
Forensic Analysis

of

Database Tampering

Kyriacos Pavlou and Richard T. Snodgrass

Computer Science Department

The University of Arizona

Introduction

The problem : How to systematically perform forensic analysis

on a compromised database.

• Recent federal laws (HIPAA, Sarbanes-Oxley Act etc.) and incidents
of corporate collusion mandate audit log security.

• Snodgrass et al. [VLDB04] showed how to detect database tampering.

Approach: Hash using a cryptographically strong hash function,
notarize data manipulated by transactions and periodically validate.

• Forensic analysis to ascertain:
– When the intrusion transpired

– What data was altered

– Who the intruder is

– Why has this transpired

Outline

• Tamper Detection

• Forensic Analysis

– The corruption diagram

– Types of corruption events

• Forensic Algorithms

– Three algorithms

– Forensic strength

• Future Work

Tamper Detection

Two phases:

• Normal Processing

• Validation

The validation result is a single bit.

hash value

notary ID

rehash

transactions

transactions

hashing
+

result

transactions

transactions

hashing
+

hash value

notary ID

hash value
notary ID

+

= TRUE

The Corruption Diagram

NE0

NE1

NE2

NE3

VE1

NE4

NE5

NE6

VE2 = TRUE

When

Where

IN notarization

interval
IV

validation

interval

NE: Notarization

Event

VE: Validation

Event

link

link

Actual time

Commit time

CE
.

CE: Corruption

Event

VE2

clock

time

commit

time

Forensic Analysis

• If a corruption is detected, the forensic analyzer springs

into action.

• The analyzer tries to ascertain a corruption region: the

bounds on the uncertainty of the “where” and “when” of

the corruption.

Monochromatic Algorithm

NE0

NE1

NE2

NE3

VE1 = TRUE

NE4

NE5

NE6

VE2 = FALSE

When

Where

FT FF

CE
.

Forensic analysis begins

F

time of

corruption (tc)

tl: place of corruption

(commit time)

Corruption Region:

captures the

uncertainty as to

the position of CE

Monochromatic Algorithm

• Central insight: data can be rehashed by validator and

checked.

• Corruption region bounds: IV IN

– Area is solely dependent on the two intervals.

• Cannot handle CEs involving timestamp corruption.

×

The RGB Forensic Algorithm

NE0

NE1

NE2

NE3

VE1 = TRUE

NE4

NE5

NE6

VE4 = FALSE
When

Where

VE2 = TRUE

VE3 = TRUE

NE7

NE8

R

R

B
G

B
G

T

T

T

tc

tl

Forensic analysis begins

FF FFFFFT

CE
.

Postdating CE

tp

tp: postdating

time

IV = 4 days

IN = 2 days

Notarization of Red

Notarization of Blue & Green

Notarization of Red

x x

The RGB Forensic Algorithm

• Introduction of RGB partial hash chains:
– Allows the bounding of both tl and tp

– Incurs extra NS cost

• Each of two corruption regions bounds: IV IN

• We would like to reduce the area of the corruption
regions.

×

The Polychromatic Algorithm

NE0

NE1

NE2

NE3

VE1 = TRUE

NE4

NE5

NE6

VE2 = TRUE

VE3 = TRUE

NE7

NE8

CE
.

T

T

tc

R

Forensic analysis begins

B
G

R

B
G

VE4 = FALSE
FFFFFFT

F F

TFF

tb
tl

tb: backdating

time

IV = 4 days

IN = 2 days

Desired = 1 day

When

Backdating CE

x x

Uncertainty can be

arbitrarily shrunk

via a logarithmic

number of red and

blue hash chains.

Notarization of 2 Reds

Notarization of 2 Blues & 1 Green

Notarization of 2 Reds

Forensic Strength
Components:

– Work of forensic analysis

– Region-area of CE

– Width of postdating / backdating uncertainty

Inverse Forensic Strength:

IFS(D , IN ,V) = (NumNotarizes(D , IN ,V) + ForensicAnalysis(D , IN ,V))

· RegionArea(IN ,V) · UncertaintyWidth(D , IN)

where
V = IV / IN is the validation factor and

D is the number of days before first validation failure.

• Monochromatic: O(V · D2 · IN)

• RGB: O(V · D · IN
2) We assume that D >> IN .

• Polychromatic: O((V + lg IN) · D)

Future Work

• Develop a stronger lower bound for this problem.

• Accommodate multi-locus and complex CEs.

• Differentiate postdating and backdating CEs.

• Implement forensic analysis in validator.

• Consider interaction between transaction-time storage
manager and underlying WORM storage.

Summary

• We have presented a means of performing forensic
analysis.

• We have introduced a graphical representation to
visualize CEs, termed the corruption diagram.

• We have designed three forensic algorithms.
– Monochromatic

– RGB

– Polychromatic

