Forensic Analysis of Database Tampering

Kyriacos Pavlou and Richard T. Snodgrass

Computer Science Department The University of Arizona

Introduction

The problem : How to systematically perform forensic analysis on a compromised database.

- Recent federal laws (HIPAA, Sarbanes-Oxley Act etc.) and incidents of corporate collusion mandate *audit log security*.
- Snodgrass et al. [VLDB04] showed how to detect database tampering. Approach: Hash using a cryptographically strong hash function, notarize data manipulated by transactions and periodically validate.
- Forensic analysis to ascertain:
 - When the intrusion transpired
 - What data was altered
 - Who the intruder is
 - Why has this transpired

Outline

- Tamper Detection
- Forensic Analysis
 - The corruption diagram
 - Types of corruption events
- Forensic Algorithms
 - Three algorithms
 - Forensic strength
- Future Work

Tamper Detection

The Corruption Diagram

Forensic Analysis

If a corruption is detected, the *forensic analyzer* springs into action.

 The analyzer tries to ascertain a *corruption region*: the bounds on the uncertainty of the "where" and "when" of the corruption.

Monochromatic Algorithm

Monochromatic Algorithm

Central insight: data can be rehashed by validator and checked.

- Corruption region bounds: $I_V \times I_N$
 - Area is solely dependent on the two intervals.

• Cannot handle *CE*s involving timestamp corruption.

The RGB Forensic Algorithm G B When F $VE_4 = FALSE$ NE_8 Forensic analysis begins NE₇ $I_V = 4$ days t_c CE Т $I_N = 2$ days Notarization of Red R $VE_3 = TRUE$ NE_6 Postdating CE NE_5 Т G Notarization of Blue & Green B $VE_2 = TRUE$ NE_4 t_p : postdating time NE₃ Notarization of Red R $VE_1 = TRUE$ NE_2 NE₁ \mathbf{T}_{p} NE_0

Where

The RGB Forensic Algorithm

- Introduction of RGB partial hash chains:
 - Allows the bounding of both t_l and t_p
 - Incurs extra NS cost

• Each of two corruption regions bounds: $I_V \times I_N$

• We would like to reduce the area of the corruption regions.

Forensic Strength

Components:

- Work of forensic analysis
- Region-area of CE
- Width of postdating / backdating uncertainty

Inverse Forensic Strength:

 $IFS(D, I_N, V) = (NumNotarizes(D, I_N, V) + ForensicAnalysis(D, I_N, V))$ $\cdot RegionArea(I_N, V) \cdot UncertaintyWidth(D, I_N)$

where

 $V = I_V / I_N$ is the validation factor and D is the number of days before first validation failure.

- Monochromatic: $O(V \cdot D^2 \cdot I_N)$
- **RGB**: $O(V \cdot D \cdot I_N^2)$ We assume that $D >> I_N$.
- Polychromatic: $O((V + lg I_N) \cdot D)$

Future Work

• Develop a stronger lower bound for this problem.

• Accommodate multi-locus and complex CEs.

• Differentiate postdating and backdating CEs.

- Implement forensic analysis in validator.
- Consider interaction between transaction-time storage manager and underlying WORM storage.

Summary

• We have presented a means of performing forensic analysis.

• We have introduced a graphical representation to visualize *CE*s, termed the corruption diagram.

- We have designed three forensic algorithms.
 - Monochromatic
 - RGB
 - Polychromatic