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Introduction

The problem : How to systematically perform forensic analysis 

on a compromised database.

• Recent federal laws (HIPAA, Sarbanes-Oxley Act etc.) and incidents 
of corporate collusion mandate audit log security.

• Snodgrass et al. [VLDB04] showed how to detect database tampering. 

Approach: Hash using a cryptographically strong hash function, 
notarize data manipulated by transactions and periodically validate.

• Forensic analysis to ascertain:
– When the intrusion transpired

– What data was altered

– Who the intruder is 

– Why has this transpired



Outline
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Tamper Detection

Two phases:

• Normal Processing

• Validation

The validation result is a single bit.
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The Corruption Diagram
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Forensic Analysis

• If a corruption is detected, the forensic analyzer springs 

into action.

• The analyzer tries to ascertain a corruption region: the 

bounds on the uncertainty of the “where” and “when” of 

the corruption.



Monochromatic Algorithm
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Monochromatic Algorithm

• Central insight: data can be rehashed by validator and 

checked.

• Corruption region bounds: IV IN

– Area is solely dependent on the two intervals.

• Cannot handle CEs involving timestamp corruption.
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The RGB Forensic Algorithm
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The RGB Forensic Algorithm

• Introduction of RGB partial hash chains: 
– Allows the bounding of both tl and tp

– Incurs extra NS cost 

• Each of two corruption regions bounds: IV IN

• We would like to reduce the area of the corruption 
regions.
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The Polychromatic Algorithm 
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Forensic Strength
Components: 

– Work of forensic analysis

– Region-area of CE

– Width of postdating / backdating uncertainty 

Inverse Forensic Strength:

IFS( D , IN ,V ) = ( NumNotarizes( D , IN ,V ) + ForensicAnalysis( D , IN ,V ) )     

· RegionArea( IN ,V ) · UncertaintyWidth( D , IN )

where 
V = IV / IN is the validation factor and

D is the number of days before first validation failure.

• Monochromatic: O( V · D2 · IN )

• RGB: O( V · D · IN
2 ) We assume that D >> IN .

• Polychromatic: O( ( V + lg IN ) · D )



Future Work 

• Develop a stronger lower bound for this problem.

• Accommodate multi-locus and complex CEs.

• Differentiate postdating and backdating CEs.

• Implement forensic analysis in validator.

• Consider interaction between transaction-time storage 
manager and underlying WORM storage.



Summary

• We have presented a means of performing forensic 
analysis.

• We have introduced a graphical representation to 
visualize CEs, termed the corruption diagram.

• We have designed three forensic algorithms. 
– Monochromatic

– RGB

– Polychromatic


