# Tutte Embedding: How to Draw a Graph

Kyri Pavlou

Math 543 Fall 2008

THE UNIVERSITY OF ARIZONA.

#### Outline

- Problem definition & Background
- Barycentric coordinates & Definitions
- Tutte embedding motivation
- Barycentric Map Construction
  - Worked example
  - The linear system
- Drawbacks

# **Problem Definition**

Graph Drawing:
 Given a graph G = (V, E) we seek an injective map (embedding)

 $f: V(G) \longrightarrow Space$ 

such that G's connectivity is preserved.

For this discussion:

- Space is  $\mathbb{R}^2$ .
- Edges are straight line segments.

# Background

- Early graph drawing algorithms:
  - P. Eades (1984)
  - T. Kamada & S. Kawai (1988)
  - T. Fruchterman & E. Reingold (1991)
- These algorithms are force-directed methods. (a.k.a. spring embedders)
  - Vertices: steel rings
  - Edges: springs
  - Attractive/repulsive forces exist between vertices.
  - System reaches equilibrium at minimum energy.

# **Background: Tutte Embedding**

- William Thomas Tutte (May 14, 1917 – May 2, 2002) was a British, later Canadian, mathematician and codebreaker.
- Tutte devised the first known algorithmic treatment (1963) for producing drawings for 3-connected planar graphs.



William T. Tutte.

- Tutte constructed an embedding using barycentric mappings.
- The result is guaranteed to be a plane drawing of the graph.

# Outline

- Problem definition & Background
- Barycentric coordinates & Definitions
- Tutte embedding motivation
- Barycentric Map Construction
  - Worked example
  - The linear system
- Drawbacks

#### **Overview of barycentric coordinates**

- Special kind of local coordinates
- Express location of point w.r.t. a given triangle.
- Developed by Möbius in the 19<sup>th</sup> century.
- Wachspress extended them to arbitrary convex polygons (1975).
- Introduced to computer graphics by Alfeld et al. (1996)

#### Why barycentric?



- $v_G$  is the point where the medians are concurrent.
- $v_G$  is called the barycenter or centroid and in physics it represents the center of mass.
- If  $v_G, v_1, v_2, v_3 \in \mathbb{R}^2$  then  $v_G$  can be easily calculated as:

$$v_G = \frac{1}{3} \cdot (v_1 + v_2 + v_3)$$

We want to extend this so that we can express every point  $\mathbf{v}$  in terms of the vertices of a polygon  $v_1, v_2, \ldots, v_k$ 

#### **Convex Combinations**

• If P is a polygon with vertices  $v_1, v_2, \ldots, v_k \in \mathbb{R}^2$  then we wish to find coordinates  $\lambda_1, \lambda_2, \ldots, \lambda_k \in \mathbb{R}$  such that for  $v_0 \in ker(P)$ 

$$\sum_{i=1}^k \lambda_i v_i = v_0$$

• Note that if  $\forall i \ \lambda_i > 0$  then  $v_0$  lies inside the convex hull.



# **Useful definitions**

• We say that a representation of *G* is barycentric relative to a subset *J* of *V*(*G*) if for each *v* not in *J* the coordinates *f*(*v*) constitute the barycenter of the images of the neighbors of *v*.

where  $f: V(G) \to \mathbb{R}^2$ 

k-connected graph: If G is connected and not a complete graph, its vertex connectivity κ(G) is the size of the smallest separating set in G. We say that G is k-connected if κ(G) ≥ k.

e.g. The minimum cardinality of the separating set of a 3-connected graph is 3.

# Useful definitions(2)

- Given  $H \leq_S G$ , define relation ~ on E(G)-E(H):  $e \sim e_0$  if  $\exists$  walk w starting with e, ending with  $e_0$ , s.t. no internal vertex of w is in H.
- Bridge: a subgraph *B* of G-E(H) if it is induced by ~.
- A peripheral polygon: A polygonal face P of G is called peripheral if P has at most 1 bridge in G.



## Outline

- Problem definition & Background
- Barycentric coordinates & Definitions
- Tutte embedding motivation
- Barycentric Map Construction
  - Worked example
  - The linear system
- Drawbacks

## Tutte embedding motivation

- The idea is that if we can identify a peripheral *P* then its bridge *B* (if is exists) always avoids "all other bridges"... (True—there aren't any others!)
- This means the bridge is transferable to the interior region and hence *P* can act as the fixed external boundary of the drawing.
- All that remains then is the placement of the vertices in the interior.

# Tutte embedding motivation(2)

- **Theorem**: If *M* is a planar mesh of a nodally 3-connected graph *G* then each member of *M* is peripheral.
- In other words, Tutte proved that any face of a 3-connected planar graph is a peripheral polygon.



• This implies that when creating the embedding we can pick any face and make it the outer face (convex hull) of the drawing.

THE UNIVERSITY OF ARIZONA.

## Outline

- Problem definition & Background
- Barycentric coordinates & Definitions
- Tutte embedding motivation
- Barycentric Map Construction
  - Worked example
  - The linear system
- Drawbacks

#### Barycentric mapping construction

- Steps:
  - 1. Let *J* be a peripheral polygon of a 3-connected graph *G* with no Kuratowski subgraphs ( $K_{3,3}$  and  $K_5$ ).
  - 2. We denote the set of nodes of *G* in *J* by V(J), and |V(J)| = n. Suppose there are at least 3 nodes of *G* in the vertex set of *J*.
  - 3. Let *Q* be a geometrical *n*-sided convex polygon in Euclidean plane.
  - 4. Let *f* be a 1-1 mapping of *V*(*J*) onto the set of vertices of *Q* s.t. the cyclic order of nodes in *J* agrees, under *f*, with the cyclic order of vertices of *Q*.
  - 5. We write m = |V(G)| and enumerate the vertices of *G* as  $v_1$ ,  $v_2$ ,  $v_3$ , ...,  $v_m$  so the first *n* are the nodes of *G* in *J*.
  - 6. We extend *f* to the other vertices of *G* by the following rule. If  $n < i \le m$  let N(i) be the set of all vertices of *G* adjacent to  $v_i$

#### Barycentric mapping construction(2)

- 6. For each  $v_i$  in N(i) let a unit mass  $m_j$  to be placed at the point  $f(v_i)$ . Then  $f(v_i)$  is required to be the centroid of the masses  $m_j$ .
- 7. To investigate this requirement set up a system of Cartesian coordinates, denoting the coordinates of  $f(v_i)$ ,  $1 \le i \le m$ , by  $(v_{ix}, v_{iy})$ .
- 8. Define a matrix  $K(G) = \{C_{ij}\}, 1 \le (i,j) \le m$ , as follows.
  - If  $i \neq j$  then  $C_{ij}$  = -(number of edges joining  $v_i$  and  $v_j$ )
  - If i = j then  $C_{ij} = deg(v_i)$
- 9. Then the barycentric requirement specifies coordinates  $v_{ix}$ ,  $v_{iy}$  for  $n < j \le m$  as the solutions to the two linear systems

$$\sum_{j=1}^{m} C_{ij} v_{ix} = 0 \qquad \sum_{j=1}^{m} C_{ij} v_{iy} = 0$$

where  $n < i \le m$ . For  $1 \le j \le n$  the coordinates are already known.

#### Example

*G*:



*G* is 3-connected with unique cut set  $\{v_2, v_3, v_4\}$ 

Consider the peripheral cycle *J*,  $V(J) = \{v_1, v_2, v_3\}$ 

## Example<sub>(2)</sub>

• 
$$V(J) = \{v_1, v_2, v_3\}$$

- $N(4) = \{v_1, v_2, v_3, v_5\}$
- $N(5) = \{v_2, v_3, v_4\}$

• 
$$K(G) = \begin{pmatrix} 3 & -1 & -1 & -1 & 0 \\ -1 & 4 & -1 & -1 & -1 \\ -1 & -1 & 4 & -1 & -1 \\ -1 & -1 & -1 & 4 & -1 \\ 0 & -1 & -1 & -1 & 3 \end{pmatrix}$$



• Form the 2 linear systems for i = 4, 5.

#### Example<sub>(3)</sub>

• The linear systems

$$C_{41}v_{1x} + C_{42}v_{2x} + C_{43}v_{3x} + C_{44}v_{4x} + C_{45}v_{5x} = 0 \longrightarrow 4v_{4x} - 7 = v_{5x}$$
  

$$C_{51}v_{1x} + C_{52}v_{2x} + C_{53}v_{3x} + C_{54}v_{4x} + C_{55}v_{5x} = 0 \longrightarrow -v_{4x} + 3v_{5x} = 4$$

$$C_{41}v_{1y} + C_{42}v_{2y} + C_{43}v_{3y} + C_{44}v_{4y} + C_{45}v_{5y} = 0 \longrightarrow \qquad 4v_{4y} - v_{5y} = 10$$
  
$$C_{51}v_{1y} + C_{52}v_{2y} + C_{53}v_{3y} + C_{54}v_{4y} + C_{55}v_{5y} = 0 \longrightarrow \qquad -v_{4y} + 3v_{5y} = 4$$

Solutions

 $v_4(25/11, 34/11)$   $v_5(23/11, 26/11)$ 

#### **Example: Tutte embedding**



THE UNIVERSITY OF ARIZONA.

# The linear system

- Is the linear system always consistent?
- Yes, it is!
- Proof:
  - Recall matrix K(G). It was defined as  $K(G) = \{C_{ij}\}, 1 \le (i,j) \le m$ . - If  $i \ne j$  then  $C_{ij} = -($ number of edges joining  $v_i$  and  $v_j$ ) - If i = j then  $C_{ii} = deg(v_i)$
  - Observe that this means we can write K(G) as K(G) = -A+D
    - where A is the adjacency matrix of G and
    - *D* is diagonal matrix of vertex degrees.
  - But that's the Laplacian of G! i.e., K = -L.

# The linear system(2)

- Let  $K_1$  be the matrix obtained from K(G) by striking out the first n rows and columns.



- Let  $G_0$  be the graph obtained from G by contracting all the edges of J while maintaining the degrees.



#### The linear system(3)

For a suitable enumeration of  $V(G_0)$ ,  $K_1$  is obtained from  $K(G_0)$  by striking out the first row and column.

$$-L(G_0) = K(G_0) = \begin{pmatrix} 5 & -3 & -2 \\ -3 & 4 & -1 \\ -2 & -1 & 3 \end{pmatrix} \qquad G_0: \quad v_{123} \qquad \qquad v_4$$

That is,  $K_1 = -\hat{L}_{11}$ . But then the  $det(K_1) = det(-\hat{L}_{11}) = t(G)$  is the number of spanning trees of  $G_0$ .

$$det(\hat{-L}_{11}) = \begin{vmatrix} 4 & -1 \\ -1 & 3 \end{vmatrix} = 11$$

# The linear system(4)

- The number t(G) is non-zero since  $G_0$  is connected.
  - Edge contraction preserves connectedness.

- This implies that  $det(K_1) \neq 0$  and the hence the linear systems always have a unique solution.

# Outline

- Problem definition & Background
- Barycentric coordinates & Definitions
- Tutte embedding motivation
- Barycentric Map Construction
   Worked example
  - Worked example
  - The linear system
- Drawbacks

## **Drawbacks of Tutte Embedding**

Only applies to 3-connected planar graphs.

Works only for small graphs (|V| < 100).

The resulting drawing is not always "aesthetically pleasing."



THE UNIVERSITY OF ARIZONA.

 Alen Orbanić, Tomaž Pisanski, Marko Boben, and Ante Graovac.
 "Drawing methods for 3-connected planar graphs." Math/Chem/Comp 2002, Croatia 2002.

• William T. Tutte. "How to draw a graph." *Proc. London Math. Society*, 13(52):743–768, 1963.

Thank you! Questions?