On the 2-Layer Window Width Minimization Problem*

Michael A. Bekos ${ }^{1 /(0)}$, Henry Förster2 ${ }^{2}$ (D), Michael Kaufmann²(0), Stephen Kobourov ${ }^{3}$ © , Myroslav Kryven ${ }^{3}$ © ${ }^{(1)}$, Axel Kuckuk ${ }^{2}$ © , and Lena Schlipf ${ }^{2}$ (©)
${ }^{1}$ Department of Mathematics, University of Ioannina, Ioannina, Greece bekos@uoi.gr
${ }^{2}$ Department of Computer Science, University of Tübingen, Tübingen, Germany henry.foerster@uni-tuebingen.de, michael.kaufmann@uni-tuebingen.de, axel.kuckuk@uni-tuebingen.de, lena.schlipf@uni-tuebingen.de ${ }^{3}$ Department of Computer Science, University of Arizona, Tucson, Arizona, USA kobourov@cs.arizona.edu, kryven@cs.arizona.edu

Abstract

When interacting with a visualization of a bipartite graph, one of the most common tasks requires identifying the neighbors of a given vertex. In interactive visualizations, selecting a vertex of interest usually highlights the edges to its neighbors while hiding/shading the rest of the graph. If the graph is large, the highlighted subgraph may not fit in the display window. This motivates a natural optimization task: find an arrangement of the vertices along two layers that reduces the size of the window needed to see a selected vertex and all its neighbors. We consider two variants of the problem; for one we present an efficient algorithm, while for the other we show NP-hardness and give a 2 -approximation.

Keywords: Graph drawing • Bipartite graphs • 2-layer drawings • Window width

1 Introduction

Two-layer networks model relationships between two disjoint sets of entities in various applications. Such networks are naturally modeled by bipartite graphs and are usually visualized with 2-layer drawings, where vertices are drawn as points on two distinct parallel lines ℓ_{t} and ℓ_{b}, and edges are straight-line segments [5]. Such drawings occur as components in layered drawings of directed graphs [15] and also as final drawings, e.g., in tanglegrams for phylogenetic trees [12614 or in network layouts highlighting relationships between two communities 4 10 [13].

A common task in the exploration of such networks is to identify the neighbors of a vertex of interest. A typical approach is to click on this vertex and highlight the edges to its neighbors, while hiding/shading the rest of the graph.

[^0]

Fig. 1: The x-spans of vertices v and w.

Of course, the highlighted edges should fit in the display window. This motivates a natural optimization task: find permutations of the vertices that minimize the size of the window needed to see any vertex and all its neighbors. Related is the problem of minimizing the number of crossings instead, which is an NP-complete problem [5/7/11] and does not always result in easy-to-read drawings.

In applications, the vertex orders cannot always be treated as permutations; the vertices may have specific coordinates in one of the two layers ℓ_{t} or ℓ_{b}. For instance, the $A S C T+B$ Reporter [8, a tool for displaying anatomical structures, cell types, and biomarkers, exemplifies this issue; by selecting a cell type its related biomarkers are highlighted. Minimizing the actual window width makes the tool easier to use. Note that in this use-case, the window widths of cell types are very important while the corresponding widths for biomarkers are negligible.

Our contribution. Motivated by the discussion above, we study the following problem. The input consists of a bipartite graph $G=(A \cup B, E)$. The output is a 2-layer drawing Γ of G, that is, one in which the vertices in A and B are placed at distinct integer coordinates on two parallel lines ℓ_{t} and ℓ_{b}, respectively (w.l.o.g., $\ell_{t}: y=1$ and $\ell_{b}: y=0 ;$ top and bottom layers). The objective is to minimize the window width of Γ, i.e., the maximum taken over all vertices v in A of the maximum x-distance between all neighbors of v along ℓ_{b} including the projection of v to ℓ_{b}. Motivated by common assumptions in layered graph drawing 39 we consider two variants, where the x-coordinates of the vertices of either A or B on ℓ_{t} or ℓ_{b}, respectively, are fixed. The former is NP-complete (Theorem 3); the latter is efficiently solvable (Theorem 11).

Preliminaries. For a vertex v in a drawing Γ denote by $x_{\Gamma}(v)$ and $y_{\Gamma}(v)$ the x - and y-coordinate of v in drawing Γ; when the reference drawing is clear, we simplify the notation to $x(v)$ and $y(v)$. Given a bipartite graph $G=(A \cup B, E)$ with $n_{A}=|A|$ and $n_{B}=|B|$, the x-span $x s_{\Gamma}(v)$ of a vertex $v \in A$ in a 2-layer drawing Γ of G is the maximum x-distance of all neighbors of v in B including v itself. To be more formal, $x s_{\Gamma}(v)=\max _{u, w \in N[v]}\left\{\left|x_{\Gamma}(u)-x_{\Gamma}(w)\right|\right\}$ where $N[v]=\{v\} \cup\{w \mid(v, w) \in E\}$ is the closed neighborhood of v. We define the window width $w w(\Gamma)$ of the drawing Γ as the maximum of the x-spans over all vertices in A, that is, $w w(\Gamma)=\max _{v \in A}\left\{x s_{\Gamma}(v)\right\}$, see Fig. 1. In the 2-layer window width minimization problem, we seek to determine the window width $w w(G)$ of a graph G, which is the minimum window width of all of its 2-layer drawings.

2 Window Width Minimization with Bottom Layer Fixed

We present an efficient algorithm to find a 2-layer drawing of minimum window width when the x-coordinates of the vertices of B along ℓ_{b} are fixed.

Theorem 1. Given a bipartite graph $G=(A \cup B, E)$ and a function $\xi_{B}: B \rightarrow \mathbb{Z}$, there is an $O\left(n_{A} \log n_{A}+|E|\right)$-time algorithm to determine a 2-layer drawing Γ of G with minimum window width k^{\star} and $x_{\Gamma}(b)=\xi_{B}(b)$ for each $b \in B$.

Proof. For each vertex $v \in A$ it suffices to focus on its leftmost neighbor $\ell(v)$ in ξ_{B} and rightmost neighbor $r(v)$ in ξ_{B} (ignoring intermediate ones). Note that $\ell(v)=r(v)$ is possible. This preprocessing, which can be done in $O(|E|)$ time, allows us to continue with a graph of $O\left(n_{A}\right)$ vertices and edges, called the critical part of G. We now determine the x-coordinate of each vertex v in A.

Let k_{0} be the maximum x-distance between $\ell(v)$ and $r(v)$ over all vertices v in A and note that k_{0} is a lower bound for k^{\star}. We describe an $O\left(n_{A} \log n_{A}\right)$-time algorithm to compute k^{\star} and a corresponding solution. In this process, we start by attempting to find a drawing with window width $k=k_{0}$. If at some point, we conclude that the current value of k is too small, we increase k by 1 and proceed. When the algorithm terminates it will hold that $k=k^{\star}$.

Let $I(v)=[x(r(v))-k, x(\ell(v))+k]$ be the interval of $v \in A$; the x-distance of v to $\ell(v)$ and $r(v)$ is at most k if and only if its x-coordinate is in $I(v)$.

We sweep the intervals of the vertices from left-to-right by a vertical sweep line L, which is a data-structure maintaining a set of active intervals (i.e., those intersected by L whose vertices in A have not been placed yet) assumed to be sorted by their right endpoints. In this process, we distinguish three different types of events: start, placement and end. If during the sweep multiple events occur at the same x-coordinate i we first perform all start events at i, followed by a possible placement event at i before finally performing the end events at i.
Start event. It occurs at the left endpoint i of each interval $I(v)$. Here, the interval $I(v)$ is inserted into L. We add a placement event at i, if there is none.
Placement event at i. We remove the first active interval $I(v)$ from L, set $x(v):=i$ and mark $I(v)$ as inactive. If L is not empty, we add a placement event at $i+1$. Note that placement events always place a vertex, hence there is only a linear number of placement events in total.
End event. It occurs at the right endpoint i of each interval $I(v)$. We check if $I(v)$ is marked as inactive. If this is the case, we proceed. If not, we failed to place v at a position within $I(v)$. We increase k by 1 (i.e., all start events and already placed vertices are moved by -1 and all end events by +1 on the x-axis) and replace the already existing placement event with a new placement event at i.
Correctness. We begin with two useful observations. First, once our algorithm failed to place a vertex v within $I(v)$, the partial solution obtained by increasing k by one and shifting all placed vertices one unit to the left is identical to the one that would be obtained by restarting the algorithm with window width $k+1$. Second, by increasing k the ordering of the start events of the intervals remains
the same and the same holds true for the end events. Consequently, the following property holds. Assume that we increased k by 1 at x-coordinate i after failing to place a vertex v with $I(v)=[\ell, r]$. Note that $r=i$ before increasing k and $r=i+1$ after increasing k. Now let P_{i} denote the set of vertices that has been placed by our algorithm so far and let S_{i} denote the set of vertices whose start event occurs at i after increasing k to $k+1$. Then, after handling the end event, for each $p \in P_{i}$ with interval $I(p)=\left[\ell_{p}, r_{p}\right]$ it holds for each $s \in S_{i}$ with $I(s)=\left[\ell_{s}, r_{s}\right]$ that $r_{p} \leq r_{s}$ since $r_{p} \leq r=i+1$ and $i=\ell_{s}<r_{s}{ }^{1}$

To complete the correctness proof, we show that we increase k only if it is necessary. Recall that we increase k if a vertex v cannot be placed within $I(v)=[\ell, r]$. Hence, all x-coordinates of $I(v)$ have been assigned to previously placed vertices. Let $\ell^{\prime}<\ell$ be the largest x-coordinate our algorithm assigned no vertex from A and let $A_{v} \subset A$ be the vertices placed in $I^{\prime}(v)=\left[\ell^{\prime}+1, r\right]$. We prove that in each solution with window width k, all vertices in A_{v} have to be placed in $I^{\prime}(v)$. Assume for a contradiction that there is a vertex $a \in A_{v}$ that can be placed outside of $I^{\prime}(v)$ such that its x-span is at most k. To this end, recall that a has x-span at most k if and only if it is placed within $I(a)$. First, a cannot be placed at an x-coordinate greater than x_{r}, since a has been placed before v by the algorithm, i.e., the right end of $I(a)$ is at an x-coordinate of at most x_{r}. Second, a cannot be placed at an x-coordinate smaller than $x_{\ell}^{\prime}+1$ as our algorithm would have placed a at coordinate x_{ℓ}^{\prime} (or even beforehand) if its interval would have started at an x-coordinate smaller or equal to x_{ℓ}^{\prime}; contradiction.
Time complexity. We store the start and end events in two left-to-right sorted lists, while we maintain at most one placement event (with associated x-coordinate). The active intervals are stored in a binary min heap (the keys are the right endpoints). By keeping offset values for start and end events, as well as for the last placed vertex, the performed shifts can be done in $O\left(n_{A}\right)$ time with one additional right-to-left pass. Since L maintains at most $O\left(n_{A}\right)$ intervals the running time is $O\left(n_{A} \log n_{A}\right)$, after computing the critical part of G in $O(|V|+|E|)$ time.

Remark 1. The core of the algorithm, given sorted start and end events, can be completed in $O\left(n_{A} \log k^{\star}\right)$ time since the number of intervals in L is actually bounded by $2 k^{\star}$.

Proof. Consider some x-coordinate i at which there are $2 k^{\star}+2$ intervals maintained in L. Since there can only be one vertex placed on each integer coordinate, there must be one placed on x-coordinate $i+2 k^{\star}+1$, let this be vertex v with interval $I(v)=[\ell, r]$. Note that since this interval is active at i it must hold that $\ell \leq i$. With the definition of $I(v)$ it follows $x(r(v)) \leq \ell+k^{\star} \leq i+k$. The interval is maximal if $r(v)=\ell(v)$, thus $\left.x(\ell(v))+k^{\star} \leq r(v)\right)+k^{\star} \leq i+2 k^{\star}$ which contradicts the placement of v at $i+2 k^{\star}+1$.

Next, we show that a variant of our algorithm can be used to optimize the maximum edge-length.

[^1]Theorem 2. Given a bipartite graph $G=(A \cup B, E)$ and a function $\xi_{B}: B \rightarrow \mathbb{Z}$, there is an $O\left(n_{A} \log n_{A}+|E|\right)$-time algorithm to determine a 2-layer drawing Γ of G that minimizes the maximum x-distance k^{\star} between any vertex in A and any adjacent vertex in B and $x_{\Gamma}(b)=\xi_{B}(b)$ for each $b \in B$.
Proof. As in the proof of Theorem 1, we first identify the critical part of G which has $O\left(n_{A}\right)$ vertices and edges. In the following, we determine the x-coordinate of each vertex v in A such that the maximum x-distance between adjacent vertices, denoted by k, is minimized in the critical part, which implies that it is minimized in G as well. As in the proof of Theorem 1, for a sufficiently large value of k, we define for each vertex $v \in A$ an interval $I(v)$ such that v is placed on any x-coordinate in $I(v)$ if and only if its x-distance to any neighbor of v is at most k. More precisely, $I(v)=[x(r(v))-k, x(\ell(v))+k]$. We start the algorithm of Theorem 1 with $k=k_{0}$, where $k_{0}:=\left\lceil\frac{k_{\max }}{2}\right\rceil$ and $k_{\max }$ denotes the maximum x-distance between $\ell(v)$ and $r(v)$ over all vertices v in A (that is, k_{0} is the trivial lower bound for k^{\star}). During the algorithm, we might conclude that the current value of k is not sufficient, thus k is increased by 1 before proceeding.

Since the rest of the algorithm of Theorem 1 consists of finding placements of all vertices within their intervals and increasing the intervals if necessary, this part of the algorithm can be completely adopted. Both the correctness and the time complexity of the algorithm follow analogously to Theorem 1.

3 Window Width Minimization with Top Layer Fixed

In contrast to the positive result from Theorem1 we prove here that the problem is NP-complete when the order of the vertices A on the top layer ℓ_{t} is fixed.

Theorem 3. Given a bipartite graph $G=(A \cup B, E)$, a function $\xi_{A}: A \rightarrow \mathbb{Z}$ and an integer k, it is NP-complete to test whether a 2-layer drawing Γ of G exists, such that $w w(\Gamma)=k$ and $x_{\Gamma}(a)=\xi_{A}(a)$ for each $a \in A$.

Proof. Membership in NP is obvious. To prove NP-hardness, we adapt a reduction by Papadimitriou from the Exact-3-Sat problem to the Bandwidth problem [12]. Let φ be an instance of Exact-3-SAT, that is, a Boolean formula with n variables and m clauses (each with 3 different literals). We assume w.l.o.g. that $n \geq 5$ and reduce the problem of determining whether φ is satisfiable to an instance of our problem consisting of a bipartite graph $G=(A \cup B, E)$, a function $\xi_{A}: A \rightarrow \mathbb{Z}$ and the integer $k=6 n+3$. We first sketch the general idea of the reduction by Papadimitriou and discuss the relation to our construction; for an example illustration see Fig. 2
Introduction to the reduction. A central concept in the reduction for the BANDwIDTH problem ${ }^{2}$ is a subgraph \mathcal{H} that contains a literal-vertex for each possible literal (i.e., for each variable x_{i}, it contains vertices $\ell_{x_{i}}$ and $\ell_{\neg x_{i}}$) and two additional vertices denoted by M and M^{\prime}. By fixing the value of the bandwidth, it

[^2]can be ensured that in any layout of \mathcal{H} exactly n of the literal-vertices appear in a sequence P to the left of M and M^{\prime} whereas the remaining n literal-vertices appear to the right of M and M^{\prime} in a sequence Q. The vertices placed in P correspond to the satisfied literals, while the vertices placed in Q correspond to unsatisfied literals. In our reduction, we achieve the same behavior using block-gadgets and \mathcal{H}-gadgets where our B_{2}-blocks correspond to vertices M and M^{\prime} in Papadimitriou's reduction.

In the reduction for the bandwidth problem, there are $n+m$ consecutive copies of \mathcal{H} that are "synchronized" via the bandwidth restriction. Namely, additional edges ensure that each literal consistently occurs either in every sequence P or in every sequence Q. We achieve the same behavior using the propagation gadgets. Papadimitriou associates each of the first n copies of \mathcal{H} with a variable-gadget that checks that only one of the literal-vertices corresponding to x and $\neg x$ occurs within Q, namely, as the leftmost vertex in Q. Finally, each of the last m copies of \mathcal{H} is associated with a clause-gadget that ensures that at most two literals of a given clause can occur within sequence Q, namely, as the leftmost two vertices. In our construction, we use similar gadgets exploiting this idea.

Finally, it is worth remarking that in contrast to the bandwidth problem, in the window width minimization problem vertices in B are restricted to certain positions along ℓ_{b} by inputs ξ_{A} and k. With these additional restrictions fixing vertices to certain intervals (e.g., one copy of each literal in each \mathcal{H}-gadget) is simplified, however, it also becomes less apparent that the model still allows for enough flexibility to show NP-hardness (as for instance required in the propagation between consecutive \mathcal{H}-gadgets).

Next, we provide a description of the gadgets of our construction. The functionality of each gadget is ensured by introducing one or two vertices at appropriate coordinates along ℓ_{t}. We start by introducing the basic structure of our construction consisting of block- and \mathcal{H}-gadgets.

Block-gadget. The purpose of the block-gadget is to fix a certain number β of vertices of B to be consecutive at fixed x-coordinates $i, \ldots, i+\beta-1$ so that no other vertex can be placed there; see Fig. 3a. Hence, these β block vertices occupy a block of x-coordinates where no other vertex of B may be placed. To achieve this property, we introduce two vertices $a_{\ell}, a_{r} \in A$ with $\xi_{A}\left(a_{\ell}\right)=i-(k-\beta+1)$ and $\xi_{A}\left(a_{r}\right)=i+k$ which both are connected to all β block vertices. It is easy to verify that each block vertex has x-distance at most k to both a_{ℓ} and a_{r} if and only if it is located inside the interval $[i, i+\beta-1]$ in B (the order of the β vertices inside the interval is free).

We use two types of blocks, namely, one with $\beta_{1}=2 n+3$ vertices of B (empty dark gray circles in Fig. 2a) and one with $\beta_{2}=n+1$ vertices of B (filled dark gray circles in Fig. 2a). We call the B-vertices of such blocks B_{1} - and B_{2}-blocks, respectively. Further, we assume that the vertices of a B_{1}-block are partitioned into three parts B_{1}^{ℓ}, B_{1}^{m} and B_{1}^{r}. Part B_{1}^{m} has exactly n vertices, while B_{1}^{ℓ} and B_{1}^{r} have $\lfloor(n+3) / 2\rfloor$ and $\left.\lceil(n+3) / 2)\right\rceil$ vertices, respectively; see Fig. 3b
$B_{1^{-}}$and B_{2}-blocks alternate from left-to-right so that in total there are $n+m+1$ B_{1}-blocks and $n+m B_{2}$-blocks. Between a B_{1}-block and a B_{2}-block there is a

Fig. 2: Example of our NP-hardness reduction for $\varphi=\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{2} \vee x_{4} \vee x_{5}\right) \wedge\left(x_{1} \vee \neg x_{4} \vee x_{5}\right)$ with satisfying assignment $x_{1}=x_{3}=x_{5}=\top$ and $x_{2}=x_{4}=\perp$. Literal-vertices of $x_{1}, x_{2}, x_{3}, x_{4}$ and x_{5} are colored blue, red, green, yellow and pink, respectively, and filled white or black, if associated with the positive or negative literal, respectively. Subfigures (a) and (b) show only part of the \mathcal{H}-gadgets, in subfigure (c) all \mathcal{H}-gadgets are shown (split into two lines at the B_{1}-block separated with dashed lines). Subfigures (b) and (c) also show the vertices of the gadgets introduced in the previous subfigures.

Fig. 3: (a) Block-gadget. (b) \mathcal{H}-gadget and propagation-gadget.

Table 1: First and last x-coordinate of the i-th $B_{1^{-}}, P-, B_{2^{-}}$, and Q-block as enumerated from left-to-right starting at 1.

Block Type	First x-coordinate	Last x-coordinate
B_{1}-block	$p \cdot(i-1)+1$	$p \cdot(i-1)+2 n+3$
P-block	$p \cdot(i-1)+2 n+4$	$p \cdot(i-1)+3 n+3$
B_{2}-block	$p \cdot(i-1)+3 n+4$	$p \cdot(i-1)+4 n+4$
Q-block	$p \cdot(i-1)+4 n+5$	$p \cdot(i-1)+5 n+4$

P-block while between a B_{2}-block and a B_{1}-block there is a Q-block. Both P and Q-blocks are intervals supporting $n x$-coordinates each and correspond to sequences P and Q in Papadimitriou's reduction. Note that the total number of vertices in a $B_{1^{-}}, P-, B_{2^{-}}$and Q-block is $p=5 n+4$. We let the first B_{1}-block start at x-coordinate 1 and obtain intervals for the block types shown in Table 1 .

More precisely, we ensure the correct positions of $B_{1^{-}}$and B_{2}-blocks as follows. For the i-th B_{1}-block, vertex a_{ℓ} is placed at $\xi_{A}\left(a_{\ell}\right)=p \cdot(i-2)+n+4$ while vertex a_{r} is placed at $\xi_{A}\left(a_{r}\right)=p \cdot i+n$. In other words, a_{ℓ} is placed above the $(n+4)$-th vertex (left-to-right) of the previous B_{1}-block and a_{r} is placed above the n-th vertex of the next B_{1}-block. Further, for the i-th B_{2}-block, vertex a_{ℓ} is placed at $\xi_{A}\left(a_{\ell}\right)=p \cdot(i-2)+3 n+5$ whereas vertex a_{r} is placed at $\xi_{A}\left(a_{r}\right)=p \cdot i+4 n+3$. Intuitively, vertex a_{r} is placed above the n-th vertex of the next B_{2}-block and vertex a_{ℓ} is placed above the second vertex of the previous B_{2}-block.
\mathcal{H}-gadget. The purpose of the \mathcal{H}-gadget is to introduce literal-vertices for all literals of φ, that is, literals $\ell_{x_{i}}$ and $\ell_{\neg_{x_{i}}}$ for each variable x_{i} ($2 n$ in total; see red, blue, green, yellow and pink vertices in Figs. 2b and 3b). Each \mathcal{H}-gadget is associated with a B_{2}-block b and ensures that each of its $2 n$ literal-vertices is placed either in the P-block preceding b (containing all satisfied literals) or in the Q-block succeeding b (containing all unsatisfied literals); Fig. 3b depicts two consecutive copies of the \mathcal{H}-gadget; note that there is a shared part of n vertices, denoted by B_{1}^{m}.

More precisely, there exists one \mathcal{H}-gadget H for each B_{2}-block b. H contains a vertex h in A that is incident to all vertices of b, to the B_{1}^{m} - and B_{1}^{r}-vertices of the B_{1}-block preceding b and to the B_{1}^{ℓ} - and B_{1}^{m}-vertices of the B_{1}-block succeeding b,
i.e., \mathcal{H}-gadgets corresponding to consecutive B_{2}-blocks share $n=\left|B_{1}^{m}\right|$ vertices. If H corresponds to the i-th B_{2}-block, vertex h is placed at $\xi_{A}(h)=p \cdot(i-1)+3 n+4$, that is, above the first B-vertex of its associated B_{2}-block. Further, h is connected to a literal-vertex for each literal of φ. Since the leftmost vertex of the B_{1}^{m}-block preceding b and the rightmost vertex of the B_{1}^{m}-block succeeding b are at distance k, all literal-vertices connected to h must be placed between these two blocks. The only available positions in this range are covered by the P-block preceding b and the Q-block succeeding b. Note that in the following, no further edges incident to vertices in a B_{1}-block are introduced, i.e., the vertex-order inside a B_{1}-block is only restricted by h-vertices. Finally, observe that the h-vertices have x-span k if the vertices in B_{1}^{ℓ} precede (left-to-right) those in B_{1}^{m}, which precede those in B_{1}^{r}.

In the following, we assume literal-vertices in P-blocks and Q-blocks to correspond to satisfied and unsatisfied literals, respectively. Next, we ensure consistency.

Propagation-gadget. The propagation-gadgets (see red, blue, green, yellow and pink vertices and edges in Figs. 2b and 3b ensure consistency, that is, literals in P-blocks are satisfied, while literals in Q-blocks are unsatisfied in φ. Namely, the propagation gadget for x_{i} ensures that the literal-vertex $\ell_{\lambda} \in\left\{\ell_{x_{i}}, \ell_{\neg x_{i}}\right\}$ occurring in the P-block of an \mathcal{H}-gadget H_{1} will also occur in the P-block of the next \mathcal{H}-gadget H_{2} in their left-to-right order. Since all vertices from P-blocks are propagated, literal-vertices in the Q-blocks are also propagated from H_{1} to H_{2}. Note that literal-vertices do not necessarily have the same order in H_{1} and H_{2}.

More formally, for each B_{1}-block b and for each variable x_{i} there is a copy of the propagation-gadget containing two propagation-vertices $p_{x_{i}}$ and $p_{\neg x_{i}}$. Let H_{1} and H_{2} be the two (consecutive) \mathcal{H}-gadgets incident to the B_{1}^{m}-vertices of b. Then, vertex $p_{x_{i}}$ is connected to the literal-vertices $\ell_{x_{i}}$ of H_{1} and H_{2} while $p_{\neg x_{i}}$ is connected to the literal-vertices $\ell_{\neg x_{i}}$ of H_{1} and H_{2}. If b is the j-th B_{1}-block, we set $\xi_{A}\left(p_{x_{i}}\right)=p \cdot(j-1)+(i-1)$ and $\xi_{A}\left(p_{\neg x_{i}}\right)=p \cdot(j-1)+(n+4)+i$, i.e., all propagation-vertices with positive literals are to the left of the a_{r}-vertex above b while all propagation-vertices with negative literals are to the right of the a_{ℓ}-vertex above b. Note that $p_{x_{1}}$ is above the last vertex in the Q-block preceding b while $p_{\neg x_{n}}$ is above the first vertex in the P-block succeeding b; the remaining literal-vertices are placed on unique x-coordinates above b. Since the distance between the leftmost literal-vertex in the P-block of H_{1} and the rightmost literalvertex in the P-block of H_{2} is $k-n+1$, we can reorder all literal-vertices freely in the P-blocks of H_{1} and H_{2}; the same holds for the corresponding Q-blocks. On the other hand, the rightmost literal-vertex ℓ_{λ} of the P-block of H_{1} cannot occur in the Q-block of H_{2} as otherwise their connecting vertex p_{λ} has x-span at least $k+3$; see Fig. 3b As already mentioned above, since all literals from the P-block are propagated from H_{1} to H_{2}, all literals from the Q-block are propagated as well.

Now each literal is either consistently satisfied (in P-blocks) or unsatisfied (in Q-blocks). It remains to encode the logic of φ with variable- and clause-gadgets.

Fig. 4: (a) Variable-gadget. (b) Clause-gadget.

Variable-gadget. The variable-gadget for variable x_{i} ensures that only one of the literal-vertices $\ell_{x_{i}}$ and $\ell_{\neg x_{i}}$ can be placed within Q-blocks. Since these gadgets guarantee that at most one literal for each variable is false, it is only possible to place all $2 n$ literals if exactly one literal per variable is true while the other is false. Hence, each variable is either true or false consistently in all \mathcal{H}-gadgets.

More precisely, the first n (in left-to-right-order) \mathcal{H}-gadgets are augmented with a variable-gadget. Namely, each variable gadget is associated with a unique variable x and ensures that one of the literals x and $\neg x$ must be true. The variable gadget associated with \mathcal{H}-gadget H consists of both literal-vertices ℓ_{x} and $\ell_{\neg x}$ of H and an additional variable-vertex v_{x} connected to ℓ_{x} and $\ell_{\neg x}$; see Fig. 4 a and purple vertices and edges in Fig. 2 C . We set the x-coordinate of v_{x} so that it is at distance k to the left of the leftmost vertex in the Q-block of H, i.e., if H is the i-th H-gadget we have $\xi_{A}\left(v_{x}\right)=p \cdot(i-2)+3 n+6$. As a result, v_{x} is placed above the third vertex of the B_{2}-block preceding the B_{2}-block of H. Clearly, the x-span of v_{x} is at most k if at most one of ℓ_{x} and $\ell_{\neg x}$ is in the Q-block of H. As mentioned above, since for each variable the variable gadget guarantees this property, it is only possible to place all $2 n$ literals if exactly one literal per variable is true while the other is false. Thus, each variable is either consistently true or consistently false.

Clause-gadget. There are m clause-gadgets associated with the last m copies of \mathcal{H}-gadgets. The clause-gadget for a clause $\kappa=\left(\lambda_{1} \vee \lambda_{2} \vee \lambda_{3}\right)$ ensures that at most two of the literal-vertices $\ell_{\lambda_{1}}, \ell_{\lambda_{2}}$ and $\ell_{\lambda_{3}}$ can be placed within Q-blocks. At least one literal must be placed inside the P-blocks and thus, κ contains at least one satisfied literal.

To this end, the clause gadget for clause $\kappa=\left(\lambda_{1} \vee \lambda_{2} \vee \lambda_{3}\right)$ consists of a vertex $c_{\kappa} \in A$ connected to the three literal-vertices $\ell_{\lambda_{1}}, \ell_{\lambda_{2}}, \ell_{\lambda_{3}}$; see Fig. 4b and brown vertices and edges in Fig. 2c. We assign the x-coordinate of c_{κ} so that it is at distance $k-1$ to the left of the leftmost vertex in the Q-block of H, i.e., if H is the i-th H-gadget, then $\xi_{A}\left(c_{\kappa}\right)=p(i-2)+3 n+7$. Hence, c_{κ} is placed above the fourth vertex of the B_{2}-block preceding H. Since the distance between the second vertex in the Q-block of H and c_{κ} is k, the x-span of c_{κ} is at most k if at most two of $\ell_{\lambda_{1}}, \ell_{\lambda_{2}}, \ell_{\lambda_{3}}$ are in the Q-block, i.e., one of $\lambda_{1}, \lambda_{2}, \lambda_{3}$ is true.

Table 2: Placements of vertices in A above the j-th vertex within $B_{1^{-}}$and B_{2}-blocks. If a vertex x of A is above the j-th vertex of the i-th B_{1}-block, $\xi_{A}(x)=p \cdot(i-1)+j$, while $\xi_{A}(x)=p \cdot(i-1)+3 n+3+j$ if x is above the j-th vertex of the i-th B_{2}-block.

Polynomial time of the reduction and equivalence. The construction can clearly be done in $O(n \cdot(n+m))$ time. Next, we prove that no two vertices of A share the same x-coordinate, i.e., ξ_{A} is injective.

Recall that we have placed vertices in A only on coordinates that are covered by $B_{1^{-}}$and B_{2}-blocks (or are located to the left of the first B_{1}-block or to the right of the last B_{1}-block); see Fig. 22. Table 2 summarizes the positioning described in the construction. The two exceptions to this are vertices $p_{x_{1}}$ and $p_{\neg x_{n}}$ of propagation gadgets which are located above the last vertex of P-blocks and above the first vertex of Q-blocks, respectively. For $n \geq 5$ (as assumed at the beginning) indeed no x-coordinate is assigned twice by ξ_{A}.

It remains to prove that φ is satisfiable if and only if there is a drawing Γ with $w w(\Gamma) \leq k$ and $x_{\Gamma}(a)=\xi_{A}(a)$ for $a \in A$. First, assume that φ is satisfiable. We can construct a drawing with window width at most k by placing all satisfied literals in the P-block and each unsatisfied literal in the Q-block of each \mathcal{H}-gadget. The literal-vertices are sorted so that the unsatisfied literals in a variable- or clause-gadget are the leftmost ones in the corresponding Q-block. Second, assume that there is a drawing Γ with $w w(\Gamma) \leq k$ and $x_{\Gamma}(a)=\xi_{A}(a)$ for $a \in A$. As discussed above, each variable is either true or false while each clause contains a satisfied literal. Thus, a satisfying truth assignment for φ can be read from any P-block of Γ.

Next, we prove that our algorithm from Theorem 2 can be used for a 2approximation algorithm for the window width minimization problem with fixed top layer.

Theorem 4. Given a bipartite graph $G=(A \cup B, E)$ and a function $\xi_{A}: A \rightarrow \mathbb{Z}$, there is an $O\left(n_{B} \log n_{B}+|E|\right)$-time 2-approximation algorithm for computing the minimum value k^{\star} such that there is a 2-layer drawing Γ of G with $w w(\Gamma)=k^{\star}$ and $x_{\Gamma}(a)=\xi_{A}(a)$ for each $a \in A$ that also produces a corresponding solution.

Proof. The idea is to use the optimization algorithm from the proof of Theorem 2, where the vertex sets A and B are interchanged, to compute a placement of the vertices of B in time $O\left(n_{B} \log n_{B}+|E|\right)$, so that the length k^{\prime} of the longest edge is minimized. Let k denote the window width of the obtained 2-layer drawing Γ.

Let k^{\star} be the minimum window width of a 2-layer drawing Γ^{\star} of G with $x_{\Gamma^{\star}}(a)=\xi_{A}(a)$. We show that $k \leq 2 k^{\star}$. First, recall that the longest edge in Γ has length k^{\prime}. Thus $k \leq 2 k^{\prime}$ as in the worst case, a vertex $v \in A$ has distance k^{\prime} to both its leftmost and its rightmost neighbor. Second, consider the 2-layer drawing Γ^{\star}. Since the longest edge in Γ^{\star} has length at most k^{\star} and k^{\prime} is chosen optimally, we obtain $k^{\prime} \leq k^{\star}$. Combining both arguments, we obtain $k \leq 2 k^{\prime} \leq 2 k^{\star}$.

Finally, drawing Γ is a corresponding solution as stated in the theorem.

4 Open Problems

We conclude with some open problems. First, the case where all vertices can be freely positioned along ℓ_{t} and ℓ_{b} may be investigated in future work. Second, the setting of Theorem 3 with the additional constraint that the vertices in A are degree-restricted, is of interest. Third, other optimization criteria could be useful in practice. For instance, one may try to minimize the average x-span while potentially also weighting spans of important vertices differently.

References

1. Buchin, K., Buchin, M., Byrka, J., Nöllenburg, M., Okamoto, Y., Silveira, R., Wolff, A.: Drawing (complete) binary tanglegrams. Algorithmica 62(1-2), 309-332 (2012). https://doi.org/10.1007/s00453-010-9456-3
2. Czabarka, É., Székely, L.A., Wagner, S.G.: A tanglegram Kuratowski theorem. J. Graph Theory 90(2), 111-122 (2019). https://doi.org/10.1002/jgt. 22370
3. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall (1999)
4. Dumas, M., McGuffin, M.J., Robert, J.M., Willig, M.C.: Optimizing a radial layout of bipartite graphs for a tool visualizing security alerts. In: van Kreveld, M., Speckmann, B. (eds.) Graph Drawing (GD'11). LNCS, vol. 7034, pp. 203-214. Springer-Verlag (2012). https://doi.org/10.1007/978-3-642-25878-7_20
5. Eades, P., Wormald, N.C.: Edge crossings in drawings of bipartite graphs. Algorithmica 11(4), 379-403 (1994). https://doi.org/10.1007/BF01187020
6. Fernau, H., Kaufmann, M., Poths, M.: Comparing trees via crossing minimization. J. Comput. Syst. Sci. 76(7), 593-608 (2010). https://doi.org/10.1016/j.jcss.2009.10.014
7. Garey, M.R., Johnson, D.S.: Crossing number is NP-complete. SIAM Journal on Algebraic Discrete Methods 4(3), 312-316 (1983)
8. HuBMAP Consortium: CCF ASCT+B Reporter, https://hubmapconsortium github.io/ccf-asct-reporter/
9. Kaufmann, M., Wagner, D. (eds.): Drawing Graphs, Methods and Models, LNCS, vol. 2025. Springer (2001). https://doi.org/10.1007/3-540-44969-8
10. Meulemans, W., Schulz, A.: A tale of two communities: Assessing homophily in node-link diagrams. In: Di Giacomo, E., Lubiw, A. (eds.) Graph Drawing (GD'15). LNCS, vol. 9411, pp. 489-501. Springer International Publishing (2015). https://doi.org/10.1007/978-3-319-27261-0 40
11. Muñoz, X., Unger, W., Vrto, I.: One sided crossing minimization is NP-hard for sparse graphs. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) Graph Drawing. LNCS, vol. 2265, pp. 115-123. Springer (2001). https://doi.org/10.1007/3-540-45848-4_10
12. Papadimitriou, C.H.: The NP-completeness of the bandwidth minimization problem. Computing 16(3), 263-270 (1976). https://doi.org/10.1007/BF02280884
13. Pezzotti, N., Fekete, J.D., Höllt, T., Lelieveldt, B.P.F., Eisemann, E., Vilanova, A.: Multiscale visualization and exploration of large bipartite graphs. Computer Graphics Forum 37(3), 549-560 (2018). https://doi.org/10.1111/cgf. 13441
14. Scornavacca, C., Zickmann, F., Huson, D.H.: Tanglegrams for rooted phylogenetic trees and networks. Bioinformatics 27(13), i248-i256 (2011). https://doi.org/10.1093/bioinformatics/btr210
15. Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical system structures. IEEE Trans. Syst. Man Cybern. 11(2), 109-125 (1981). https://doi.org/10.1109/TSMC.1981.4308636

[^0]: * H. Förster, M. Kaufmann and A. Kuckuk are supported by DFG grant Ka512/18-2. L. Schlipf is supported by the Ministry of Science, Research and the Arts BadenWürttemberg (Germany).

[^1]: ${ }^{1}$ We point out that the latter relation $\ell_{s}<r_{s}$ does not hold if $k=0$, but since we increased k by 1 , it holds $k \geq 1$.

[^2]: ${ }^{2}$ Given $k \in \mathbb{N}$ and a graph $G=(V, E)$ the Bandwidth problem asks for an ordering \prec of V so that for each $(u, v) \in E$ there are at most k vertices between u and v in \prec.

