
APPENDIX

This appendix includes the proofs of all the
theorems and lemmata mentioned in the paper, in
Sections A through E. Section F is comprised of the
proofs of correctness for all the functions introduced
in the paper. A worked example of the candidate set
generation for the target t = 1010 can be found in
Section G.

A. Proof of Lemma 1

Lemma 1: Ct,k = Ct,2 if l ≥ z(t) > 0 and
2 ≤ k ≤ 2z(t). In other words, the candidate set
remains invariant given that the stated conditions
are met.

Proof:
First we show that Ct,k ⊆ Ct,2. Let
ANDk((b1, b2, . . . , bk)) = t for some t. Then
b1, b2, . . . , bk ∈ Ct,k. Also, b1, b2, . . . , bk ≥ t
because t = min{Ct,k}. Consider the following
2-tuples: (b1, t), (b2, t), . . ., (bk, t). If we apply the
AND2 function to each 2-tuple the result is t, due
to the minimality of t which masks all other binary
numbers in Ct,k . Thus, all of b1, b2, . . . , bk ∈ Ct,2.

Conversely, we show that Ct,k ⊇ Ct,2. Given
a series of 2-tuples (b1, b2), (b3, b4), . . ., (bk−1, bk)
which are pre-images of t under the function AND2,
and therefore b1, b2, . . . , bk ∈ Ct,2, we can create
the following k-tuple (b1, b2, . . . , bk) which is a pre-
image of t under the ANDk function. The reason
for this is because bitwise AND ing is an associative
operation. Thus b1, b2, . . . , bk ∈ Ct,k. Therefore we
have proved that Ct,k = Ct,2.

B. Proof of Theorem 1

Theorem 1:

Ct,k =

⎧⎪⎪⎨
⎪⎪⎩

{t} , k = 1 (1)
∅ , z(t) = 0 ∧ k > 1 (2)
Ct,2 	= ∅ , l ≥ z(t) > 0 ∧ 2 ≤ k ≤ 2z(t) (3)
∅ , l ≥ z(t) > 0 ∧ k > 2z(t) (4)

Proof:
Case (1): k = 1

We want to find the binary numbers that map to t.
In this case k = 1, i.e., the pre-image is unique and
not ANDed with another number to produce t. The
function is essentially the identity function so the
candidate set is Ct,1 = {t}.

Case (2): z(t) = 0, k > 1
Since z(t) = 0 the target binary number is
t = 111 · · ·1, i.e., a binary string of only ‘1’s.
We require that k (at least 2) binary numbers
are ANDed in order to produce t. Suppose these
numbers exist. Also, the formulation of the problem
requires that they are all distinct. Then at least one
of them will have a ‘0’ as a digit because 111 · · ·1
is the only number of length l with no zeros. But
this implies that their image under the AND function
will also have at least one ‘0’ digit which contra-
dicts the fact that the target binary number t has
z(t) = 0. Therefore, no such k numbers can exist.
Thus C11···1,k = ∅ for k > 1.

Cases (3) and (4) are closely related.
Case (3) l ≥ z(t) > 0 ∧ 2 ≤ k ≤ 2z(t):

Lemma 1 provides this case.
Case (4) l ≥ z(t) > 0 ∧ k > 2z(t):

Here the target binary number has at least one
‘0’ and we require at least two binary numbers
to be ANDed in order to produce t. Only binary
numbers which have at least as many ‘1’s, and at
the same positions, as the target string can achieve
this. Thus the positions of the ‘1’s are fixed and only
the positions with zeros in t can have variations,
i.e., 1 or 0. This explains why the cardinality of
the candidate set is 2z(t): there are z(t) positions
(the number of zeros) and each can independently
take two values. If k exceeds the cardinality of
|Ct,2| = 2z(t) then we are trying to find k-tuples
which have a greater number of components than
the total number of distinct binary numbers in
Ct,2. This would force repetition in the components
and this by definition is prohibited. Thus no such
k-tuples can exist and Ct,2 will be empty.

The proof reveals a very simple characteriza-
tion for the candidate sets. A candidate set, in
essence, comprises all the binary numbers which
have ‘1’s at the same positions as the target t
and have at least as many total number ‘1’s as t.
Starting with our example target string t = 1010,
all the elements in C1010,2 will have the form
1 1 where could be 1 or 0. More specifically,
C1010,2 = {1010, 1011, 1110, 1111}. This explains
why a binary string of all ‘1’s, denoted by 11 · · ·1,
appears in all the candidate sets Ct,2 (except its
own, i.e., C11···1,2), whereas, a binary string of all
‘0’s, denoted by 00 · · ·0, appears only in its own
candidate set. (See also the discussion at the end of
Section III for more intuition on this.)

1

The proof also implies that the target binary num-
ber will always be an element of its own candidate
set, and actually the smallest such element, i.e.,
t = min{Ct,k}. Other elements will have one or
more ‘1’s in positions that have ‘0’s in t, and thus
will be larger than t. This puts a lower bound of
Ω(2z(t)) on the creation of a specific candidate set.
This is because one must spend 2z(t) time to create
all of the 2z(t) combinations.

C. Proof of Lemma 2

Lemma 2: For k = 2, the candidate sets of all
the binary numbers of length l are unique.

Proof:
Case (1): We have Ct,2 and Ct′,2 with t 	= t′,

|t| = |t′|, and z(t′) 	= z(t) where z(t) and z(t′) are
the number of zeros of targets t and t′ respectively.
Assume without loss of generality that z(t) > z(t′).
Then, since both numbers have the same length
there exists at least one position in t where t has
a ‘0’ and t′ has a ‘1’. Since t′ has a ‘1’ at that
position then all the numbers in its candidate set
will have a ‘1’ at that same position. This is not
the case with the numbers in Ct,k since they can
have either a ‘0’ or a ‘1’ at that position. Therefore
Ct,2 	= Ct′,2.

Case (2): We have Ct,2 and Ct′,2 with t 	= t′ and
both t′ and t have the same number of zeros z(t).
This implies they also have the same number of ‘1’s
since they both have the same length. However, for
the two numbers to be different, there must exist at
least one position in t where t has a ‘0’ and t′ has a
‘1’. Using the same argument as before this implies
that Ct′,2 	= Ct,2.

Given this lemma, for k = 2, there are 2l can-
didate sets of the binary numbers of fixed length l,
i.e., |Sl,2| = 2l.

D. Proof of Theorem 2

Theorem 2: Assume y = p • t = {0, 1}xt,
0 < x < l, 0 ≤ z(t) ≤ l − x and q = 2z(t). Then:

l−xAt,k =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

N/A, k > 2l−x (1)
[t] , k = 1 (2)
∅ , z(t) = 0 ∧ 1 < k ≤ 2l−x (3)⋃

0≤i<q[Suffixx(lAy,2[i])],
l − x ≥ z(t) > 0 ∧ 2 ≤ k ≤ q (4)

∅ , l − x ≥ z(t) > 0 ∧ k > q (5)

Proof:
Case (1):

The candidate set is not defined when we try to
deduce a candidate set for a binary number of length
l − x given that the (original) k is greater than the
total number of possible numbers that can be created
using l − x digits, i.e., 2l−x. This is true since as
discussed at the beginning of the paper this would
force repetition of a binary number.

Case (2), Case (3) and Case (5):
These follow directly from the proof of Theorem 1.

Case (4):
It is worth elucidating here the nature of the number
q. This number can be thought of as the cardinality
of the candidate set of the suffix t: q = 2z(t) accord-
ing to Corollary 1. It can alternatively be defined as
q = (1/2z(p)) · |lCy,2|, that is, it is the cardinality
of the candidate set of the original target y scaled
down by a power of 2. This power of 2 is given by
the number of zeros present in the truncated prefix
p. Regarding q in this respect is consistent with the
its initial assumption as q = 2z(t). This is true since
y = {0, 1}xt ⇒ z(y) = z(p) + z(t), which in turn
implies that q = (1/2z(p)) · |lCy,2| = 2z(y)/2z(p) =
2z(t).

We prove case (4) by induction on x. Define
proposition:
P (x) : l−xAt,k =

⋃
0≤i<q[Suffixx(lAy,2[i])] for

(l − x ≥ z(t) > 0) ∧ (2 ≤ k ≤ 2z(t)) and q = 2z(t).
Basis of induction: Prove P (1) is true.

Let x = 1. Here the prefix p is a single
bit. We have that q = (1/2z({0,1})) · |lCy,2| =
2z(t), y = {0, 1} • t and we want to prove
that l−1At,k =

⋃
0≤i<q[Suffix1(lAy,2[i])]. Thus,

l−1At,k = [Suffix1(lAy,2[1]), Suffix1(lAy,2[2]), . . . ,
Suffix1(lAy,2[q])]. What P (1) essentially claims is
that the new candidate array l−xAt,k can be com-
puted by simply selecting the first q elements of
the candidate array lAy,k and removing the leftmost
digit from each such element selected.

Case (i) Assume that p = 0 (this corresponds
to the example, given in Section VII, of deriving
3A010,2 from 4A0010,2). With respect to this first
digit of the target binary string y we can divide
the elements of its candidate array into two groups:
those which have a ‘1’, and those which have a
‘0’ at that leftmost position. Due to the way these
elements are created, resulting in the elements of
the candidate array being sorted in increasing order,
the elements with a ‘1’ for a leftmost digit must all

2

l−(x+1)At′,k = (l−x)−1At′,k apply basis of induction

=
⋃

0≤i<q̂

[Suffix1(l−xA{0,1}t′,2[i])] where q̂ =
1

2z({0,1})
|l−xC{0,1}t′,2|

=
⋃

0≤i<q̂

[Suffix1(l−xA{0,1}t′,k[i])] candidate set is invariant when k ≤ 2z(t′)

=
⋃

0≤i<q̂

[Suffix1(l−xAt,k[i])] since {0, 1} • t′ = t

=
⋃

0≤i<q̂

[Suffix1(
(⋃

0≤j<q

[Suffixx(lAy,2[j])]
)
[i])] by inductive hypothesis

=
⋃

0≤i<q̂

[(
⋃

0≤j<q

[Suffix1(Suffixx(lAy,2[j])])[i])] the suffix and union operations commute

=
⋃

0≤i<q′

[Suffix1(Suffixx(lAy,2[i]))]

=
⋃

0≤i<q′

[Suffixx+1(lAy,2[i])]

Fig. 10. The inductive step of Theorem 2.

appear after those with a ‘0’ at the same position.
Depending upon its position, each digit encodes
the numbers in the range 2i−1 to 2i − 1 where i
(1 ≤ i ≤ l) is the position of the digit numbering
the string from right to left. So by removing the
leading ‘0’ from y results in a string t which
cannot encode any numbers in the range 2l−1 to
2l − 1. Thus the candidate array of l−1At,k will
have the same elements as the candidate array of
lAy,k = lAy,2 except for the numbers encoded
by the extra leading digit. But we know that each
additional ‘0’ introduced doubles (the position can
be filled by a ‘0’ or a ‘1’) the count of numbers that
can be encoded which implies removing a ‘0’ will
halve the count of numbers encoded: z(p) = 1 ⇒
z(t) = z(y) − 1 ⇒ |l−1Ct,k| = 2z(t) = 2z(y)−1 =
1
2
|lCy,k|. Thus the two groups of elements mentioned

in the beginning will be equinumerous: the elements
in the second half have essentially the same bit
pattern as the elements in the first half but with
a ‘1’ at the leftmost position instead of a ‘0’.
By removing the leftmost digit from each of the
elements in lAy,k, the first half will have a leading
‘0’ removed, something which will not change their
numerical value, while the second half which will
have a leading ‘1’ removed will produce identical
numbers of length l − 1 to the truncated numbers

in the first half. This is the reason why l−1At,k will
comprise the suffixes starting at position 1, of the
elements in the first half (i.e., (1/21) · |lCy,2| = q)
of the numbers in the array lAy,2.

Case (ii) Assume that p = 1 (this corresponds
to the example, given in Section VII, of deriving
3A010,2 from 4A1010,2). In this case the situation is
simpler since all the elements in lAy,k can only start
with a ‘1’. Since the number of zeros in t remains
unaltered (z(p) = 0 ⇒ z(y) = z(t)), this implies
that |l−1Ct,k| = |lCy,k|. Thus removing the leftmost
digit from all the elements of lAy,k will yield
directly the desired elements of the new candidate
set since each of the truncated elements will have
the same numerical value as their binary number
counterparts of length l with a ‘0’ at the leftmost
position. Again the new candidate array l−1At,k will
comprise the suffixes starting at position 1, of the q
(= (1/20) · |l−1Ct,k|) first elements (in this case all
of them) of lAy,k.

Inductive step: Prove that P (x) −→ P (x + 1)

We assume that l−xAt,k =
⋃

0≤i<q[Suffixx(lAy,2[i])],
where q = (1/2z(p)) · |lCy,2|, and y = p • t
= {0, 1}xt is true and seek to use this
inductive hypothesis to prove l−(x+1)At′,k =⋃

0≤i<q′[Suffixx+1(lAy,2[i])] where {0, 1}t′ = t ⇒
y = {0, 1}xt = {0, 1}x{0, 1}t′ = {0, 1}x+1t′,

3

and q′ = (1/2z(p)+z({0,1})) · |lCy,2|. The inductive
step is shown in Figure 10. By the first principle
of mathematical induction the initial proposition is
true.

E. Proof of Theorem 3

Candidate sets also exhibit the following fun-
damental property: they are related (specifically,
through set intersection) to the candidate sets of the
constituent binary numbers that combine (through
logical OR) to form the target.

Theorem 3: Let Ct,k , t ∈ B, and a1, a2, . . . , am ∈
B s.t.

∨m

j=1 aj = t for some m ≤ 2|t| and let also
2 ≤ k ≤ 2z(t). Then:

Ct,k = CWm
j=1

aj ,k =

m⋂
j=1

Caj ,k

Proof:
Forward direction =⇒:
Let ANDk((b1, b2, . . . , bk)) = t. This implies
b1, b2, . . . , bk ∈ Ct,k. We need to show that
b1, b2, . . . , bk ∈

⋂m

j=1 Caj ,k. By definition we know
that b1∧b2∧. . .∧bk = t. However, we are also given
that

∨m

j=1 aj = t. Thus,
∨m

j=1 aj = t =
∧k

i=1 bi.
Therefore, we must prove that for every bi (1 ≤
i ≤ k) there exists a series of k − 1 distinct binary
numbers (and different from bi), d1, d2, . . . , dk−1

such that bi ∧ d1 ∧ d2 ∧ . . . ∧ dk−1 = aj ⇒
bi, d1, d2, . . . , dk−1 ∈ Caj ,k for each aj, 1 ≤ j ≤ m.
In other words, each one of the bis must appear in
the pre-image of each one of the ajs.

We proceed to show how to produce all the
requisite bi, d1, . . . , dk−1 given a specific bi and aj

pair. Let x be the number of ‘1’s in the binary
number t, y be the number of ‘1’s in a specific
bi, and w the number of ‘1’s in a specific aj . Then
y ≥ x since bi must have at least the same number of
‘1’s, and at the same positions, as the target number
t. This is true for all bi since for a ‘1’ to appear at a
specific position in t then all the binary numbers bi,
which when ANDed produce t, must have a ‘1’ at
the same position. Likewise, x ≥ w since aj must
have at most the same number of ‘1’s as the target
number t. Again, this is true for all aj since for a
‘1’ to be preserved at a specific position in t at least
one of the aj must have a ‘1’ at that same position.
Using the observation above we begin with some
bi and pick d1 to be aj. This works because we
want a number d1 which has a zero at the same

positions as aj does, in order to mask any ‘1’s bi

has at those positions. d1 should also have a ‘1’
wherever aj does, so that the ‘1’is preserved after
the AND operation. Note that if aj has a ‘1’ at a
certain position we are guaranteed to have a ‘1’ at
the same position in bi because t will have a ‘1’ at
that position (as discussed previously). All the rest
of the k−2 binary numbers can be created from aj

and there are enough of them: 2z(aj) − 1 (the ‘−1’
is there because we are excluding aj itself) where
z(aj) is the number of zeros in aj . We are given
that k ≤ 2z(t) and since w + z(aj) = x + z(t) = l
and x ≥ w then z(t) ≤ z(aj). Thus, k − 2 < k ≤
2z(t) ≤ 2z(aj) ⇒ k − 2 ≤ 2z(aj) − 1. This implies
that each of the bi is an element of each of the Caj ,k

and therefore an element of their intersection. Thus,
CWm

j=1
aj ,k ⊆

⋂m

j=1 Caj ,k.
Backward direction ⇐=: Conversely, let

b ∈
⋂m

j=1 Caj ,k. Then (b ∈ Ca1,k) ∧ (b ∈
Ca2,k) ∧ . . . (b ∈ Cam,k). This implies that b has
a ‘1’ at the same positions as a1, b has a ‘1’ at
the same positions as a2 and so on until am. Thus
the fact that b belongs to all the candidate sets of
the ais, fixes the positions of the ‘1’s while the
remaining positions could be ‘0’ or ‘1’. Thus b
captures a certain set of numbers. Now, consider∨m

j=1 aj = t. We know that t, as a result of an OR
operation, will have a ‘1’ wherever at least one ai

has a ‘1’ at that position, and a ‘0’ wherever all
ais have a ‘0’ at that position. The candidate set of
target t comprises all the numbers which have a ‘1’
at the same position as t and at least as many ‘1’s
as t, i.e., wherever t has a ‘0’ the pre-images can
have a ‘0’ or a ‘1’. But this is exactly the same set
of numbers captured by b so b ∈ Ct,k. Therefore,
CWm

j=1
aj ,k ⊇

⋂m

j=1 Caj ,k.
This lemma provides a pleasing symmetry be-

tween the logical AND in the definition of the
candidate set and the logical OR used above to form
the target.

F. Proofs of Correctness

In this section we provide proofs of correctness
for the various algorithms proposed. To make this
easier, Figure 11 shows the dependency graph be-
tween the functions implementing the Tiled Bitmap
Algorithm. A directed edge from node A to node B
is interpreted as “function A (may) call(s) function
B.” We will provide the proofs by considering the
functions in a bottom-up fashion.

4

candidateSetSuffix

Tiled_Bitmap

candidateSet candidateSetCached

createRightmost generate funkySort

Fig. 11. The dependency graph of the functions implementing the
Tiled Bitmap Algorithm.

Lemma 3: The createRightmost function (Fig-
ure 4), given a binary target t of length l creates
an array named rightmost of size l + 1. An element
rightmost[p] (0 ≤ p ≤ l) is the index of the
rightmost zero in t to the left of index p (in t),
non-inclusive. If such an index does not exist or is
not defined, then rightmost[p] = −1.

Proof: At position p we need to know the
position of the rightmost zero to the left of p.
Hence, we scan the target from left to right and
mark in rightmost[p] (where p = l − i − 1) the
index j at which we observed the latest zero. The
use of the flag variable is required because we
need to remember in the next iteration what digit
we saw in the current iteration (lines 8–9). If we
saw a zero (line 7) the value of j is updated and
stored in rightmost[p]; otherwise the previous value
is used (line 10). Note that on line 8 during the
iteration for which i = −1, the left shift amount in
the conditional becomes negative (i.e., the value is
shifted to the right). This does not affect correctness
since this is the last iteration.

Lemma 4: The generate function (Figure 5),
given a binary target t and a position of one of
the 0s in t, enumerates Ct,k, that is, all 2z binary
numbers derived from t.

Proof: For an arbitrary p and t the function
creates two subsets of Ct,k. The first subset is
created by the recursive call on line 4 and comprises
all the elements which have t[p] = 0 and for all
digits to the left of t[p]: if the digit of t is 1 it stays
as 1 in the enumeration, and if the digit is 0 it is
either 0 or 1 in the enumeration. These two cases
correspond to lines 4 and 5 in the recursive call.

The second subset is created by the recursive call
on line 5 and comprises all the elements which have

t[p] = 1 and for all digits to the left of t[p]: if the
digit of t is 1 it stays as 1 in the enumeration, and if
the digit is 0 it is either 0 or 1 in the enumeration.

Lemma 5: The funkySort function (Figure 6),
given Ct,k resulting from the generate function,
returns the array sorted in ascending order.

Proof: The sort is “funky” because it is
linear and is based on the particular way generate()
enumerates the elements of Ct,k. As discussed in
Section VI this function first computes an array of
indices (lines 8–13), which requires linear time, and
then simply scans the indices array to arrive at the
sorted Ct,k, also requiring linear time.

Lemma 6: The candidateSetSuffix function (Fig-
ure 8), given a candidate set Cy,k and the index
tstart at which the suffix t starts in y, computes the
candidate set Ct,k.

Proof: The candidateSetSuffix algorithm is a
direct translation of Theorem 2 into code. Line 8 of
the function corresponds to case (1) of the theorem.
Line 9 corresponds to case (2), line 10 to cases
(3) and (5), and finally, lines 11–13 correspond to
case (4). The mathematical proof of the theorem’s
correctness can be found in Appendix D.

Lemma 7: The candidateSet function (Figure 3),
given a target number t, computes Ct,k in ascending
order.

Proof: The first part of the function is a direct
translation of Theorem 1 into code. Line 8 of the
code is correct by definition of the Cartesian product
in Section V. Line 9 of the code corresponds to case
(1) of the theorem. Lines 10–11 correspond to cases
(2) and (4), and lines 12–15 correspond to case (3).
The mathematical proof of the theorem’s correctness
can be found in Appendix B.

The correctness of createRightmost is established
in Lemma 3. The correctness of generate is guaran-
teed by calling the function with rightmost[l] and by
Lemma 4. The function funkySort guarantees that
Ct,k is sorted by Lemma 5. Given the correctness of
the algorithms this function depends on, calling the
functions createRightmost, generate, and funkySort
(lines 13, 14, 15), in that sequence, candidateSet
yields the desired result.

Lemma 8: The candidateSetCached function
(Figure 7), given a target number t and a cache
that was previously computed on line 16 of the

5

createRightmost

=sorted 10 11 14 15

Ct,2 [0] Ct,2 [2] Ct,2 [1] Ct,2 [3]sorted =

p = 3

p = 1

p = −1

Ct,2

=t

3210

=t

43210

−1−1 1 1 3=rightmost

iterate
= 20 1 3indices

iterate

=t

0 1 2 3

Z = 0 0 21

iterate

=t 1010

1 10 0
0 1 2 3

z

candidateSet

Tiled_Bitmap

generate funkySort

1010 1011 11111110

1010

10111010

= 10 14 11 15

1 10 0
1 3

Fig. 12. Example of generation of the non-trivial candidate set for target t = 1010 with no cache available.

candidateSet function (Section VII), returns the
candidate set Ct,k either computed anew or derived
from Cy,k.

Proof: In this function we assume that the
start of the suffix can be computed correctly by
findSuffix (not given). If the suffix exists then tstart

will be greater or equal to 0 so the only task left
is to decide (depending on the k associated with
the cache) whether to call the candidateSetSuffix or
the candidateSet function. Given that the two func-
tions are correct by Lemmata 6 and 7, respectively,
candidateSetCached yields the desired result.

Theorem 4: The Tiled Bitmap function (Fig-
ure 2), given a time of first validation failure, returns
the set of possible corrupted granules.

Proof: The function iterates through all tiles
(line 4) and checks each tile ending at time τ if it
is corrupted or not (line 5). If it is, Tiled Bitmap
either calls candidateSet (line 9, Figure 2) or can-
didateSetCached (replacement line 9, Section VII)
so that the candidate set is generated. Once the

candidate set (Ctemp) is correctly computed, the
granules are renumbered to reflect their global po-
sition (line 11).

G. Example of Candidate Set Generation

This section describes the creation of the candi-
date set for the specific target t = 1010, illustrated
in Figure 12. We assume here the candidate set
needs to be created from scratch, i.e., we are not
dealing with a trivial case and a cache does not
exist. The rectangles in the figure denote functions
whose name appears above the box. The solid-
tipped arrows in the figure denote function calls
while the open-tipped arrows denote a correspon-
dence between numbers or the direction of iteration.

Initially, the target t = 1010 is constructed by
the Tiled Bitmap function and then is passed to
candidateSet. Within candidateSet the Z array is
created (lines 5–7 of Figure 3) by inspecting the bits
in the target from left to right and marking at each
position in Z how many 0s have been encountered
thus far. At index 0 the value in Z is 0 because at

6

the same index 0 in t the bit is not 0 but 1. On the
other hand, at index 1 the value in Z is 1 because
at index 1 in t the bit is 0. For this reason, the last
element in Z is equal to the number of zeros in t
and this count (in this case, 2) is stored in variable z.

The value in z is used throughout the generation
of the candidate set (as witnessed in the pseu-
docode). However, the Z array itself is only used in
the candidate set generation algorithm employing
a cache and therefore will not be discussed from
here on.

The createRightmost function is called by candi-
dateSet in order to construct the rightmost array. The
function iterates from right to left checking again for
zeros and remembering at the current iteration/index
i the bit value in the previous index i−1 (during the
previous iteration). The index of the most recently
encountered zero is stored in the current rightmost
index. This is because, rightmost[i] gives the index
of the rightmost zero to the left of index i, non-
inclusive. The value -1 is stored if such an index
is not defined. Thus, in our example rightmost[0] =
−1 because at t[0] there aren’t any bits to the left
of it and hence the index of the rightmost 0 is not
defined. Similarly, rightmost[1] = −1 because at the
same index/bit position 1 in t the only number to
the left of t[1] is the 1 at t[0]; hence no rightmost
zero is defined. On the other hand, at index 2 in t
a rightmost zero to the left of t[2] is defined, viz.,
it is the zero at index 1, t[1] = 0. Hence the index
1 at which the zero appears in is stored at index 2
in the rightmost array. Note that in order to avoid
failing to register the index of the last zero (i.e., 3)
the iteration has to go one step beyond the last bit
of t.

Using the rightmost array and the target t the
candidateSet function calls the recursive function
generate. In Figure 12 the rectangular box of the
generate function shows the results of the recursive
calls in the form of a binary tree. At each level in
the tree the index p of the zero under consideration
is given to the left of the tree and at the same time
marked over the position of the binary number with
a solid black dot. Recall that at each recursive call
the new index p′ is the value stored at rightmost[p].
The terminating condition is satisfied when the
index p is not defined, i.e., p = −1. The leaves
of the binary tree are the elements of the candidate
set which are shown in decimal form in the Ct,2

array. Clearly the elements are not enumerated in

sorted order.
For this reason, candidateSet calls the function

funkySort. The funkySort function first creates an
array (indices) by staring from 0 and adding succes-
sively decreasing powers of 2 (starting from 2z−1)
to the results of the addition just produced (see
also Section VI). The elements of the indices array
when used to index into Ct,2 produce in the sorted
array the sorted elements of the candidate set. In
our example, the indices array is constructed by
starting with 0 then adding 2z−1 = 21 = 2 to 0
to get 2. Then adding 20 to 0 and 2 in order to
create the indices 1 and 3. Then iterating through
indices from left to right and using the values 0, 2,
1, 3 to index into Ct,2 accomplishes the sorting in
sorted= {10, 11, 14, 15}. This works because of the
particular way the generate function enumerates the
candidate set elements.

7

