Tutte Embedding: How to Draw a Graph

Kyri Pavlou

Math 543 Fall 2008

Outline

- Problem definition \& Background
- Barycentric coordinates \& Definitions
- Tutte embedding motivation
- Barycentric Map Construction
- Worked example
- The linear system
- Drawbacks

Problem Definition

- Graph Drawing:

Given a graph $G=(V, E)$ we seek an injective map (embedding)

$$
f: V(G) \longrightarrow \text { Space }
$$

such that G 's connectivity is preserved.

For this discussion:

- Space is \mathbb{R}^{2}.
- Edges are straight line segments.

Background

- Early graph drawing algorithms:
- P. Eades (1984)
- T. Kamada \& S. Kawai (1988)
- T. Fruchterman \& E. Reingold (1991)
- These algorithms are force-directed methods. (a.k.a. spring embedders)
- Vertices: steel rings
- Edges: springs
- Attractive/repulsive forces exist between vertices.
- System reaches equilibrium at minimum energy.

Background: Tutte Embedding

- William Thomas Tutte (May 14, 1917 - May 2, 2002) was a British, later Canadian, mathematician and codebreaker.
- Tutte devised the first known algorithmic treatment (1963) for producing drawings for 3-connected planar graphs.

William T. Tutte.

- Tutte constructed an embedding using barycentric mappings.
- The result is guaranteed to be a plane drawing of the graph.

Outline

- Problem definition \& Background
- Barycentric coordinates \& Definitions
- Tutte embedding motivation
- Barycentric Map Construction
- Worked example
- The linear system
- Drawbacks

Overview of barycentric coordinates

- Special kind of local coordinates
- Express location of point w.r.t. a given triangle.
- Developed by Möbius in the $19^{\text {th }}$ century.
- Wachspress extended them to arbitrary convex polygons (1975).
- Introduced to computer graphics by Alfeld et al. (1996)

Why barycentric?

- v_{G} is the point where the medians are concurrent.
- v_{G} is called the barycenter or centroid and in physics it represents the center of mass.
- If $v_{G}, v_{1}, v_{2}, v_{3} \in \mathbb{R}^{2}$ then v_{G} can be easily calculated as:

$$
v_{G}=\frac{1}{3} \cdot\left(v_{1}+v_{2}+v_{3}\right)
$$

- We want to extend this so that we can express every point \mathbf{V} in terms of the vertices of a polygon $v_{1}, v_{2}, \ldots, v_{k}$.

Convex Combinations

- If P is a polygon with vertices $v_{1}, v_{2}, \ldots, v_{k} \in \mathbb{R}^{2}$ then we wish to find coordinates $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k} \in \mathbb{R}$ such that for $v_{0} \in \operatorname{ker}(P)$

$$
\sum_{i=1}^{k} \lambda_{i} v_{i}=v_{0}
$$

- Note that if $\forall i \lambda_{i}>0$ then v_{0} lies inside the convex hull.

Useful definitions

- We say that a representation of G is barycentric relative to a subset J of $V(G)$ if for each v not in J the coordinates $f(v)$ constitute the barycenter of the images of the neighbors of v.

$$
\text { where } f: V(G) \rightarrow \mathbb{R}^{2}
$$

- k-connected graph: If G is connected and not a complete graph, its vertex connectivity $\kappa(G)$ is the size of the smallest separating set in G. We say that G is k -connected if $\kappa(G) \geq \mathrm{k}$.
e.g. The minimum cardinality of the separating set of a 3 -connected graph is 3 .

Useful definitions ${ }_{(2)}$

- Given $H \leq_{S} G$, define relation \sim on $E(G)-E(H)$: $e \sim e_{0}$ if \exists walk w starting with e, ending with e_{0}, s.t. no internal vertex of w is in H.
- Bridge: a subgraph B of $G-E(H)$ if it is induced by ~.
- A peripheral polygon: A polygonal face P of G is called peripheral if P has at most 1 bridge in G.

Outline

- Problem definition \& Background
- Barycentric coordinates \& Definitions
- Tutte embedding motivation
- Barycentric Map Construction
- Worked example
- The linear system
- Drawbacks

Tutte embedding motivation

- The idea is that if we can identify a peripheral P then its bridge B (if is exists) always avoids "all other bridges"... (True-there aren't any others!)
- This means the bridge is transferable to the interior region and hence P can act as the fixed external boundary of the drawing.
- All that remains then is the placement of the vertices in the interior.

Tutte embedding motivation (2)

- Theorem: If M is a planar mesh of a nodally 3-connected graph G then each member of M is peripheral.
- In other words, Tutte proved that any face of a 3-connected planar graph is a peripheral polygon.

- This implies that when creating the embedding we can pick any face and make it the outer face (convex hull) of the drawing.

Outline

- Problem definition \& Background
- Barycentric coordinates \& Definitions
- Tutte embedding motivation
- Barycentric Map Construction
- Worked example
- The linear system
- Drawbacks

Barycentric mapping construction

- Steps:

1. Let J be a peripheral polygon of a 3-connected graph G with no Kuratowski subgraphs ($K_{3,3}$ and K_{5}).
2. We denote the set of nodes of G in J by $V(J)$, and $|V(J)|=n$. Suppose there are at least 3 nodes of G in the vertex set of J.
3. Let Q be a geometrical n-sided convex polygon in Euclidean plane.
4. Let f be a 1-1 mapping of $V(J)$ onto the set of vertices of Q s.t. the cyclic order of nodes in J agrees, under f, with the cyclic order of vertices of Q.
5. We write $m=|V(G)|$ and enumerate the vertices of G as v_{1}, v_{2}, v_{3}, \ldots, v_{m} so the first n are the nodes of G in J.
6. We extend f to the other vertices of G by the following rule. If $n<i \leq m$ let $N(i)$ be the set of all vertices of G adjacent to v_{i}

Barycentric mapping construction ${ }_{(2)}$

6. For each v_{i} in $N(i)$ let a unit mass m_{j} to be placed at the point $f\left(v_{i}\right)$. Then $f\left(v_{i}\right)$ is required to be the centroid of the masses m_{j}.
7. To investigate this requirement set up a system of Cartesian coordinates, denoting the coordinates of $f\left(v_{i}\right), l \leq i \leq m$, by $\left(v_{i x}, v_{i y}\right)$.
8. Define a matrix $K(G)=\left\{C_{i j}\right\}, l \leq(i, j) \leq m$, as follows.

- If $i \neq j$ then $C_{i j}=-\left(\right.$ number of edges joining v_{i} and v_{j})
- If $i=j$ then $C_{i j}=\operatorname{deg}\left(v_{i}\right)$

9. Then the barycentric requirement specifies coordinates $v_{i x}, v_{i y}$ for $n<j \leq m$ as the solutions to the two linear systems

$$
\sum_{j=1}^{m} C_{i j} v_{i x}=0 \quad \sum_{j=1}^{m} C_{i j} v_{i y}=0
$$

where $n<i \leq m$. For $1 \leq j \leq n$ the coordinates are already known.

Example

$G:$

G is 3-connected with unique cut set $\left\{v_{2}, v_{3}, v_{4}\right\}$
Consider the peripheral cycle $J, V(J)=\left\{v_{1}, v_{2}, v_{3}\right\}$

Example $_{(2)}$

- $V(J)=\left\{v_{1}, v_{2}, v_{3}\right\}$
- $N(4)=\left\{v_{1}, v_{2}, v_{3}, v_{5}\right\}$
- $N(5)=\left\{v_{2}, v_{3}, v_{4}\right\}$
- $K(G)=\left(\begin{array}{ccccc}3 & -1 & -1 & -1 & 0 \\ -1 & 4 & -1 & -1 & -1 \\ -1 & -1 & 4 & -1 & -1 \\ -1 & -1 & -1 & 4 & -1 \\ 0 & -1 & -1 & -1 & 3\end{array}\right)$

- Form the 2 linear systems for $i=4,5$.

Example $_{(3)}$

- The linear systems

$$
\begin{aligned}
& C_{41} v_{1 x}+C_{42} v_{2 x}+C_{43} v_{3 x}+C_{44} v_{4 x}+C_{45} v_{5 x}=0 \rightarrow 4 v_{4 x}-7=v_{5 x} \\
& C_{51} v_{1 x}+C_{52} v_{2 x}+C_{53} v_{3 x}+C_{54} v_{4 x}+C_{55} v_{5 x}=0 \rightarrow-v_{4 x}+3 v_{5 x}=4 \\
& C_{41} v_{1 y}+C_{42} v_{2 y}+C_{43} v_{3 y}+C_{44} v_{4 y}+C_{45} v_{5 y}=0 \rightarrow 4 v_{4 y}-v_{5 y}=10 \\
& C_{51} v_{1 y}+C_{52} v_{2 y}+C_{53} v_{3 y}+C_{54} v_{4 y}+C_{55} v_{5 y}=0 \rightarrow 4 \\
& -v_{4 y}+3 v_{5 y}=4
\end{aligned}
$$

- Solutions

$$
v_{4}(25 / 11,34 / 11)
$$

$$
v_{5}(23 / 11,26 / 11)
$$

Example: Tutte embedding

The linear system

- Is the linear system always consistent?
- Yes, it is!
- Proof:
- Recall matrix $K(G)$.

It was defined as $K(G)=\left\{C_{i j}\right\}, l \leq(i, j) \leq m$.

- If $i \neq j$ then $C_{i j}=-\left(\right.$ number of edges joining v_{i} and v_{j})
- If $i=j$ then $C_{i j}=\operatorname{deg}\left(v_{i}\right)$
- Observe that this means we can write $K(G)$ as

$$
K(G)=-A+D
$$

- where A is the adjacency matrix of G and
- D is diagonal matrix of vertex degrees.
- But that's the Laplacian of G ! i.e., $K=-L$.

The linear system (2)

- Let K_{l} be the matrix obtained from $K(G)$ by striking out the first n rows and columns.
e.g.

$$
K_{l}=\left(\begin{array}{cc}
4 & -1 \\
-1 & 3
\end{array}\right)
$$

- Let G_{0} be the graph obtained from G by contracting all the edges of J while maintaining the degrees.

The linear system (3)

For a suitable enumeration of $V\left(G_{0}\right), K_{l}$ is obtained from $K\left(G_{0}\right)$ by striking out the first row and column.

$$
-L\left(G_{0}\right)=K\left(G_{0}\right)=\left(\begin{array}{ccc}
\frac{n}{2} & -3 & -2 \\
-3 & 4 & -1 \\
-2 & -1 & 3
\end{array}\right) \quad G_{0}:
$$

That is, $K_{l}=-\hat{L}_{l l}$.
But then the $\operatorname{det}\left(K_{I}\right)=\operatorname{det}\left(-\hat{L}_{I I}\right)=t(G)$ is the number of spanning trees of G_{0}.

$$
\operatorname{det}\left(-\hat{L}_{11}\right)=\left|\begin{array}{cc}
4 & -1 \\
-1 & 3
\end{array}\right|=11
$$

The linear system (4)

- The number $t(G)$ is non-zero since G_{0} is connected.
- Edge contraction preserves connectedness.
- This implies that $\operatorname{det}\left(K_{1}\right) \neq 0$ and the hence the linear systems always have a unique solution.

Outline

- Problem definition \& Background
- Barycentric coordinates \& Definitions
- Tutte embedding motivation
- Barycentric Map Construction
- Worked example
- The linear system
- Drawbacks

Drawbacks of Tutte Embedding

Only applies to 3-connected planar graphs.

Works only for small graphs (|V| < 100).

The resulting drawing is not always "aesthetically pleasing."

References

- Alen Orbanić, Tomaž Pisanski, Marko Boben, and Ante Graovac. "Drawing methods for 3-connected planar graphs." Math/Chem/Comp 2002, Croatia 2002.
- William T. Tutte. "How to draw a graph." Proc. London Math. Society, 13(52):743-768, 1963.

Thank you! Questions?

