects of their application.
We have demonstrated that this separation of application
code and high-performance scheduling can be achieved via
Chapel iterators.

8. ACKNOWLEDGMENTS
This project is supported by a Department of Energy

Early Career Grant DE-SC0003956 and a National Science
Foundation Grant CCF-1422725. We thank our anonymous
reviewers and Andrew Lumsdaine for their many useful sug-
gestions for improving the paper, and Wayne Trzyna for
providing us dedicated computation time.

9. REFERENCES
[1] V. Bandishti, I. Pananilath, and U. Bondhugula.

Tiling stencil computations to maximize parallelism.
In Proceedings of the International Conference for
High Performance Computing, Networking, Storage,
and Analysis (SC), 2012.

[2] R. Barrett, P. Roth, and S. Poole. Finite difference
stencils implemented using chapel. Technical Report
TM-2007/119, Oak Ridge National Laboratory, 2007.

[3] M. M. Baskaran, A. Hartono, S. Tavarageri,
T. Henretty, J. Ramanujam, and P. Sadayappan.
Parameterized Tiling Revisited. In Proceedings of the
8th Annual IEEE/ACM International Symposium on
Code Generation and Optimization, CGO ’10, pages
200–209, New York, NY, USA, 2010. ACM.

[4] G. Blelloch, S. Chatterjee, J. Hardwick, J. Sipelstein,
and M. Zagha. Implementation of a portable nested
data-parallel language. Journal of Parallel and
Distributed Computing, 21(1):102–111, April 1994.

[5] G. E. Blelloch. NESL: A nested data-parallel language
(version 3.1). Technical Report CMU-CS-95-170,
Carnegie Mellon, Pittsburgh, PA, September 1995.

[6] U. Bondhugula, M. Baskaran, S. Krishnamoorthy,
J. Ramanujam, A. Rountev, and P. Sadayappan.
Automatic transformations for
communication-minimized parallelization and locality
optimization in the polyhedral model. In L. Hendren,
editor, Compiler Construction, volume 4959 of Lecture
Notes in Computer Science, pages 132–146. Springer
Berlin Heidelberg, 2008.

[7] U. Bondhugula, A. Hartono, J. Ramanujam, and
P. Sadayappan. A practical automatic polyhedral
program optimization system. In Proceedings of the
ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI), New
York, NY, USA, June 2008. ACM.

[8] H. Burkhart, M. Sathe, M. Christen, O. Schenk, and
M. Rietmann. Run, stencil, run! HPC productivity
studies in the classroom. In PGAS, 2012.

[9] B. Chamberlain. Chapel parallel iterators: Giving
programmers productivity and control. Cray Inc. blog,
September 2013.

[10] B. L. Chamberlain. Chapel. In P. Balaji, editor, A
Brief Overview of Parallel Programming Models. MIT
Press, 2015 (expected).

[11] B. L. Chamberlain, D. Callahan, and H. P. Zima.
Parallel programmability and the Chapel language.
International Journal of High Performance Computing
Applicati ons, 21(3):291–312, August 2007.

[12] B. L. Chamberlain, S.-E. Choi, S. J. Deitzand, and
A. Navarro. User-defined parallel zippered iterators in
chapel. In Fifth Conference on Partitioned Global
Address Space Programming Models (PGAS 2011),
Galveston Island, TX, USA, October 2011.

[13] G. Goumas, M. Athanasaki, and N. Koziris. An
efficient code generation technique for tiled iteration
spaces. IEEE Transactions on Parallel and Distributed
Systems, 14(10), October 2003.

[14] T. Grosser, A. Cohen, J. Holewinski, P. Sadayappan,
and S. Verdoolaege. Hybrid hexagonal/classical tiling
for GPUs. In Proceedings of Annual IEEE/ACM
International Symposium on Code Generation and
Optimization, CGO ’14, pages 66:66–66:75, New York,
NY, USA, 2014. ACM.

[15] T. Grosser, A. Groesslinger, and C. Lengauer. Polly -
performing polyhedral optimizations on a low-level
intermediate representation. Parallel Processing
Letters, 22(04):1250010, 2012.

[16] A. Hartono, M. M. Baskaran, C. Bastoul, A. Cohen,
S. Krishnamoorth, B. Norris, J. Ramanujam, and
P. Sadayappan. PrimeTile: A parametric multi-level
tiler for imperfect loop nests. In Prioceedings of the
23rd International Conference on Supercomputing,
June 8-12, 2009, IBM T. J. Watson Research Center,
Yorktown Heights, NY, USA, 2009.

[17] F. Irigoin and R. Triolet. Supernode partitioning. In
Conference Record of the Fifteenth ACM Symposium
on Principles of Programming Languages, pages
319–329, 1988.

[18] P. Kogge and D. Resnick. Yearly update: Exascale
projections for 2013. Technical Report
SAND2013-9229, Sandia National Laboratories, 2013.

[19] B. Liskov, A. Snyder, R. Atkinson, and C. Schaffert.
Abstraction mechanisms in CLU. Communications of
the ACM, 20(8):564–576, August 1977.

[20] Microsoft Corporation. C# Language Specification,
version 5.0 edition, June 2013.

[21] C. Olschanowsky, S. Guzik, J. Loffeld, J. Hittinger,
and M. M. Strout. A study on balancing parallelism,
data locality, and recomputation in existing PDE
solvers. In The IEEE/ACM International Conference
for High Performance Computing, Networking,
Storage and Analysis (SC), November 2014.

[22] L. Renganarayana, D. Kim, M. M. Strout, and
S. Rajopadhye. Parameterized loop tiling.

Transactions on Programming Languages and Systems
(TOPLAS), 34(1), May 2012.

[23] L. Renganarayanan, D. Kim, S. Rajopadhye, and
M. M. Strout. Parameterized tiled loops for free. In
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI), June 2007.

[24] Y. Song and Z. Li. New tiling techniques to improve
cache temporal locality. In ACM SIGPLAN ’99
Conference on Programming Language Design and
Implementation, pages 215–228, May 1999.

[25] R. Strzodka, M. Shaheen, and D. Pajak. Time skewing
made simple. In PPOPP, pages 295–296, 2011.

[26] G. van Rossum and P. J. Eby. Coroutines via
enhanced generators, May 2005.

[27] S. Verdoolaege. Isl: An integer set library for the
polyhedral model. In Proceedings of the Third
International Congress Conference on Mathematical
Software, ICMS’10, pages 299–302, Berlin, Heidelberg,
2010. Springer-Verlag.

[28] S. Verdoolaege and T. Grosser. Polyhedral extraction
tool. In Second International Workshop on Polyhedral
Compilation Techniques (IMPACT12), Paris, France,
2012.

[29] P. Vick and L. Wischik. The Microsoft R©Visual
Basic R©Language Specification. Microsoft Corporation,
version 11.0 edition, June 2013.

[30] D. Wonnacott. Achieving scalable locality with Time
Skewing. International Journal of Parallel
Programming, 30(3):181–221, June 2002.

[31] D. G. Wonnacott and M. M. Strout. On the scalability
of loop tiling techniques. In Proceedings of the 3rd
International Workshop on Polyhedral Compilation
Techniques (IMPACT), January 2013.

