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Abstract. We consider the construction of a polygon P with n ver-1

tices whose turning angles at the vertices are given by a sequence A =2

(α0, . . . , αn−1), αi ∈ (−π, π), for i ∈ {0, . . . , n− 1}. The problem of real-3

izing A by a polygon can be seen as that of constructing a straight-line4

drawing of a graph with prescribed angles at vertices, and hence, it is a5

special case of the well studied problem of constructing an angle graph. In6

2D, we characterize sequences A for which every generic polygon P ⊂ R2
7

realizing A has at least c crossings, and describe an efficient algorithm8

that constructs, for a given sequence A, a generic polygon P ⊂ R2 that9

realizes A with the minimum number of crossings. In 3D, we describe an10

efficient algorithm that tests whether a given sequence A can be realized11

by a (not necessarily generic) polygon P ⊂ R3, and for every realizable12

sequence finds a realization.13

Keywords: crossing number · polygon · spherical polygon · Carathéodory
Theorem

1 Introduction14

Straight-line realizations of graphs with given metric properties have been one15

of the earliest applications of graph theory. Rigidity theory, for example, studies16

realizations of graphs with prescribed edge lengths, but also considers a mixed17

model where the edges have prescribed lengths or directions [4, 13–15, 21]. In18

this paper, we extend research on the so-called angle graphs, introduced by in19

the 1980s, which are geometric graphs with prescribed angles between adjacent20

edges. Angle graphs found applications in mesh flattening [29], and computation21

of conformal transformations [8, 22] with applications in the theory of minimal22

surfaces and fluid dynamics.23

Viyajan [27] characterized planar angle graphs under various constraints,24

including the case when the graph is a cycle [27, Theorem 2] and when the graph25

is 2-connected [27, Theorem 3]. In both cases, the characterization leads to an26

efficient algorithm to find a planar straight-line drawing or report that none27

exists. Di Battista and Vismara [6] showed that for 3-connected angle graphs28
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(e.g., a triangulation), planarity testing reduces to solving a system of linear29

equations and inequalities in linear time. Garg [10] proved that planarity testing30

for angle graphs is NP-hard, disproving a conjecture by Viyajan. Bekos et al. [2]31

showed that the problem remains NP-hard even if all angles are multiples of π/4.32

The problem of computing (straight-line) realizations of angle graphs can33

be seen as the problem of reconstructing a drawing of a graph from the given34

partial information. The research problems to decide if the given data uniquely35

determine the realization or its parameters of interest is already interesting for36

cycles, where it found applications in the area of conformal transformations [22],37

and visibility graphs [7].38

In 2D, we are concerned with realizations of angle cycles as polygons min-39

imizing the number of crossings which, as we will see, depends only on the40

sum of the turning angles. It follows from the seminal work of Tutte [26] and41

Thomassen [25] that every positive instance of a 3-connected planar angle graph42

admits a crossing-free realization if the prescription of the angles implies the con-43

vexity for the faces. The convexity will also play the crucial role in our proofs.44

In 3D, we test whether a given angle cycle can be realized by a (not neces-45

sarily generic) polygon. Somewhat counter-intuitively, self-intersections cannot46

be always avoided in a polygon realizing the given angle cycle in 3D. Di Battista47

et al. [5] characterized oriented polygons that can be realized in R3 without self-48

intersections with axis-parallel edges of given directions. Patrignani [20] showed49

that recognizing crossing-free realizibility is NP-hard for graphs of maximum50

degree 6 in this setting.51

Throughout the paper we assume modulo n arithmetic on the indices.52

Angle sequences in 2-space. In the plane, an angle sequence A is a sequence53

(α0, . . . , αn−1) of real numbers such that αi ∈ (−π, π) for all i ∈ {0, . . . , n− 1}.54

Let P ⊂ R2 be an oriented polygon with n vertices v0, . . . , vn−1 that appear in55

the given order along P , which is consistent with the given orientation of P . The56

turning angle of P at vi is the angle in (−π, π) between the vector vi− vi−1 and57

vi+1− vi. The sign of the angle is positive if in the plane containing vi−1, vi and58

vi+1, in which the vector vi − vi−1 points in the positive direction of the x-axis,59

the y-coordinate of vi+1 − vi is positive, and non-positive otherwise, see Fig. 1.60

αi < 0 αi > 0

vi vi

Fig. 1. A negative (left) and a positive (right) turning angle αi at the vertex vi of an
oriented polygon.

61

62
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The oriented polygon P realizes the angle sequence A if the turning angle63

of P at vi is equal to αi, for i = 0, . . . , n − 1. A polygon P is generic if all64

its self-intersections are transversal (that is, proper crossings), vertices of P are65

distinct points, and no vertex of P is contained in a relative interior of an edge66

of P . Following the terminology of Viyajan [27], an angle sequence is consistent67

if there exists a generic closed polygon P with n vertices realizing A. For a68

polygon P that realizes an angle sequence A = (α0, . . . , αn−1) in the plane, the69

total curvature of P is TC(P ) =
∑n−1
i=0 αi, and the turning number (also known70

as rotation number) of P is tn(P ) = TC(P )/(2π); it is known that tn(P ) ∈ Z in71

the plane [24].72

The crossing number, denoted by cr(P ), of a generic polygon is the number of73

self-crossings of P . The crossing number of a consistent angle sequence A is the74

minimum integer k, denoted by cr(A), such that there exists a generic polygon75

P ∈ R2 realizing A with cr(P ) = k. Our first main results is the following76

theorem.77

Theorem 1. For a consistent angle sequence A = (α0, . . . , αn−1) in the plane,78

we have79

cr(A) =

{
1 if

∑n−1
i=0 αi = 0,

|j| − 1 if
∑n−1
i=0 αi = 2jπ and j 6= 0.

Angle sequences in 3-space and spherical polygonal linkages. In Rd,80

d ≥ 3, the sign of a turning angle no longer plays a role: The turning angle of an81

oriented polygon P at vi is in (0, π), and an angle sequence A = (α0, . . . , αn−1) is82

in (0, π)n. The unit-length direction vectors of the edges of P determine a spher-83

ical polygon P ′. Note that the turning angles of P correspond to the spherical84

lengths of the segments of P ′. It is not hard to see that this observation reduces85

the problem of realizability of A by a polygon in R3 to the problem of realizabil-86

ity of A by a spherical polygon, in the sense as defined next, that additionally87

contains the origin 0 = (0, 0, 0) in its convex hull.88

Let S2 ⊂ R3 denote the unit 2-sphere. A great circle C ⊂ S2 is an intersec-89

tion of S2 with a 2-dimensional hyperplane in R3 containing 0. A spherical line90

segment is a connected subset of a great circle that does not contain a pair of an-91

tipodal points of S2. The length of a spherical line segment ab equals the measure92

of the central angle subtended by ab. A spherical polygon P ⊂ S2 is a closed sim-93

ple curve consisting of finitely many spherical segments; and a spherical polygon94

P = (u0, . . . ,un−1), ui ∈ S2, realizes an angle sequence A = (α0, . . . , αn−1) if95

the spherical segment (ui−1,ui) has (spherical) length αi, for every i. As usual,96

the turning angle of P at ui is the angle in [0, π] between the tangents to S2 at97

ui that are co-planar with the great circles containing (ui,ui+1) and (ui,ui−1).98

Unlike for polygons in R2 and R3 we do not put any constraints on turning99

angles of spherical polygons in our results.100

Regarding realizations of A by spherical polygons, we prove the following.101

Theorem 2. Let A = (α0, . . . , αn−1), n ≥ 3, be an angle sequence. There exists102

a generic polygon P ⊂ R3 realizing A if and only if
∑n−1
i=0 αi ≥ 2π and there103
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exists a spherical polygon P ′ ⊂ S2 realizing A. Furthermore, P can be constructed104

efficiently if P ′ is given.105

Theorem 3. There exists a constructive weakly polynomial-time algorithm to106

test whether a given angle sequence A = (α0, . . . , αn−1) can be realized by a107

spherical polygon P ′ ⊂ S2.108

A simple exponential time algorithm for realizability of angles sequences by109

spherical polygons follows from a known characterization [3, Theorem 2.5], which110

also implies that the order of angles in A does not matter for the spherical111

realizability. The topology of the configuration spaces of spherical polygonal112

linkages have also been studied [16]. Independently, Streinu et al. [19, 23] showed113

that the configuration space of noncrossing spherical linkages is connected if114 ∑n−1
i=0 αi ≤ 2π. However, these results do not seem to help prove Theorem 3.115

The combination of Theorems 3 and 2 yields our second main result.116

Theorem 4. There exists a constructive weakly polynomial-time algorithm to117

test whether a given angle sequence A = (α0, . . . , αn−1) can be realized by a118

polygon P ⊂ R3.119

Organization. We prove Theorem 1 in Section 2 and Theorems 2, 3, and 4 in120

Section 3. We finish with concluding remarks in Section 4.121

2 Crossing Minimization in the Plane122

The first part of the following lemma gives a folklore necessary condition for123

the consistency of a sequence A. The condition is also sufficient except when124

j = 0. The second part follows from a result of Grünbaum and Shepard [11,125

Theorem 6], using a decomposition due to Wiener [28]. We provide a proof for126

the sake of completeness.127

P

P ′

P ′′

α

−α

Fig. 2. Splitting an oriented closed polygon P at a self-crossing point into 2 oriented
closed polygons P ′ and P ′′ such that tn(P ) = tn(P ′) + tn(P ′′).

128

129

Lemma 1. If an angle sequence A = (α0, . . . , αn−1) is consistent, then
∑n−1
i=0 αi =130

2jπ for some j ∈ Z. Furthermore, if j 6= 0 then cr(A) ≥ |j| − 1.131
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c
P ′ P ′′ P

Fig. 3. Constructing a polygon P with |tn(P )| − 1 crossings.149

Proof. Let P be a polygon such that cr(A) = cr(P ). First, we prove that cr(A) ≥132

|j| − 1 = |tn(P )| − 1, by induction on cr(P ).133

We consider the base case when cr(P ) = 0. By Jordan-Schönflies curve the-134

orem, P bounds a compact region homeomorphic to a disk. By a well-known135

fact, the internal angles at vertices of P sum up to (n − 2)π. Since A is con-136

sistent,
∑n−1
i=0 αi = 2jπ, and thus, (n − 2)π =

∑n−1
i=0 (π − αi) = (n − 2j)π or137

(n − 2)π =
∑n−1
i=0 (π + αi) = (n + 2j)π, depending on the orientation of the138

polygon. The claim follows since |tn(P )| = j = 1 in this case.139

Refer to Fig. 2. In the inductive step, we have cr(P ) ≥ 1. By splitting P into140

two closed parts P ′ and P ′′ at a self-crossing, we obtain a pair of closed polygons141

such that tn(P ) = tn(P ′) + tn(P ′′). We have cr(P ) ≥ 1 + cr(P ′) + cr(P ′′) ≥142

1 + |tn(P ′)| − 1 + |tn(P ′′)| − 1 ≥ |tn(P )| − 1. Thus, the induction goes through,143

since both cr(P ′) and cr(P ′′) are smaller than cr(P ). ut144

The following lemma shows that the lower bound in Lemma 1 is tight when145

αi > 0 for all i ∈ {0, . . . , n− 1}.146

Lemma 2. If A = (α0, . . . , αn−1) is a angle sequence such that
∑n−1
i=0 αi = 2jπ,147

j 6= 0, and αi > 0, for all i, then cr(A) ≤ |j| − 1.148

Proof. Refer to Fig. 3. In three steps, we construct a polygon P realizing A150

with |tn(P )| − 1 self-crossings thereby proving cr(A) ≤ |j| − 1 = |tn(P )| − 1. In151

the first step, we construct an oriented self-crossing-free polygonal line P ′ with152

n+2 vertices, whose first and last (directed) edges are parallel to the positive x-153

axis, and whose internal vertices have turning angles α0, . . . , αn−1 in this order.154

We construct P ′ incrementally: The first edge has unit length starting from the155

origin; and every successive edge lies on a ray emanating from the endpoint of156

the previous edge. If the ray intersects neither the x-axis nor previous edges, then157

the next edge has unit length, otherwise its length is chosen to avoid any such158

intersection. In the second step, we prolong the last edge of P ′ until it creates the159

last self-intersection/crossing c and denote by P ′′ the resulting closed polygon160

composed of the part of P ′ from c to c via the prolonged part. By making the161

differences between the lengths of the edges of P ′ sufficiently large a prolongation162

of the last edge of P ′ has to eventually create at least one desired self-intersection.163

Hence, P ′′ is well-defined. Finally, we construct P realizing A from P ′′ by an164

appropriate modification of P ′′ in a small neighborhood of c without creating165

additional self-crossings. The number of self-crossings of P follows by the winding166
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number of P w.r.t. to the point just a bit north from the end vertex of P ′, which167

is j or −j. ut168

To prove the upper bound in Theorem 1, it remains to consider the case169

that A = (α0, . . . , αn−1) contains both positive and negative angles. The crucial170

notion in the proof is that of an (essential) sign change of A which we define171

next. Let A = (α0, . . . , αn−1). Let βi =
∑i
j=0 αj mod 2π. Let vi ∈ R2 denote172

the unit vector (cosβi, sinβi). Hence, vi is the direction vector of the (i+ 1)-st173

edge of an oriented polygon P realizing A if the direction vector of the first edge174

of P is (1, 0) ∈ R2. As observed by Garg [10, Section 6], the consistency of A175

implies that 0 is a strictly positive convex combination of vectors vi, that is,176

there exists λ0, . . . , λn−1 > 0 such that
∑n−1
i=0 λvi = 0 and

∑n−1
i=0 λi = 1.177

The sign change of A is an index i such that αi < 0 and αi+1 > 0, or vice178

versa, αi > 0 and αi+1 < 0. Let sc(A) denote the number of sign changes of179

A. The number of sign changes of A is even. A sign change i of a consistent180

angle sequence A is essential if 0 is not a strictly positive convex combination181

of {v0, . . . ,vi−1,vi+1, . . . ,vn−1}.182

Lemma 3. If A = (α0, . . . , αn−1) is a consistent angle sequence such that183 ∑n−1
i=0 αi = 2jπ, j ∈ Z, and all sign changes are essential, then cr(A) ≤

∣∣|j|−1
∣∣.184

Proof. We distinguish between two cases depending on whether
∑n−1
i=0 αi = 0.185

Case 1:
∑n−1
i=0 αi = 0. Since

∑n−1
i=0 αi = 0, we have sc(A) ≥ 2. Since all sign186

changes are essential, for any two distinct sign changes i 6= j, we have vi 6= vj ,187

therefore counting different vectors vi, where i is a sign change, is equivalent to188

counting sign changes. We show next that sc(A) = 2.189

Suppose, to the contrary, that sc(A) > 2. Since sc(A) is even, we have sc(A) ≥190

4. Note that if vi corresponds to an essential sign change i, then there is an191

open halfplane bounded by a line through the origin that contain only vi in192

{v0, . . . ,vn−1}. Thus, if i and i′ are distinct essential sign changes, for any193

other essential sign change j we have that vj is contained in a closed convex194

cone bounded by −vi and −vi′ unless −vi = vi′ . Hence, the only possibility195

for having 4 essential sign changes i, i′, j′, and j′ is if they satisfy vi = −vi′ ,196

vj = −vj′ and vi 6= ±vj . Since all i, i′, j, and j′ are sign changes, there197

exists a fifth vector vk, which implies that one of i, i′, j, and j′ is not essential198

(contradiction).199

Assume w.l.o.g. that j and n− 1 are the only two essential sign changes. We200

have that vj 6= −vn−1: For otherwise, all the other vi’s different from vj and201

vn−1 must be orthogonal to vj and vn−1, since the sign changes j and n− 1202

are essential. Then due to the consistency of A, there exists a pair i and i′ such203

that vi = −vi′ . However, j and n− 1 are the only sign changes, and thus, there204

exists k such that vk 6= ±vi (contradiction).205

It follows that vj and vn−1 are not collinear, and we have that the remaining208

vi’s belong to the closed convex cone bounded by −vj and −vn−1. Refer to209

Fig. 4. Thus, we may assume that (i) βn−1 = 0, (ii) the sign changes of A are210

n − 1 and j, and (iii) 0 < β0 < . . . < βj and βj > βj+1 > . . . > βn−1 = 0.211
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λn−1vn−1

λjvj λ0v0 vn−1vj

v0
vj−1

λj−1vj−1

λj+1vj+1

λn−2vn−2

Fig. 4. The case of exactly 2 sign changes n − 1 and j, both of which are essential,
when

∑n−1
i=0 αi = 0. Both missing parts of the polygon on the left are convex chains.

206

207

Now, realizing A by a generic polygon with exactly 1 crossing between the line212

segments in the direction of vj and vn−1 is a simple exercise.213

Case 2:
∑n−1
i=0 αi 6= 0. We show that, unlike in the first case, none of the sign214

changes of A can be essential. Indeed, suppose j is an essential sign change, and215

as in Case 1, let A′ = (α′0, . . . , α
′
n−2) = (α0, . . . , αj−1, αj + αj+1, . . . , αn−1) and216

β′i =
∑i
j=0 α

′
j mod 2π.217

Furthermore, let v′0, . . . ,v
′
n−2, where v′i = (cosβ′i, sinβ

′
i). Since j is an es-218

sential sign change there exists v 6= 0 such that
〈
v,vj

〉
> 0 and

〈
v,v′i

〉
≤ 0, for219

all i. Hence, by symmetry we assume that 0 ≤ β′i ≤ π, for all i. Then due to220

−π < α′i < π, we must have β′j =
∑j
i=0 α

′
i mod 2π =

∑j
i=0 α

′
i, which in turn221

implies, by Lemma 1, that 0 = β′n−2 =
∑n−2
i=0 α

′
i =

∑n−1
i=0 αi (contradiction).222

We have shown that A has no sign changes. By Lemma 2, we have cr(A) ≤223

|j| − 1, which concludes the proof. ut224

Proof (Proof of Theorem 1). The claimed lower bound cr(A) ≥
∣∣|j| − 1

∣∣ on the225

crossing number of A follows by Lemma 1, in the case when j 6= 0, and the226

result of Viyajan [27, Theorem 2] in the case when j = 0. It remains to prove227

the upper bound cr(A) ≤
∣∣|j| − 1

∣∣.228

We proceed by induction on n. In the base case, we have n = 3. Then P is229

a triangle,
∑2
i=0 αi = ±2π, and cr(A) = 0, as required. In the inductive step,230

assume n ≥ 4, and that the claim holds for all shorter angle sequences. Let231

A = (α0, . . . , αn−1) be an angle sequence with
∑n−1
i=0 αi = 2jπ.232

If A has no sign changes or if all sign changes are essential, then Lemma 2233

or Lemma 3 completes the proof. Otherwise, we have at least one nonessential234

sign change s. Let A′ = (α′0, . . . , α
′
n−2) = (α0, . . . , αs−1, αs + αs+1, . . . , αn−1).235

Note that
∑n−2
i=0 α

′
i = 2jπ. Since the sign change s is nonessential, 0 is a strictly236

positive convex combination of the β′i’s, where β′i =
∑i
k=0 α

′
k mod 2π. Indeed,237

this follows from β′i = βi, for i < k, and β′i = βi+1, for i ≥ k.238

Refer to Fig. 5. Hence, by applying the induction hypothesis we obtain a241

realization of A′ as a generic polygon P ′ with
∣∣|j|−1

∣∣ crossing. A generic polygon242

realizing A is then obtained by modifying P in a small neighborhood of one of243

its vertices without introducing any additional crossing, similarly as in the paper244

by Guibas et al. [12]. ut245
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λ′j−1v
′
j−1

λ′jv
′
j

λj−1vj−1

λj+1vj+1

αj

αj+1

αj + αj+1

Fig. 5. Re-introducing the j-th vertex to a polygon realizing A′ in order to obtain a
polygon realizing A.

239

240

3 Realizing Angle Sequences in 3-Space246

In this section, we describe a polynomial-time algorithm to decide whether an247

angle sequence A = (α0, . . . αn−1) can be realized as a polygon in R3.248

We remark that our problem can be expressed as solving a system of poly-249

nomial equations, where 3n variables describe the coordinates of the n vertices250

of P , and each of n equations is obtained by the cosine theorem applied for a251

vertex and two incident edges of P . However, it is not clear to us how to solve252

this system efficiently.253

By Fenchel’s theorem in differential geometry [9], the total curvature of any254

smooth curve in Rd is at least 2π. Fenchel’s theorem has been adapted to closed255

polygons [24, Theorem 2.4], and it gives a necessary condition for an angle se-256

quence A to have a realization in Rd, for all d ≥ 2.257

n−1∑
i=0

αi ≥ 2π. (1)

We show that a slightly stronger condition is both necessary and sufficient,258

hence it characterizes realizable angle sequences in R3.259

Lemma 4. Let A = (α0, . . . , αn−1), n ≥ 3, be an angle sequence. There exists260

a polygon P ⊂ R3 realizing A if and only if there exists a spherical polygon261

P ′ ⊂ S2 realizing A such that 0 ∈ relint(conv(P ′)) (relative interior of conv(P ′)).262

Furthermore, P can be constructed efficiently if P ′ is given.263

Proof. Assume that an oriented polygon P = (p0, . . . , pn−1) realizes A in R3.264

Let ui = (vi+1−vi)/‖vi+1−vi‖ ∈ S2 be the unit direction vectors of the edges of265

P according to its orientation. Then P ′ = (u0, . . . ,un−1) is a spherical polygon266

that realizes A. Suppose, for the sake of contradiction, that 0 is not in the relative267

interior of conv(P ′). Then there is a plane H that separates 0 and P ′, that is,268

if n is the normal vector of H, then
〈
n,ui

〉
> 0 for all i ∈ {0, . . . , n − 1}. This269

implies
〈
n, (vi+1 − vi)

〉
> 0 for all i, hence

〈
n,
∑n−1
i=1 (vi+1 − vi)

〉
> 0, which270

contradicts the fact that
∑n−1
i=1 (vi+1 − vi) = 0, and

〈
n,0

〉
= 0.271

Conversely, assume that there is a spherical polygon P ′ that realizes A, with272

edge lengths α0, . . . , αn−1. If all vertices of P ′ lie in a great circle, then 0 ∈273

relint(conv(P ′)) implies
∑n−1
i=0 αi ≥ 2π, and Theorem 1 completes the proof.274
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Otherwise we may assume that 0 ∈ int(conv(P ′)). By Carathéodory’s the-275

orem [17, Thereom 1.2.3], P ′ has 4 vertices whose convex combination is the276

origin 0. Then we can express 0 as a strictly positive convex combination of all277

vertices of P ′. The coefficients in the convex combination encode the lengths of278

the edges of a polygon P realizing A, which concludes the proof in this case.279

We now show how to compute strictly positive coefficients in strongly poly-280

nomial time. Let c = 1
n

∑n−1
i=0 ui be the centroid of the vertices of P ′. If c = 0,281

we are done. Otherwise, we can find a tetrahedron T = conv{ui0 , . . . ,ui3} such282

that 0 ∈ T and such that the ray from 0 in the direction −c intersects int(T ),283

by solving an LP feasibility problem in R3. By computing the intersection of284

the ray with the faces of T , we find the maximum µ > 0 such that −µc ∈ ∂T285

(the boundary of T ). We have −µc =
∑3
j=0 λjuij and

∑3
j=0 λj = 1 for suitable286

coefficients λj ≥ 0. Now 0 = µc − µc = µ
n

∑n−1
i=0 ui +

∑3
j=0 λjuij is a strictly287

positive convex combination of the vertices of P ′. ut288

It is easy to find an angle sequence A that satisfies (1) but does not correspond289

to a spherical polygon P ′. Consider, for example, A = (π − ε, π − ε, π − ε, ε),290

for some small ε > 0. Points in S2 at (spherical) distance π − ε are nearly291

antipodal. Hence, the endpoints of a polygonal chain (π − ε, π − ε, π − ε) are292

nearly antipodal, as well, and cannot be connected by an edge of (spherical)293

length ε. Thus a spherical polygon cannot realize A.294

Algorithms. In the remainder of this section, we show how to find a realization295

P ⊂ R3 or report that none exists, in polynomial time. Our first concern is to296

decide whether an angle sequence is realizable by a spherical polygon.297

298

Theorem 3. There exists a constructive weakly polynomial-time algorithm to299

test whether a given angle sequence A = (α0, . . . , αn−1) can be realized by a300

spherical polygon P ′ ⊂ S2.301

Proof (Proof of Theorem 3). Let A = (α0, . . . , αn−1) ∈ (0, π)n be a given angle302

sequence. Let n = (0, 0, 1) ∈ S2 (the north pole). For i ∈ {0, 1, . . . , n − 1}303

let Ui ⊆ S2 be the locus of the end vertices ui of all (spherical) polygonal lines304

P ′i = (n,u0, . . . ,ui) with edge lengths α0, . . . , αi−1. It is clear that A is realizable305

by an spherical polygon P ′ iff n ∈ Un−1.306

Note that for all i ∈ {0, . . . , n − 1}, the set Ui is invariant under rotations307

about the z-axis, since n is a fixed point and rotations are isometries. We show308

how to compute the sets Ui, i ∈ {0, . . . , n− 1}, efficiently.309

We define a spherical zone as a subset of S2 between two horizontal planes310

(possibly, a circle, a spherical cap, or a pole). Recall the parameterization of311

S2 using spherical coordinates (cf. Figure 6 (left)): for every v ∈ S2, v(ψ,ϕ) =312

(sinψ sinϕ, cosψ sinϕ, cosϕ), with longitude ψ ∈ [0, 2π) and polar angle ϕ ∈313

[0, π], where the polar angle ϕ is the angle between v and n. Using this param-314

eterization, a spherical zone is a Cartesian product [0, 2π)× I for some circular315

arc I ⊂ [0, π]. In the remainder of the proof, we associate each spherical zone316

with such a circular arc I.317
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We define additions and subtraction on polar angles α, β ∈ [0, π] by318

α⊕ β = min{α+ β, 2π − (α+ β)}, α	 β = max{α− β, β − α};

see Figure 6 (right). (This may be interpreted as addition mod 2π, restricted to320

the quotient space defined by the equivalence relation ϕ ∼ 2π − ϕ.)

v(ψ,ϕ)

ϕ(v)

ψ(v)

n

ϕ

ϕ+ αi+1

ϕ	 αi+1

Ci+1(ϕ)

ϕ⊕ αi+1

Fig. 6. Parametrization of the unit vectors (left). Circular arc Ci+1(ϕ) (right).319

321

We show that Ui is a spherical zone for all i ∈ {0, . . . , n− 1}, and show how322

to compute the intervals Ii ⊂ [0, π] efficiently. First note that U0 is a circle at323

(spherical) distance α0 from n, hence U0 is a spherical zone with I0 = [α0, α0].324

Assume that Ui is a spherical zone associated with Ii ⊂ [0, π]. Let ui ∈ Ui,325

where ui = v(ψ,ϕ) with ψ ∈ [0, 2π) and ϕ ∈ Ii. By the definition Ui, there326

exists a polygonal line (n,u0, . . . ,ui) with edge lengths α0, . . . , αi. The locus of327

points in S2 at distance αi+1 from ui is a circle; the polar angles of the points in328

the circle form an interval Ci+1(ϕ). Specifically (see Figure 6 (right)), we have329

Ci+1(ϕ) = [min{ϕ	 αi+1, ϕ⊕ αi+1},max{ϕ	 αi+1, ϕ⊕ αi+1}].

By rotational symmetry, Ui+1 = [0, 2π) × Ii+1, where Ii+1 =
⋃
ϕ∈Ii Ci+1(ϕ).330

Consequently, Ii+1 ⊂ [0, π] is connected, and hence, Ii+1 is an interval. Therefore331

Ui+1 is a spherical zone. As ϕ⊕αi+1 and ϕ	αi+1 are piecewise linear functions332

of ϕ, we can compute Ii+1 using O(1) arithmetic operations.333

We can construct the intervals I0, . . . , In−1 ⊂ [0, π] as described above. If334

0 /∈ In−1, then n /∈ Un−1 and A is not realizable. Otherwise, we can compute335

the vertices of a spherical realization P ′ ⊂ S2 by backtracking. Put un−1 = n =336

(0, 0, 1). Given ui = v(ψ,ϕ), we choose ui−1 as follows. Let ui−1 be v(ψ,ϕ⊕αi)337

or v(ψ,ϕ 	 αi) if either of them is in Ui−1 (break ties arbitrarily). Else the338

spherical circle of radius αi centered at ui intersects the boundary of Ui−1,339

and then we choose ui to be an arbitrary such intersection point. The decision340

algorithm (whether 0 ∈ In−1) and the backtracking both use O(n) arithmetic341

operations. ut342
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Enclosing the Origin. Theorem 3 provides an efficient algorithm to test whether343

an angle sequence can be realized by a spherical polygon, however, Lemma 4344

requires a spherical polygon P ′ whose convex hull contains the origin. We show345

that this is always possible if a realization exists and
∑n−1
i=0 αi ≥ 2π. The general346

strategy in the inductive proof of this claim is to gradually modify P ′ by changing347

the turning angle at one of its vertices to 0. This allows us to reduce the number348

of vertices of P ′ and apply induction. (The proof of the following lemma is349

deferred to the appendix.)350

Lemma 5. Given a spherical polygon P ′ realizing an angle sequence351

A = (α0, . . . , αn−1), n ≥ 3, with
∑n−1
i=0 α ≥ 2π, we can compute in polynomial352

time a spherical polygon P ′′ realizing A such that 0 ∈ relint(conv(P ′′)).353

The combination of Theorem 3 with Lemmas 4–5 yields Theorems 2 and 4.354

The proof of Lemma 5 can be turned into an algorithm with a polynomial355

running time in n if every arithmetic operation is assumed to be carried out in356

O(1) time. Nevertheless, we get only a weakly polynomial running time, since357

we are unable to guarantee a polynomial size encoding of the numerical values358

that are computed in the process of constructing a spherical polygon realizing359

A that contains 0 in its convex hull in the proof of Lemma 5.360

4 Conclusion361

We devised efficient algorithms to realize a consistent angle cycle with the min-362

imum number of crossings in 2D. In 3D, we can test efficiently whether a given363

angle sequence is realizable, and find a realization if one exists. However, it364

remains an open problem to find an efficient algorithms that computes the min-365

imum number of crossings in generic realizations. There exist sequences that are366

realizable, but every generic realization has crossings. It is not difficult to see367

that crossings are unavoidable only if every 3D realization of A is contained in368

a plane, which is the case, for example, when A = (π− ε, . . . , π− ε, (n− 1)ε) for369

n ≥ 5 odd. Thus, an efficient algorithm for this problem would follow by Theo-370

rem 1, once one can test efficiently whether A admits a fully 3D realization.371

Can our results in R2 or R3 be extended to broader interesting classes of372

graphs? A natural analog of our problem in R3 would be a construction of373

triangulated spheres with prescribed dihedral angles, discussed in a recent paper374

by Amenta and Rojas [1]. For convex polyhedra, Mazzeo and Montcouquiol [18]375

proved, settling Stokers’ conjecture, that dihedral angles determine face angles.376

Theorem 3 gave an efficient algorithm to test whether a given angle sequence377

A can be realized by a spherical polygon P ′ ⊂ S2. We wonder whether every378

realizable sequence A has a noncrossing realization, or possibly a noncrossing379

realization whose convex hull contains the origin (when
∑n−1
i=0 αi ≥ 2π). If the380

answer is positive, can such realizations be computed efficiently? We do not know381

whether a realization P ⊂ R3 corresponding to a spherical realization P ′ ⊂ S2382

(according to the method in the proof of Lemma 4) has any interesting properties383

when P ′ is has no self-intersections.384
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A Enclosing the Origin (Section 3)455

Lemma 5. Given a spherical polygon P ′ realizing an angle sequence A =456

(α0, . . . , αn−1), n ≥ 3, with
∑n−1
i=0 α ≥ 2π, we can compute in polynomial time457

a spherical polygon P ′′ realizing A such that 0 ∈ relint(conv(P ′′)).458

u1

u0

α1

n

ϕ(u0)

π0
ϕ(u0) = I0

ϕ(u1) ∈ I1

U1 = U2−
1

B2−
1

T 2−
1

U1−
0

Fig. 7. The spherical zone U1 (or U2−
1 ) containing u1 corresponding to I1.459

We introduce some terminology for spherical polygonal linkages with one460

fixed endpoint. Let P ′ = (u0, . . . ,un−1) be a polygon in S2 that realizes an461

angle sequence A = (α0, . . . , αn−1); we do not assume
∑n−1
i=1 αi ≥ 2π. De-462

note by U j−i the locus of the endpoints u′i ∈ S2 of all (spherical) polygonal463

lines (ui−j ,u
′
i−j+1, . . . ,u

′
i), where the first vertex is fixed at ui−j , and the edge464

lengths are αi−j , . . . , αi. Similarly, denote by U j+i the locus of the endpoints465

u′i ∈ S2 of all (spherical) polygonal lines (ui+j ,u
′
i+j−1, . . . ,u

′
i) with edge lengths466

αi+j+1, . . . , αi+1. Due to rotational symmetry about the line passing through467

ui−j and 0, both U j−i and U j+i are a spherical zone (a subset of S2 bounded by468

two parallel circles), possibly just a circle, or a cap, or a point. In particular, the469

distance between ui and any boundary component (circle) of U j−i or U j+i is the470

same; see Fig. 7.471

If U2+
i is bounded by two circles, let T 2+

i and B2+
i denote the two boundary472

circles such that ui is closer to T 2+
i than to B2+

i . If U2+
i is a cap, let T 2+

i denote473

the boundary of U2+
i , and let B2+

i denote the center of U2+
i . We define T 2−

i and474

B2−
i analogously.475

The vertex ui of P ′ is a spur of P ′ if the segments uiui+1 and uiui−1 overlap476

(equivalently, the turning angle of P ′ at ui is π). We use the following simple477

but crucial observation.478
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Observation 1 Assume that n ≥ 4 and U2+
i is neither a circle nor a point.479

The turning angle of P ′ at ui+1 is 0 iff ui ∈ B2+
i ; and ui+1 is a spur of P ′ iff480

ui ∈ T 2+
i .481

A crucial technical tool in the proof of Lemma 5 is the following lemma based482

on Observation 1.483

Lemma 6. Let P ′ be a spherical polygon (u0, . . . ,un−1), n ≥ 4, that realizes484

an angle sequence A = (α0, . . . , αn−1). Then there exists a spherical polygon485

P ′′ = (u0, . . . ,ui−1,u
′
i,u
′
i+1,ui+2, . . . ,un−1) that also realizes A such that the486

turning angle at ui−1 is 0, or the turning angle at ui+1 is 0 or π.487

Proof. If n ≥ 4, Observation 1 allows us to move vertices ui and ui+1 so that488

the turning angle at ui−1 drops to 0, or the turning angle at ui+1 changes to 0 or489

π, while all other vertices of P ′ remain fixed. Indeed, one of the following three490

options holds: U1−
i ⊆ U2+

i , U1−
i ∩B

2+
i 6= ∅, or U1−

i ∩T
2+
i 6= ∅. If U1−

i ⊆ U2+
i , then491

by Observation 1 there exists u′i ∈ U
1−
i ∩B

2−
i ∩U

2+
i . Since u′i ∈ U

2+
i there exists492

u′i+1 ∈ U
1+
i+1 such that P ′′ = (u0, . . . ,ui−1,u

′
i,u
′
i+1,ui+2, . . . ,un−1) realizes A493

and the turning angle at ui−1 equals 0. Similarly, if there exists u′i ∈ U
1−
i ∩B

2+
i494

or u′i ∈ U
1−
i ∩T

2+
i , then there exists u′i+1 ∈ U

1+
i+1 such that P ′′ as above realizes495

A with the turning angle at ui+1 equal to 0 or π respectively. ut496

Proof (Proof of Lemma 5). We proceed by induction on the number of vertices497

of P ′. In the basis step, we have either n = 3. In this case, P ′ is a spherical498

triangle. The length of every spherical triangle is at most 2π, contradicting the499

assumption that
∑n−1
i=0 αi > 2π. Hence the claim vacuously holds.500

In the induction step, assume that n ≥ 4 and the claim holds for smaller501

values of n. Assume 0 /∈ relint(conv(P ′)), otherwise the proof is complete. We502

distinguish between several cases.503

Case 1: a path of consecutive edges lying in a great circle contains a504

half-circle. We may assume w.l.o.g. that at least one endpoint of the half-circle505

is a vertex of P ′. Since the length of each edge is less than π, the path that506

contains a half-circle has at least 2 edges.507

Case 1.1: both endpoints of the half-circle are vertices of P ′. Assume508

w.l.o.g., that the two endpoints of the half-circle are ui and uj , for some i < j.509

These vertices decompose P ′ into two polylines, P ′1 and P ′2. We rotate P ′2 about510

the line through uiuj so that the turning angle at ui is a suitable value in511

[−ε,+ε] as follows. First, set the turning angle at ui to be 0. If the resulting512

polygon P ′′ is contained in a great circle or 0 ∈ int(conv(P ′′)) we are done.513

Else, P ′′ is contained in a hemisphere H bounded by the great circle through514

ui−1uiui+1. In this case, we perturb the turning angle at ui so that ui+1 is not515

contained in H thereby achieving 0 ∈ int(conv(P ′′)).516

Case 1.2: only one endpoint of the half-circle is a vertex of P ′. Let517

P ′1 = (ui, . . . ,uj) be the longest path in P ′ that contains a half-circle, and lies518

in a great circle. Since 0 /∈ relint(conv(P ′)), the polygon P ′ is contained in a519

hemisphere H bounded by the great circle ∂H that contains P ′1, but P ′ is not520

contained in ∂H. By construction, uj+1 /∈ ∂H. In order to make the proof in this521
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case easier, we introduce the following assumption. If a part P0 of P ′ between two522

antipodal/identical end vertices that belong ∂H is contained in a great circle,523

w.l.o.g. we assume that P0 is contained in ∂H.524

W.l.o.g. j = 0, and we let j′ be the smallest value such that uj′ ∈ ∂H. By 0 /∈525

relint(conv(P ′)), u0, . . .uj′ ∈ H. We can perturb the polygon P ′ into a new poly-526

gon P ′′ = (u′0, . . . ,u
′
j′−1,uj′ , . . . ,un−1) realizing A so that 0 ∈ int(conv(P ′′)).527

Indeed, by Observation 1, u0 /∈ ∂U2+
0 . Therefore since (u0, . . .uj′) is not con-528

tained in a great circle by our assumption, by (a multiple use) of Observation 1,529

we choose u′0, . . . ,uj′−1, so that u′0 /∈ H, and u′1, . . . ,u
′
j′−1 ∈ relint(H), thereby530

achieving 0 ∈ int(conv(P ′′)).531

Case 2: the turning angle of P ′ is 0 at some vertex ui. By supressing532

the vertex ui, we obtain a spherical polygon Q′ on n − 1 vertices that realizes533

the sequence (α0, . . . , αi−2, αi−1 +αi, αi+1, . . . , αn−1) unless αi−1 +αi ≥ π, but534

then we are in Case 1. By induction, this sequence has a realization Q′′ such535

that 0 ∈ relint(conv(Q′′)). Subdivision of the edge of length αi−1 +αi producers536

a realization P ′′ of A such that 0 ∈ relint(conv(Q′′)) = relint(conv(P ′′)).537

Case 3: there is no path of consecutive edges lying in a great circle538

and containing a half-circle, and no turning angle is 0.539

Case 3.1: n = 4. We claim that U2+
0 ∩U2−

0 contains B2−
0 or B2+

0 . By Observa-540

tion 1, this immediately implies that we can change one turning angle to 0 and541

proceed to Case 1.542

To prove the claim, note that U2+
0 ∩U

2−
0 6= ∅ and −2 ≡ 2 (mod 4), and hence543

the circles T 2−
0 , T 2+

0 , B2−
0 , and B2+

0 are all parallel since they are all orthogonal544

to u2. Thus, by symmetry there are two cases to consider depending on whether545

U2+
0 ⊆ U2−

0 . If U2+
0 ⊆ U2−

0 , then B2+
0 ⊂ U2+

0 ∩ U2−
0 . Else U2+

0 ∩ U2−
0 contains546

B2+
0 or B2−

0 , whichever is closer to u2, which concludes the proof of this case.547

Case 3.2: n ≥ 5. Choose i ∈ {0, . . . , n − 1} so that αi+2 is a minimum angle548

in A. Note that U2+
i is neither a circle nor a point since that would mean that549

ui+2 and ui+1, or ui and ui+1 are antipodal, which is impossible.550

We apply Lemma 6 and obtain a spherical polygon551

P ′′ = (u0, . . . ,ui−1,u
′
i,u
′
i+1,ui+2, . . . ,un−1).

If the turning angle of P ′′ at ui−1 or u′i+1 equals to 0, we proceed to Case 2. Oth-552

erwise, the turning angle of P ′′ at u′i+1 equals π. In other words, we introduce a553

spur at u′i+1. If αi+1 = αi+2 we can make the turning angle of P ′′ at ui+2 equal to554

0 by rotating the overlapping segments (u′i+1,ui+2) and (u′i+1,u
′
i) around ui+2 =555

u′i and proceed to Case 2. Otherwise, we have αi+2 < αi+1 by the choice of i. Let556

Q′ denote an auxiliary polygon realizing (α0, . . . , αi, αi+1−αi+2, αi+3, . . . , αn−1).557

We construct Q′ from P ′′ by cutting off the overlapping segments (u′i+1,ui+2)558

and (u′i+1,u
′
i). We apply Lemma 6 to Q′ thereby obtaining another realization559

Q′′ = (u0, . . . ,ui−1,u
′′
i ,u

′′
i+1,ui+3, . . . ,un−1).

We re-introduce the cut off part to Q′′ at u′′i+1 as an extension of length αi+2 of560

the segment u′′i u
′′
i+1, whose length in Q′′ is αi+1 − αi+2 > 0, in order to recover561

a realization of A by the following polygon562

R′ = (u0, . . . ,ui−1,u
′′
i ,u

′′
i+1,u

′′
i+2,ui+3, . . . ,un−1).
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If the turning angle of Q′′ at ui−1 equals 0, the same holds for R′ and we proceed563

to Case 2. If the turning angle of Q′′ at u′′i+1 equals π, then the turning angle of564

R′ at u′′i+1 equals 0 and we proceed to Case 2. Finally, if the turning angle of Q′′565

at u′′i+1 equals 0, then R′ has a pair of consecutive spurs at u′′i+1 and u′′i+2, that is,566

a so-called “crimp.” We may assume w.l.o.g. that αi+3 < αi+1. Also we assume567

that the part (u′′i ,u
′′
i+1,u

′′
i+2,ui+3) of R′ does not contain a pair of antipodal568

points, since otherwise we proceed to Case 1. Since (u′′i ,u
′′
i+1,u

′′
i+2,ui+3) does569

not contain a pair of antipodal points, |(u′′i ,ui+3)| = αi+1 + αi+3 − αi+2. It570

follows that571

|(u′′i ,ui+3)|+ |(u′′i ,u′′i+1)|+ |(u′′i+1u
′′
i+2)|+ |(u′′i+2,ui+3)| =

αi+1 + αi+3 − αi+2 + αi+1 + αi+2 + αi+3 = 2(αi+1 + αi+3)

572

If αi+3 +αi+1 < π, then the 3 angles αi+1, αi+2 +αi+3, and |(u′′i ,ui+3)| are573

all less than π. Moreover, their sum, which is equal to 2(αi+3 + αi+1), is less574

than 2π, and they satisfy the triangle inequalities. Therefore we can turn the575

angle at u′′i+2 to 0, by replacing the path (u′′i ,u
′′
i+1,u

′′
i+2,ui+3) on R′ by a pair576

of segments of lengths αi+1 and αi+2 + αi+3.577

Otherwise, αi+3 + αi+1 ≥ π, and thus,578

|(u′′i ,ui+3)|+ |(u′′i ,u′′i+1)|+ |(u′′i+1u
′′
i+2)|+ |(u′′i+2,ui+3)| ≥ 2π.

In this case, we can apply the induction hypothesis to the closed spherical poly-579

gon (u′′i ,u
′′
i+1,u

′′
i+2,ui+3). In the resulting realization S′, that is w.l.o.g. fixing580

u′′i and ui+3, we replace the segment (u′′i ,ui+3) by the remaining part of R′581

between u′′i and ui+3. Let R′′ denote the resulting realization of A. If S′ is not582

contained in a great circle then 0 ∈ int(conv(S′)) ⊆ int(conv(R′′)), and we are583

done. Otherwise, S′ \ (ui+3,ui) contains a pair of antipodal points on a half-584

circle. The same holds for R′′, and we proceed to Case 1, which concludes the585

proof. ut586


