
A Look In the Mirror: Attacks on Package Managers

Author Names Removed for Anonymous Submission

ABSTRACT
Package managers are a privileged, centralized mechanism
for software update and are essential to the security of mod-
ern computers. This work studies the security of ten popu-
lar package managers. These package managers use different
mechanisms to provide security including signatures embed-
ded in the package, signatures on metadata detached from
the packages, or a signature on the root metadata (a file
that contains the secure hashes of the package metadata).
The security models used by these package managers are
compared and contrasted.

The threat model used to evaluate security in this paper is
an attacker that controls a mirror (a copy of the main reposi-
tory’s contents for a distribution). We demonstrate that it is
trivial for an attacker to control an official mirror for a pop-
ular distribution. An attacker can compromise a client who
either installs software created by the attacker or installs an
outdated version of a package with a vulnerability the at-
tacker knows how to exploit. Furthermore, every package
manager studied can be compromised by an attacker who
controls a mirror without compromising a private key. In
fact, 5 of the 10 package managers studied have security
flaws that allow an attacker to compromise every client that
requests a package from the mirror. We estimate that an
attacker with a mirror that costs $50 per week could com-
promise between 150 and 1500 clients per week depending
on the package manager.

An existing package manager is modified to add a layered ap-
proach to security where multiple signatures are used. The
updated package manager is evaluated in practical use. By
using a layered approach to security, the package manager
provides a high degree of usability and is not vulnerable to
the attacks on existing package managers. The overhead of
additional security mechanisms is 2-5% in practice and so
should not be a deterrent.

The purpose of this work is to not only point out secu-

rity issues and provide solutions but also to raise an alarm
to the imminent threat of attacks on package managers.
Package managers are a weak point in the security of mod-
ern computers. Given the simplicity of compromising sys-
tems through package managers, developers and distribu-
tions must act quickly and intelligently to avert disaster.

Categories and Subject Descriptors
K.6.5 [Security and Protection]: Invasive software; C.2.0
[Computer-Communication Networks]: General—Se-
curity and protection; K.4.1 [Social Issues]: Abuse and
Crime Involving Computers

General Terms
Security

Keywords
Package Management, Mirrors, Replay Attack

1. INTRODUCTION
Package managers are a popular way to distribute software
(bundled into archives called packages) for modern operating
systems [1, 2, 3, 16, 17, 20, 21, 23, 26, 27]. Package managers
provide a privileged, central mechanism for the management
of software on a computer system. As packages are installed
by the superuser (root) and normally are shared by all users
of the computer, package management security is essential
to the overall security of the computer system.

This work demonstrates that it is trivial for an attacker
to control an official package mirror. Mirrors are used to
provide fault tolerance and offload traffic from the distri-
bution’s main repository but are usually hosted by outside
organizations. Therefore, package managers must recognize
and mitigate the dangers posed by malicious mirrors given
a threat model in which they cannot trust the mirrors from
which they obtain content.

This paper evaluates the security of the eight most popu-
lar [8, 14] package managers in use on Linux: APT [1], APT-
RPM [2], Pacman [3], Portage [16], Slaktool [20], urpmi [23],
YaST [26], and YUM [27]. Also examined is the popular
package manager for BSD systems called ports [17] and a
popular package manager in the research community called
Stork [21]. These package managers use one of four different
security models: no security, signatures embedded within
packages, signatures on detached package metadata, or sig-

1

natures on the root metadata (a file that contains the secure
hashes of the package metadata).

The package managers that provide some form of security
recognize the threat posed by mirrors that are under the
control of a malicious entity. However, each of the ten pack-
age managers studied is vulnerable to attacks by malicious
mirrors. This means that any attacker that controls a mirror
can compromise a large number of computers on the Internet
today.

Remarkably, many the security flaws that enable these at-
tacks are conceptually simple to understand as well as easy
fix in practice. Neither the flaws discovered nor the solu-
tions to them are novel. However, surprisingly these prob-
lems exist across a wide range of package managers that
were implemented by different developers.

This work demonstrates there is an ordering to the security
of package manager techniques and this order is preserved
even as security fixes are applied. Having no signatures al-
lows the most egregious attacks, followed by package signa-
tures, signatures on detached package metadata, and finally
signatures on the root metadata present the most security.

However, there are usability concerns with many package
managers, most notably the ability to verify a stand-alone
package (a package obtained from a source other than the
main repository). Signatures on root metadata do not pro-
vide a convenient way to verify stand-alone packages and
so the user is likely to install such packages without using
security checks. In contrast, package managers that use sig-
natures on detached package metadata or package signatures
can verify stand-alone packages.

Because of the usability strengths and weaknesses of differ-
ent techniques for providing security, this work recommends
a layered approach created by combining two techniques:
signatures on detached package metadata and signatures on
the root metadata. This technique provides the security
strengths and the usability strengths of both types of signa-
tures. The overhead of using multiple security techniques is
between 2-5%, which demonstrates that overhead is not a
deterrent. The layered approach advocated by this work has
been added to a package manager and is now in practical
use by thousands of clients around the world.

1.1 Contributions
This work makes several contributions:

• The security mechanisms in package managers are an-
alyzed and classified by effectiveness, usability, and ef-
ficiency. The relative strengths and weaknesses of dif-
ferent mechanisms are compared and contrasted. This
work also describes means by which to improve the
security of existing package managers without adding
additional signature mechanisms.

• An existing package manager is modified to incorpo-
rate the changes discussed in this work. This package
manager is deployed and evaluated in practice with
conclusions drawn based upon real-world experience.

• The attacks in this paper are shown to be more broadly
applicable and affect users who do not use mirrors
when the attacker can intercept and modify traffic.

• Using traces of traffic from mirrors, the overall threat
posed by mirror compromises is estimated. All popular
package managers are shown to be vulnerable to com-
promise by an attacker that controls a mirror. This
work raises awareness to the threat of attack using mir-
rors.

1.2 Map
This paper begins by providing background information about
how package managers work (Section 2). The scope and fea-
sibility of an attacker obtaining a mirror are then discussed,
including the resulting threat model (Section 3). Then fol-
lows an analysis of the security of package managers in this
threat model (Section 4). Following this is a discussion of
the usability provided by these security models (Section 5).
Next is a discussion about how security and usability can be
maximized by utilizing signatures on both the root metadata
and the detached package metadata (Section 6). Results are
then provided to demonstrate the efficiency and security of
package managers (Section 7). The paper discusses related
work (Section 8) and then concludes (Section 9).

2. BACKGROUND
This section provides background information about pack-
age managers which is important in order to better under-
stand potential vulnerabilities.

2.1 Package Formats
Packages consist of an archive containing files and, in most
cases, additional embedded package metadata. For a given
package, the embedded package metadata contains informa-
tion about the other packages it needs to be able to oper-
ate (the dependencies), functionality the package possesses
(what the package provides), and various other information
about the package itself. The most popular package for-
mat [18] has space for one signature. Other popular pack-
age formats have no standard field for signatures, although
in some cases extensions exists to support signatures [7, 9].

2.2 Package Managers
Clients use a package manager to install packages on their
system. A package manager gathers information about pack-
ages available on package repositories. Almost all pack-
age managers automatically download requested packages as
well as any additional packages that are needed to correctly
install the software. This process is called dependency res-
olution. For example, a requested package foo may depend
on libc and bar. If libc is already installed, then libc is a
dependency that has been resolved (so no package needs to
be added for this dependency). If there is no installed pack-
age that provides bar, then bar is an unresolved dependency
and a package that provides bar must be installed before
foo may be installed. The package manager may be able to
locate a package that provides bar on a repository.

The packages that are chosen to fulfill dependencies may
have unresolved dependencies of their own. Packages are
continually added to the list of packages to be installed until

2

packagemetadata.tar.gz metadata
tarball

6c6870...a3
568214...f2

...

3426ae...32

Package Metadata
signature (optional)

Package Metadata

size:’56242’

...
hash:’74b5a1...c3’

name:’foo−2.0.rpm’

Package
signature (optional)

foo−2.0.rpm

Packages

Package
signature (optional)

bar−1.0.deb

Root Metadata signature (optional)

Root Metadata

c302df...f8hash:
package

Figure 1: Repository Layout. The root metadata,
package metadata, and packages may all optionally
have signatures depending on the support of the
package manager. Arrows point from a secure hash
to the file it references.

either the package manager cannot resolve a dependency
(and produces an error) or all dependencies are resolved.

2.3 Repository
A package repository is usually an HTTP or FTP server
that clients can obtain packages and package metadata from.
The package metadata for a package is usually just a copy
of the embedded package metadata in the package. Package
managers download the package metadata from a reposi-
tory so that they know which packages are available from
that repository. This also provides the package manager
with dependency information needed perform dependency
resolution. To facilitate convenient downloading of package
metadata, most repositories store all of the package meta-
data in a small number of compressed files, often a tarball.

In addition to the package metadata files, each repository
has a root metadata file. The name and location of the
root metadata file varies for different repository formats,
but the contents are similar. The root metadata provides
the location and secure hashes of the files that contain the
package metadata.

Figure 1 shows the layout of a repository. A package man-
ager downloads the root metadata and uses that to locate
the files containing the package metadata. The package
manager then downloads the package metadata. The pack-
age metadata is used to determine package availability as
well as for dependency resolution. Packages are then down-
loaded and installed. The root metadata, package metadata,
and packages may be signed depending on the security model
of the package manager.

2.4 Mirror
It is common for a distribution to have more than one server
from which users can download packages and package meta-
data. There is usually a main repository for a distribution
whose contents are copied by many separate mirrors. A
mirror typically contains exactly the same content as the
main repository and is updated via rsync or a similar tool.

A mirror differs from a main repository in that a mirror is
not intended to have packages directly added to it or re-
moved from it by its administrators. Packages are added or
removed only on the main repository and the mirrors later
obtain the changes when copying the main repository.

A mirror can be public (available for anyone to use) or pri-
vate (restricted to a specific organization). A mirror may
also be endorsed by a distribution for public use, typically
when that the distribution is in contact with the mirror
maintainers. This type of mirror is called an official mirror
(the terminology used outside of this document varies by
the distribution). Official mirrors are by definition public
because the distribution is endorsing their use to the public.

It should be noted that some distributions do not use official
mirrors hosted by outside organizations. One type of distri-
bution without official mirrors are tiny distributions that can
support all of their clients by a small number of repositories
that the distribution directly controls. Another example of a
type of distribution without official mirrors is a distribution
that requires users to pay for the distribution. These costs
often are used to support a set of internally maintained mir-
rors for the distribution. Alternatively, a distribution may
allow or require each organization using the distribution to
set up their own private mirrors for the organization’s own
use.

However, official mirrors hosted by outside organizations are
the predominant mechanism for software distribution with
all but two popular distributions [8, 14] relying on official
mirrors. Official mirrors are essential for most distributions
to reduce cost and management overhead.

3. MIRRORS
This section examines the feasibility of obtaining a mirror
to attack package managers (Section 3.1) and the resulting
threat model (Section 3.2).

3.1 Obtaining a Mirror
To evaluate the feasibility of controlling mirrors of popular
distributions, we attempted to set up official public mirrors
for the CentOS, Debian, Fedora, openSUSE, and Ubuntu
distributions. A fictitious company (Lockdown Hosting)
with its own domain, website, and fictitious administrator
(Jeremy Martin) were used as the organization maintaining
the mirrors. A server with a monthly bandwidth quota of
1500 GB was leased for $200 per month through The Planet
(www.theplanet.com).

Setting up a public mirror for each distribution involved
acquiring the packages and metadata from an existing mir-
ror and then notifying the distribution maintainers that the
mirror was online and available for public usage. The distri-
butions varied in terms of the degree of automation in the
public mirror application and approval process as well as
whether newly listed mirrors have traffic immediately and
automatically directed to them. Regardless of whether the
application and approval process was completely automated,
the same basic information was required, including the name
of the organization providing the mirror, the contact email
address for the mirror administrator, and the mirror’s avail-
able bandwidth. For the distributions that automatically

3

direct their clients to mirrors (CentOS, Fedora, openSUSE),
the specific mirrors a client is directed to are based upon a
combination of the geographic locations of the client and
the mirrors (determined by their IP addresses) as well as
the number of clients each mirror can handle, based upon
their available bandwidth. More details about signing up
individual mirrors can be found in the Appendix.

3.2 Threat Model
There are several ways that an attacker can compromise a
client. First, if a package manager installs arbitrary code
provided by the attacker, the attacker has compromised the
client’s system. Second, the attacker can cause a client to
install an outdated package with a vulnerability the attacker
knows how to exploit (called a vulnerable package). The
attacker can then compromise the client by exploiting the
vulnerable package.

The threat model used in this paper involves an attacker
that controls an official mirror for a distribution. The threat
model can be summarized as:

• The attacker may modify any files served by the mir-
ror. — This is logical because the attacker has root
access to the mirror.

• The attacker does not know what package the client
will request a priori. — While the attacker knows this
for some package managers, this is not true for all pack-
age managers, therefore our threat model assumes the
attacker does not have this ability.

• The attacker does not have a key trusted to sign pack-
ages, package metadata, or the root metadata. — Mir-
rors do not usually possess the private key used to sign
files, they only copy previously signed files from the
main repository.

• The attacker has access to outdated packages, out-
dated package metadata, and outdated root metadata.
— There are many outdated mirrors on the Internet
where the attacker can obtain these files if they haven’t
already saved copies.

• The attacker is aware of vulnerabilities in some out-
dated packages and is able to exploit those vulnera-
bilities. — By looking at change logs and updates
to software source files, it is possible for an attacker to
discover vulnerabilities. Also, some websites [13] make
toolkits and proof-of-concept code available that can
exploit known vulnerabilities.

• The attacker does not know of a vulnerability in the
latest version of any package. — Zero-day vulnerabili-
ties are obviously useful to an attacker, but are unlikely
to be known by most attackers.

• If a package manager supports signatures, signatures
are used. — If a client or distribution chooses not to
use signatures supported by their package manager,
they are as vulnerable as if they used a package man-
ager that does not support signatures.

• Expiration times the root metadata are used if sup-
ported and vulnerable versions of packages are only
listed in expired root metadata. — The root meta-
data is a single, small file so it is feasible for the main
repository to sign it relatively frequently with short
expiration times.

More formally, let pi be a package in the total set of pack-
ages P , where each package pi consists of a set of versions
Vi = {vi0, vi1, . . . , vin}. The attacker knows how to exploit
vulnerabilities in some (possibly empty) subset of the total

versions of the package V̂i ⊂ Vi. Note that V̂i 6= Vi since
the most current version is not in V̂i. If a client installs any
package in V̂ (comprised of all versions of all packages the
attacker knows how to exploit), the attacker can compro-
mise the client. Each version of a package also has a start
time ts

ij and end time te
ij when the version was available on

the main repository. Note that it not uncommon for the
older version to be removed when the new version is added
te
ij = ts

ij+1 or for the old version and new version to over-
lap te

ij > ts
ij+1 but it is rare for no version to be available

for any time period te
ij < ts

ij+1. Each package also has a
frequency of request (denoted fi) which is the fraction of
package requests that are for pi.

This formalism will be used in Sections 4 and 7 to quantify
the vulnerability to attack of the security mechanisms used
by different package managers.

4. SECURITY OF PACKAGE MANAGERS
The security of a package manager varies depending on what
the package manager signs. This section explores the secu-
rity strengths and weakness of signatures on different data
along with implementation pitfalls observed in package man-
agers (and how to fix them). This section then classifies
the security of different signatures into a list ordered by in-
creased security.

The discussion groups package managers with similar se-
curity characteristics together. The first group of package
managers do not use signatures (Section 4.1). The sec-
ond group of package managers sign packages but do not
include signatures on package metadata or root metadata
(Section 4.2). The third group of package managers sign
package metadata but do not sign the root metadata (Sec-
tion 4.3). The final group of package managers sign the root
metadata (Section 4.4).

4.1 Package Managers Without Security
There are three popular package managers that do not pro-
vide security: Pacman, ports1 , and Slaktool. These package
managers do not sign packages, package metadata, or the
root metadata file. As a result any attacker that controls
a mirror can trivially create an arbitrary, malicious package
and clients will install the attacker’s software.

4.2 Package Signatures
1A version of ports used by NetBSD did support package
signatures at one time [6], but this has been obsoleted and
is not maintained or used.

4

The popular package managers YUM and urpmi rely on sig-
natures embedded in packages to provide security. Both
package managers use package signatures for security. There
is no protection of package metadata or the root metadata.

Package Metadata An attacker can create arbitrary
package metadata and neither YUM nor urpmi verifies the
package metadata at any point even if a package is down-
loaded. After downloading a signed package and verifying
the package’s signature, the embedded package metadata in
the signed package is not compared against the previously
downloaded package metadata. Due to this, an attacker
can cause additional packages to be installed along with the
package the client intended to install. For example, suppose
an attacker knows how to compromise a vulnerable package
vij , the attacker can then change the package metadata of
every package on the mirror to depend on vij . Any client
that wants to installs any package will also install the vul-
nerable package because of the dependency. It is possible
to modify YUM and urpmi to prevent this attack by verify-
ing that the embedded package metadata is the same as the
downloaded.

Packages An attacker can choose which versions of pack-
ages to include on the mirror. This means that an attacker
can choose to have the mirror provide versions of packages
that were on the main repository at different times. As a re-
sult, an attacker can compromise a client that requests any
package for which the attacker has a vulnerable version.

Analysis The rate of compromise of clients using the mir-
ror varies depending on whether or not the package manager
verifies that the package metadata matches the package. If
the package manager does not verify the package metadata
matches, the attacker can add a dependency on a specific
package and version in V̂ to the package metadata of every
package. Thus every client that requests a package will be
compromised.

If the package managers are modified to verify that the pack-
age metadata matches the package, they are still vulnerable
to an attacker who places older, vulnerable package versions
on the mirror. The probability of the client downloading a
vulnerable package is the chance of downloading a package
for which there exists a vulnerable version. The probability
of a package download by an uncompromised client resulting
in a compromise (denoted X) can be estimated as:

X = ∀pi∃vij ∈ V̂i

`

∑
fi

´

(1)

4.3 Package Metadata Signatures
The Portage and Stork package managers sign package meta-
data, however they do so in different ways. Each package
in Portage has a separate, signed package metadata file for
each version of the package. The package metadata contains
the secure hash of the package (possibly along with related
files such as patches). In contrast, Stork users create a sin-
gle file that contains a timestamp and the secure hash of
the package metadata for all of the packages that the user
trusts. Users can also delegate trust to other users and all
users typically delegate trust to a single “distribution” user.
The analysis of Stork focuses on the security of the packages
trusted by the distribution user because the security of the

distribution user affects all clients.

Package Metadata The tampering attacks described
for the package managers that sign only packages are not
effective when the package metadata is signed. That is true
because the client can verify the signature on the package
metadata before using the package metadata to do depen-
dency resolution. There is no need to verify that the package
metadata matches the embedded metadata in the package
because the secure hash of the package in the package meta-
data protects the package from tampering.

Packages Resistance to metadata tampering does not
imply that the package manager is resistant to attack. In
Portage, since each package has a different file for metadata
signatures, an attacker can choose to have any combination
of packages (such as those that include only older versions
with known vulnerabilities) available on the mirror. This an
attacker to choose to host vulnerable versions of packages
that existed on the main repository at different times.

However, in Stork all of the package metadata signatures are
in the same file. This prevents an attacker from providing
package metadata that existed on the repository at different
times. An attacker must instead provide a consistent snap-
shot of the main repository at a specific time. Timestamps
prevent the attacker from providing a client with an older
file than it has seen.

It is worth noting that this does not prevent an attacker who
controls a mirror from freezing the mirror contents at a par-
ticular point (i.e. stop updating from the main repository).
This means that an attacker can convince clients to use vul-
nerable packages so long as the client has not downloaded a
file with a newer timestamp.

Analysis The vulnerability to attack of having individu-
ally signed package metadata is the same as is presented in
Equation 1. This is because the attacker can choose vulner-
able packages that were on the mirror at different times.

However, the same is not true when the signatures is over
a group of package metadata. This prevents the attacker
from choosing to provide a client with versions of packages
that did not exist on the main repository at the same time.
This means that if V̂i = via and V̂j = vjb and te

ia < ts
jb,

then the attacker must choose to compromise either clients
who use package pi or clients who use pj . An intelligent
attacker will choose a time frame that has the maximum
probability of a client downloading a vulnerable package.
Thus the attacker will want to maximize the probability of
compromise (denoted X) and will choose the time frame t′

(out of the time period when the main repository has been
online T) so that:

X = max
t′∈T



∀pi∃vij ∈ V̂i

˛

˛

˛

˛

tsij≤t′≤teij

`

∑
fi

´

ff

(2)

4.4 Root Metadata Signatures
The package managers APT, APT-RPM, and YaST sign the
root metadata. All three of these package managers option-
ally support packages signatures as well, but this function-
ality is not widely used in practice.

5

Package Metadata Package metadata is stored in com-
pressed files and the secure hashes of those files are stored
in the root metadata file. As the root metadata is protected
by a signature, the package metadata is protected from tam-
pering.

Packages The signature on the root metadata prevents
a mirror from hosting versions of packages that were on the
main repository during different time periods. The attacker
must choose a time period of the main repository to copy
and provide exactly those files.

The signature on the root metadata does not prevent an
attacker from replaying old versions of the root metadata at
a later date. An attacker may want to do this in response
to newly discovered vulnerabilities in older packages. An
attacker also may choose to change the set of packages it
provides after compromising one set of clients so as to go
after clients with different package interests.

It is easy for package managers to prevent the replay of
older metadata by adding a timestamp to the root meta-
data and checking that the downloaded version is newer
than the version the client last downloaded. In fact APT
and APT-RPM have timestamps in the root metadata and
merely need to add the check. YaST, which can use differ-
ent repository structures and metadata formats, only has
a timestamp available in the root metadata for some of its
supported formats. However, there is a timestamp within
the gpg signature of the root metadata and this signature
timestamp could be used without requiring a modification
to any root metadata file formats.

Another avenue of attack comes from an attacker freezing
the mirror contents at a particular point in time. The clients
will continue to use the old mirror data and may install
vulnerable packages as vulnerabilities become known within
the frozen set of packages. This attack is similar to the
freezing attack described in the previous section.

To mitigate the effectiveness of freezing attacks, packages
managers could add an expiration time to the root meta-
data. Clients would refuse to use a root metadata file if the
current time is greater than the expiration time. Since the
root metadata is a single, small file it is feasible to re-sign
this file often and require every mirror to be frequently up-
dated (most distributions already require their public mir-
rors to update no less frequently than once a day).

YaST uses gpg to check the signature on the root metadata
and gpg supports expiration times. However, YaST does
not recheck the root metadata’s signature if the file has not
changed since the last time it downloaded it. This means
that without additional changes to YaST, adding root meta-
data signature expiration times would prevent an attacker
from providing a client old metadata files that had already
expired, but old metadata files that had not yet expired
could be given to the client and frozen at that point in time
by continuing to provide the client the same root metadata
files. During testing it was noted that gpg expiration times
are not in practical use. For these reasons, YaST is vulner-
able to freezing attacks.

Name Signs Package Installation Metadata Abuse

pacman nothing arbitrary arbitrary
slaktool nothing arbitrary arbitrary
YUM (1) alongside arbitrary
urpmi (1) alongside arbitrary
Portage (2)* mismatch replay / freeze
Stork (1)*, (2) consistent freeze
APT (1)*, (3) consistent replay / freeze
YaST (1)*, (3) consistent replay / freeze
APT-RPM (1)*, (3)* consistent replay / freeze

Figure 2: Package managers, their protection mech-
anisms and vulnerabilities. The protection mecha-
nisms are numbered (1) packages, (2) package meta-
data, (3) root metadata. ’*’ indicates that support
exists but is not in common use.

Analysis Root metadata signatures that are vulnerable
to replay and freezing attacks still prevent the attacker from
providing a client with versions of packages that did not
exist on the main repository at the same time. This has
a similar effect as having a single file that contains all of
the package metadata signatures. As a result, it has the
same vulnerability as displayed in Equation 2 because the
attacker must choose package versions that existed on the
main repository at the same time.

If the package manager supports root metadata signatures
and uses expiration times and protect against replay attacks,
it is not vulnerable to compromise in our threat model. As
a result, it is safe for a client to use a compromised mirror.

4.5 Classification
The security mechanisms and vulnerabilities of the package
managers are summarized in Figure 2. All of the package
managers studied are vulnerable to metadata tampering by
an attacker that controls a mirror. The result of metadata
tampering is that an attacker may cause clients to install
vulnerable packages. Depending on the package manager’s
security mechanisms, the result can be any of the following,
where those listed first also imply those listed after: arbi-
trary packages created by the attacker are installed, any vul-
nerable package can be installed alongside non-vulnerable
packages a client installs, mismatched outdated packages are
installed (in that they existed on the main repository at dif-
ferent times), or consistent outdated packages are installed
(in that they existed on the main repository at the same
time but are outdated).

Based upon the observation and analysis of the security in
existing package managers, it is possible to similarly classify
the security mechanisms. Given these classifications, one
can obtain an ordering of the security of the mechanism.

Figure 3 shows a classification of different security mecha-
nisms. Clearly, having no signatures allows the most attacks
and is the most vulnerable. Signatures on packages pro-
vide a definite improvement over no signatures, but gives
the attacker the ability to manipulate metadata arbitrarily
and provides attackers the ability to populate a mirror with
packages of mismatched versions, or, if package metadata
isn’t verified using the signed packages, the ability to caus-
ing vulnerable packages to be installed alongside any non-
vulnerable packages. Signatures on package metadata pre-

6

Classification Best Case Common Case
Name Package Metadata

Abuse
Package Metadata

Abuse

No Security arbitrary arbitrary arbitrary arbitrary
Package mismatch replay /

freeze
alongside arbitrary

Package Meta-
data

mismatch /
consistent

freeze mismatch replay /
freeze

Root Meta-
data

current none consistent replay /
freeze

Figure 3: Classification of package manager protec-
tion schemes. This demonstrates both the security
that is possible to achieve using a scheme as well as
what is commonly provided by existing implemen-
tations.

vent the attacker from doing more than replaying or freezing
the package metadata but if the signatures are in separate
files, the attacker can still mismatch versions of packages.
By preventing replay and freezing attacks in package man-
agers that sign the root metadata, a package manager will
only install current packages and is immune to metadata
tampering.

5. ADDITIONAL USABILITY NEEDS
This section focuses on additional usability requirements
users have for package management. Most importantly, the
use case where a user has an uninstalled package on their
computer they need to verify.

The standard use case of the package managers and their
security mechanisms is where a user needs to securely install
software from a remote, trusted repository. However, it is
not uncommon for a user to have a stand-alone package that
they need to verify is free from tampering and was created
by a party they trust. Stand-alone packages are packages
that are not obtained through the package manager’s normal
channels at install time. Stand-alone packages may have
been obtained manually from unofficial sources or may even
be packages a user has created.

The reasons [24] that users commonly state in support of
stand-alone package verification can be summarized as fol-
lows.

• Stand-alone packages can be checked for tampering im-
mediately without requiring the relevant signed repos-
itory metadata for the specific packages.

• There are sources that gather and distribute packages
originating from many other places, such as rpmfind.
net and rpm.pbone.net. It is important for users
downloading packages from these sites to be able to
verify that the packages they download haven’t been
tampered with.

• Packages may be created by a user who does not run
a repository. The user may want to verify their own
packages at a later time (for instance, if the system
the packages were stored on was compromised at some
point).

• There are “derived distributions” that are created by
slight modification to an existing distribution’s files.

When using packages from a derived distribution, users
are able to identify whether a given package is the
original from the parent distribution.

• If the method for verifying the package allows multiple
signatures, these signatures allow the user to trace the
path a package has taken (developer signature, distri-
bution signature, etc.).

• Developers would like to verify packages as they move
around their own infrastructure.

The signing of only root metadata does not allow any prac-
tical way to verify stand-alone packages. Package man-
agers that use signed root metadata could be modified to
keep copies of all metadata obtained from the repository
for future verification of stand-alone packages, but this only
helps for packages a user manually downloads from the same
repository that they access through their package manager.
This also fails to satisfy one of the primary reasons given
for being able to verify stand-alone package signatures: ver-
ifying signatures for files when they are only available for
manual download and installation, not through a repository.

Package managers that sign package metadata tend to be
more able to meet the needs of stand-alone package verifi-
cation than the package managers who only sign root meta-
data. However, the way in which package metadata is stored
has a major impact on usability in this case. Similarly with
package managers that sign only root metadata, package
managers would need to store old package metadata and
this would only be of use for verifying stand-alone packages
that came from a repository the user normally users. In
other cases the user would need to be sure to always keep
the signed package metadata with the package for verifica-
tion purposes. This is far from an ideal option.

Signatures embedded in packages are thus the most practi-
cal option and provide the greatest ease of use when stand-
alone packages must be verified. All that a user needs in
order to verify a package is the package itself. A drawback
with having signatures in the package is that signatures are
constrained by the limits of the package format. The most
popular package format [18] has space for one signature.
Other popular package formats have no standard field for
signatures, although in some cases extensions exists to sup-
port signatures [7, 9].

Using signatures embedded in packages for stand-alone pack-
age verification does have complications, though. Notably,
users must have the requisite public keys available in or-
der to verify package signatures. They must also ensure on
their own that packages they are installing are not outdated
and have vulnerabilities. However, there are many scenarios
where a user can use embedded package signatures in a way
that increases security in their specific situation.

6. DISCUSSION
It is important to remember that all of the package managers
that use some form of security mechanism are considered
to be secure by their users. The implication by providing
cryptographic signatures of data is that the data is secure.

7

Many security-aware people have been involved in the de-
sign and development of these package management systems
over long periods of time and yet every one of them suffers
from critical security problems. Therefore, it is vital to care-
fully consider what the threats against package managers
are, what each form of security specifically protects against,
and to identify ways in which existing package managers can
increase their level of security.

Each of the security mechanisms available have trade-offs.
Signatures on packages present unacceptable security risks
for many users but are conceptually simple to use (often
with unfortunate limitations on the number of signatures
per package). Package metadata signatures have much bet-
ter security and allow multiple signatures per package. Sig-
natures on the root metadata have the best security but
have low usability when stand-alone package verification is
a requirement.

6.1 Deployment Experiences
To gain more experience with what works well in practice,
we took the existing package manager Stork and added root
metadata signing. We also ensured that Stork was not sus-
ceptible to replay or freeze attacks. Since Stork already
supported both package signatures and package metadata
signatures, this allowed us to experiment with all types of
signatures in a single package manager.

Stork was chosen for three reasons. First, since Stork is a re-
search project, the authors were receptive to “experimental”
changes to Stork. Second, Stork already incorporated two
of the three types of signatures, including package metadata
signing which seemed the most complex to add to an exist-
ing package manager. Third, Stork is used almost entirely
by researchers and we thought it would be easier to convince
researchers to try experimental code.

Once the changes to Stork for root metadata signing were
tested and verified by the Stork team, they pushed the
changes in their main release. Interestingly, Stork differed
from all other security-using package managers in that there
was no key already trusted by clients to validate communi-
cation from the repository. As the only signed files in Stork
were the package metadata files signed by individual users,
there had never been a need for the repository to have its
own key that the clients needed to trust. This resulted in
the necessity of distributing a repository key to clients in
order for them to make use of the new root metadata sig-
natures. The key was included with the initial release of
the updated version of Stork. This initial key distribution
was able to be done securely because the majority of users,
through their trusted packages files, delegate trust to the
Stork team to provide them updated Stork packages. — It
is important to note that, unlike in other package managers,
Stork’s design meant that users would not be using this key
for trusting packages, but rather only verifying metadata
files downloaded from the repository.

The resulting changes were transparent to the users. Ulti-
mately, there were few comments about the addition of root
metadata signatures since the the existing security mecha-
nism (package metadata signatures) was retained without
modification. Though transparent to the users, they gained

increased security through the addition of root metadata
signatures.

We then tested the different signature mechanisms and found
that with the use of package metadata signatures, there was
no reason to use package signatures. We examined packages
on the Stork repository to find that user-uploaded pack-
ages did not include package signatures, indicating that re-
searchers were not using the optional package signature fea-
ture of Stork. From this we conclude that package metadata
signatures and package signatures are redundant and it is
sufficient for only one of these to be available to users.

6.2 Deployment Conclusion
Since no one scheme works well from both a security and
a usability standpoint, we propose that package managers
should use multiple security mechanisms. It is clear that
root metadata signatures should be included because of the
security benefits. It also seems advantageous to have either
package metadata signing or package signatures. Whether
signatures on package metadata are superior to signatures
on packages from a security and usability context depends
upon the specifics of how a package manager is implemented.
In either case, there appears to be little security or usability
gain from including both signed packages and package meta-
data signatures. By combining root metadata signatures
with either signed package metadata or signed packages, a
package manager can obtain a high degree of security and
excellent usability.

6.3 Broader Applicability
While the focus of this work is on compromises involving
a mirror, this threat model has broader applicability. For
package managers that do not use HTTPS, an attacker who
controls a mirror has the same characteristics as an attacker
who can launch a man-in-the-middle attack or otherwise di-
vert repository traffic to their system. For this reason, even
clients that use the main repository for their distribution are
not safe from attack.

However, the threat of man-in-the-middle attacks can be re-
duced by using HTTPS. Unfortunately, many package man-
agers do not support HTTPS. Even for those package man-
agers that do support HTTPS, it is only widely used in one
popular distribution, Red Hat Enterprise Linux. From a
practical standpoint, HTTPS removes the threat of a man-
in-the-middle attack, but it is not applicable to the problem
of a compromised mirror because the client is communicat-
ing with the computer it intends to.

A more dire threat than a man-in-the-middle attack is if an
attacker were able to control the main repository for a dis-
tribution. This is a serious threat because the mirrors for
the distribution will all copy the contents of the main repos-
itory. Distributions tend to be very protective and proactive
with the main repository, so this seems unlikely. However, if
mirrors do not use a secure connection to synchronize with
the main repository (as is the case in most of the popular
distributions), then the mirrors are susceptible to man-in-
the-middle attackers who pose as the main repository.

8

 0

20000

40000

60000

80000

100000

120000

140000

160000

 0 50 100 150 200 250 300
 0

 1000

 2000

 3000

 4000

 5000

 6000
C

um
ul

at
iv

e
P

ac
ka

ge
 R

eq
ue

st
s

C
um

ul
at

iv
e

U
ni

qu
e

IP
s

Time (in hours)

Package Requests
Unique IPs

Figure 4: CentOS Mirror Traffic. This figure
presents the cumulative package downloads and re-
quests from unique IP addresses for the CentOS mir-
ror over a 13 day period.

6.4 (More) Safely Using an Insecure Package
Manager

Many fundamental security issues remain for the users of
insecure package managers. However, both the distributions
and users can help to mitigate the effectiveness of attacks
even when using an insecure package manager.

• If the package manager supports HTTPS, the distri-
bution can set up repositories or mirrors that sup-
port HTTPS transfers. This will mitigate man-in-the-
middle attacks.

• The distribution can review their mirror policy care-
fully and validate administrator credentials before putting
a mirror on the official mirror list. This will make it
harder for an attacker to obtain a mirror.

• The distribution’s mirrors should use a secure connec-
tion (e.g. SSH) to synchronize with the main reposi-
tory. This will make it harder for an attacker to im-
personate the main repository in an attempt to get the
mirrors to copy their content.

• Users can check that the versions of the packages their
package manager recommends for installation are re-
cent through another source. This will help to detect
malicious mirrors serving old packages.

7. RESULTS
To understand the impact of an attacker that controls a
mirror, a trace of package requests was conducted on a Cen-
tOS mirror and used to estimate the number of clients that
could be compromised by an attacker. Using an estimation
was necessary as it would be unacceptable to deploy live
compromises on the public Internet.

7.1 Mirror Traces
The CentOS mirror was chosen for this analysis because
it was the longest mirror experiment that was conducted,
lasting 13 days. The package access trace gathered from
the CentOS mirror is shown in Figure 4. The number of

package requests and number of requests from unique IP
addresses increase roughly linearly over this time period.
Assuming the CentOS user base is not growing faster than
our mirror serves clients, we would expect the number of
unique IP addresses to flatten out over time, however our
trace is not long enough to capture that effect. Since clients
are counted as unique by IP address, multiple clients behind
a NAT box or proxy are counted as a single client. There are
many instances where a single IP address has several orders
of magnitude more package requests than the median client,
often with many requests for the same package. This implies
that clients are using NAT boxes or proxies in practice.

The openSUSE and Fedora mirrors (not shown) had sim-
ilar traffic effects as the CentOS mirror. The Debian and
Ubuntu mirrors (not shown) were both up for only a short
period, but did not demonstrate this effect. We suspect
this is because they do not automatically distribute requests
among the mirrors, instead requiring manual selection by a
user. Since our mirrors were only listed a few days, they did
not attract a large number of users on Debian and Ubuntu.

7.2 Package Versions and Vulnerability
To perform our analysis, we needed to know the distribu-
tion of package versions over time on the mirror, as well
as which of those versions are vulnerable to attack. Infor-
mation about the 58165 versions of the 3020 RPM CentOS
packages used in the last year was captured. The update
times were captured and used in the data set to determine
if different versions existed on the main repository at the
same time. This information was used to estimate compro-
mises for those package managers that require a consistent
set of packages (packages that were all on a repository dur-
ing the same time period).

Determining which package versions are vulnerable to attack
proved to be more difficult as we are unaware of a data set
that provides a good model of this. We randomly chose a
set of vulnerable versions from all non-current versions of
packages. In practice, we believe that an attacker would be
more likely to work to discover vulnerabilities in old versions
of popular packages as these would allow the attacker to
compromise more clients. This work does not capture this
effect.

7.3 Number of Compromised Clients
Using the CentOS trace and version information, the num-
ber of clients compromised by a malicious mirror was esti-
mated (Figure 5). As the true number of vulnerable pack-
ages is not known, we used a conservative estimate of 25 vul-
nerable packages. These plots show that the security model
of the package manager has a great impact on the number
of clients that can be compromised. Every client that uses
a mirror with a package manager that has missing or inad-
equate security (pacman, slaktool, ports, YUM, urpmi) is
vulnerable to compromise. Using a package manager that
allows an attacker to mismatch vulnerable package versions
that were on the main repository at different times (Portage)
reduces the number of compromised clients by about a factor
of 4 to around 900 over the 13 day period. Package managers
whose security mechanisms require a consistent set of pack-
ages (Stork, APT, APT-RPM, YaST) reduce the number of
clients compromised to under 500. A package manager with

9

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 50 100 150 200 250 300

C
um

ul
at

iv
e

C
lie

nt
s

C
om

pr
om

is
ed

Time (in hours)

No Security
Mismatched

Consistent

Figure 5: Compromised Clients CDF. This figure
presents the cumulative number of clients compro-
mised over a 13 day period for an attacker with 25
vulnerable versions. This figure shows the effect of
the security mechanism on the number of clients
compromised.

signatures on the root metadata and protection against re-
play and freezing attacks (for example, modified Stork) will
not have any compromises from an attacker that controls a
mirror.

The package managers that allow the attacker to mismatch
packages or that require a consistent set of packages vary
based upon the number of vulnerable packages. The effect
of varying the number of vulnerabilities is shown in Fig-
ure 6. The number of packages with vulnerabilities that
the attacker can exploit is on the x-axis. The plots show
that package managers which allow an attacker to choose
different versions of packages that existed on the root repos-
itory at different times (mismatch) are more vulnerable to
an attacker that has many vulnerable versions. Package
managers that require an attacker to present a set of pack-
ages that was all on the repository at the same time (con-
sistent) provide less motivation for an attacker to uncover
more vulnerabilities. Equation 2 was used to decide which
set of vulnerable versions the attacker should choose. This
figure clearly shows that a package manager that requires
an attacker to present a consistent set of packages provides
better security than one that allows an attacker to mismatch
packages. Somewhat disturbing is the significant number of
clients that can be compromised if there are only 5 vulner-
able package versions.

Our leased server was bandwidth-limited and mirrored mul-
tiple distributions simultaneously in order to control the cost
of the experiment. An attacker would likely expend more
bandwidth or set up multiple mirrors to capture additional
traffic, thus leading to more compromises.

8. RELATED WORK
Many package managers have GUI front-ends [10, 22]. These
GUI-based tools are usually just a different interface to the
functionality provided by a command line package manager
and so are identical from a security standpoint.

 0

 100

 200

 300

 400

 500

 600

 700

 5 10 15 20 25 30 35 40 45 50

C
lie

nt
s

C
om

pr
om

is
ed

 p
er

 W
ee

k

Vulnerable Packages

Mismatch
Consistent

Figure 6: Clients Compromised Per Week. This fig-
ure presents the estimated number of clients com-
promised per week by an attacker that controls a
mirror. The error bars show one standard devia-
tion. The plots are offset slightly for readability.

There are many techniques that help to support software
security such as systems that ensure the authenticity and
integrity of software (including SFS-RO [11], SUNDR [12],
Deployme [15], and Self-Signed Executables [25]), and code
signing certificates [5]. These are complimentary to the so-
lutions presented in this paper.

There are several systems that access multiple mirrors to
improve download performance and avoid DoS attacks. By-
ers et al. [4] describe using Tornado codes to improve per-
formance by downloading from several mirrors simultane-
ously. This has the side-effect of allowing the client to make
progress even if one of the mirror misbehaves. Sharma et
al. [19] describe having the client “hop” between mirrors
while downloading a file. This prevents an attacker from
launching a DoS attack on the client because the attacker
does not know which mirror the client will use next. We
hope that raised awareness of the threat of malicious mir-
rors will result in organizations trying these techniques in
practice.

9. CONCLUSION
This work identifies security issues in ten popular package
managers in use today. These security issues allow an at-
tacker who has control of a mirror to compromise clients that
use the mirror. Our estimates show that an attacker with
a mirror that costs $50 per week can compromise between
150 and 1500 clients each week. However, we describe how
to address these security issues to reduce the effectiveness
and in some cases eliminate the risk to clients.

This work also classifies the security models used in package
managers and provides an ordering that demonstrates that
root metadata signing provides the best security, followed by
metadata signing, package signing, and no security. In addi-
tion to root metadata signing, we argue a package manager
should support another signature mechanism to support the
ability to verify stand-alone packages. This work demon-
strates the overhead of using multiple signature methods is
negligible in practice (2-5%).

10

10. REFERENCES
[1] Debian APT tool ported to RedHat Linux.

http://www.apt-get.org/.

[2] APT-RPM. http://apt-rpm.org/.

[3] Arch Linux (Don’t Panic) Installation Guide.
http://www.archlinux.org/static/docs/

arch-install-guide.txt.

[4] J. Byers, M. Luby, and M. Mitzenmacher. Accessing
multiple mirror sites in parallel: using Tornado codes
tospeed up downloads. INFOCOM’99. Eighteenth
Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings. IEEE, 1,
1999.

[5] Introduction to Code Signing. http://msdn2.
microsoft.com/en-us/library/ms537361.aspx.

[6] A. Crooks. The netbsd update system. In ATEC ’04:
Proceedings of the USENIX Annual Technical
Conference, pages 17–17, Berkeley, CA, USA, 2004.
USENIX Association.

[7] debsigs - What is debsigs. http:
//linux.about.com/cs/linux101/g/debsigs.htm.

[8] DistroWatch.com: Editorial: How Popular is a
Distribution? http://distrowatch.com/weekly.php?

issue=20070827#feature.

[9] man dpkg-sig.
http://pwet.fr/man/linux/commandes/dpkg_sig.

[10] The KPackage Handbook. http://docs.kde.org/
development/en/kdeadmin/kpackage/.

[11] D. Mazières, M. Kaminsky, M. F. Kaashoek, and
E. Witchel. Separating key management from file
system security. In Proc. 17th SOSP, pages 124–139,
Kiawah Island Resort, SC, Dec 1999.

[12] D. Mazières and D. Shasha. Building secure file
systems out of byzantine storage. In PODC ’02:
Proceedings of the twenty-first annual symposium on
Principles of distributed computing, pages 108–117,
New York, NY, USA, 2002. ACM.

[13] milw0rm - exploits : vulnerabilities : videos : papers :
shellcode. http://www.milw0rm.com.

[14] Netcraft: Strong growth for Debian.
http://news.netcraft.com/archives/2005/12/05/

strong_growth_for_debian.html.

[15] K. Oppenheim and P. McCormick. Deployme:
Tellme’s Package Management and Deployment
System. In Proc. 14th Systems Administration
Conference (LISA ’00), pages 187–196, New Orleans,
LA, Dec 2000.

[16] Gentoo-Portage. http://gentoo-portage.com/.

[17] Installing Applications: Packages and Ports.
http://www.freebsd.org/doc/en_US.ISO8859-1/

books/handbook/ports.html.

[18] RPM Package Manager. http://www.rpm.org/.

[19] P. Sharma, P. Shah, and S. Bhattacharya. Mirror
hopping approach for selective denial of service
prevention. Object-Oriented Real-Time Dependable
Systems, 2003.(WORDS 2003). Proceedings of the
Eighth International Workshop on, pages 200–208,
2003.

[20] Slackware Package Management. http:
//www.slacksite.com/slackware/packages.html.

[21] Stork. http://www.cs.arizona.edu/stork.

[22] Synaptic Package Manager - Home.
http://www.nongnu.org/synaptic/.

[23] URPMI. http://www.urpmi.org/.

[24] dkpg-sig support wanted?
http://nixforums.org/about101637-asc-15.html.

[25] G. Wurster and P. van Oorschot. Self-Signed
Executables: Restricting Replacement of Program
Binaries by Malware. In 2nd USENIX Workshop on
Hot Topics in Security, Boston, MA, Aug 2007.

[26] YaST - openSuSE. http://en.opensuse.org/YaST.

[27] Yum: Yellow Dog Updater Modified.
http://linux.duke.edu/projects/yum/.

APPENDIX
A. MIRROR DETAILS
Fedora’s mirror system is the most automated of the five
distributions for which mirrors were setup. Their system,
called MirrorManager, allows mirror administrators to cre-
ate an account where they can add and edit the details of
their mirror. Mirror administrators add their mirror’s in-
formation and run a reporting script on their mirror which
submits to the MirrorManagerwebsite a list of files currently
available on the mirror. After we had completed these steps,
our mirror began receiving traffic from YUM clients within
minutes. At no point was any direct communication with
individuals from Fedora required. One interesting thing to
note with Fedora’s MirrorManager is that mirror adminis-
trators can specify an IP address range they want to serve
packages to. In fact, targeting a netblock means that users
in that netblock will use only that mirror. This allows easy
targeting of attacks (to a specific country or organization)
and reduces the number of other parties who will consume
resources on the mirror.

For CentOS, new mirrors announce themselves by email
through a public mailing list. This list is monitored by a
person from CentOS who maintains the database of public
mirrors. The only information we sent in our announcement
email to this mailing list was the minimal contact, organi-
zational, and mirror bandwidth information we’d seen oth-
ers provide when announcing their mirrors. We received
back later that day a thank you email from the mirror
database maintainer letting us know our mirror had been
added. Around the same time, we began receiving traffic
from YUM clients who were being automatically directed
to us by CentOS. To try to ensure the correctness of mir-
ror content, CentOS uses an automated monitoring system
that periodically makes requests to each mirror in order to
ascertain whether the mirror is online and how frequently it
has been updated.

Debian mirror information is submitted through an online
form. After we had submitted the information for our mir-
ror, we were contacted through email by someone from De-
bian who asked us for a few additional details about our
mirror that hadn’t been specifically requested in the online
form, such as available bandwidth. We provided this ad-
ditional information and within one day our mirror was in-
cluded in the list of mirrors on Debian’s website. This mirror
received only a small amount of traffic during the time we
had it online. We believe this is due to Debian not distribut-
ing client requests among all mirrors by default. There are

11

utilities such as netselect available to Debian users for se-
lecting mirrors by their speed relative to one’s location, but
we did not keep our mirror online long enough to attract
many clients.

The information on Ubuntu’s website indicates that new
mirror approval is fast and automated, with approval tak-
ing up to 48 hours. However, three weeks passed after reg-
istering our mirror and the mirror had not been probed nor
had there been any contact from Ubuntu. One week after
filing a bug report, we were contacted through email by a
person from Ubuntu who informed us that there had been
internal delays in processing mirror verifications and that
the issues had been resolved. At that time our mirror was
finally probed and included on the Ubuntu website’s list of
official mirrors. As with Debian, client traffic was not au-
tomatically directed to our mirror since Ubuntu uses the
netselect utility as well.

Registering a mirror for openSUSE involved emailing an
openSUSE contact email address to announce our mirror
was online and available for public usage. When we sent our
new mirror announcement email, we received a response the
same day saying our mirror had been added to the mirror
database. We began receiving traffic to our mirror later that
day.

12

