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This appendix has six sections. Appendix A discusses the subtleties involved in
the forensic analysis of introactive corruption events, while Appendix B demon-
strates how false positives arise in the RGBY algorithm. Appendix C describes
the Tiled Bitmap algorithm (pseudocode provided), discusses the notion of a
candidate set, and gives the running time of the algorithm. A more thorough
exposition of the use of candidate sets in forensic analysis may be found else-
where [Pavlou and Snodgrass 2006b]. The remaining Appendices D, E, and F
provide the forensic cost for the algorithms, using worst-case, best-case, and
average-case assumptions, respectively, on the distribution of corruption sites.

A. INTROACTIVE CORRUPTION EVENTS

Introactive corruption events were introduced in Section 5. However, subse-
quent examples and algorithms do not deal explicitly with the particular chal-
lenges raised by these CEs in forensic analysis. The main challenge stems from
the fact that the partial chains computed during the validation event scan ter-
minating at tFVF cannot be used to identify introactive CEs (this holds for all
algorithms utilizing partial hash chains). The reason is that an introactive CE
occurs before these latest partial hash chains are notarized. Recall that we de-
ferred the partial chain hashing and notarization during a validation scan in
order to decrease the read overhead. This results in the latest partial chains
hashing the corrupted values. Hence the validation of the rehashed value corre-
sponding to the entire database must happen first, and if and only if it returns
true are the partial hash chains notarized. Moreover, because the cumulative
black chains perform hashing in real-time, it is impossible for an introactive
CE to occur before their creation. This implies that a single introactive CE can
be detected by all algorithms because, in this case, we can locate the corrup-
tion using only the cumulative black chains. This problem only arises if there
are multiple CEs, as in the example shown in Figure 7. In this example, par-
tial chains B6 and G6 cannot be trusted. The analysis and implementation of
the algorithms do not deal with this explicitly. The working assumption in the
presentation of the algorithms in this article is that all partial chains can be
used in forensic analysis. One way to accommodate introactive CEs is for each
algorithm to treat the entire region where introactive CEs can occur as suspect
when dealing with multiple corruptions.

B. FALSE POSITIVES IN THE RGBY ALGORITHM

In this section, we discuss the nature of the linear search of the RGBY Algo-
rithm and show how false positives inevitably arise. Figure 18(a) shows the
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Fig. 18. The chain patterns and corresponding corruption regions of the RGBY algorithm for one

or two contiguous corruption sites.

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 30, Publication date: November 2008.



Forensic Analysis of Database Tampering • 30:3

Fig. 18. (continued) The chain patterns and corresponding corruption regions of the RGBY algo-

rithm for two corruption sites with one or two IN s between the sites. The middle corruption region

rectangle in (c) is a false positive.
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basic pattern of truth values encountered over a single corruption during the
linear scan of the forensic analysis, namely . . .TFFT. . . Similarly, if we look at
Figure 18(d) we observe that two corruption sites sufficiently-spaced (i.e., dis-
tance two or more IN apart in the spatial dimension) produce a succession of the
same basic pattern observed in the case where κ = 1, that is, . . .TFFTFFT. . .

In other words, sufficiently spaced multiple corruption sites can be definitively
identified by the RGBY Algorithm just by seeking the pattern . . .FF. . . during
the linear scan.

If however, two corruption sites are less than two IN apart (in the spatial
dimension) then the situation is more complex. Figure 18(b) depicts two con-
tiguous corruption sites. The pattern observed here is . . .TFFFT. . . It is im-
portant to realize that since the linear scan involves a look-ahead of size one
(i.e., it needs to examine the results of two chains at a time to locate . . .FF. . .)
and between each iteration the frame shift is again one, the pattern . . .FFF. . .

will be correctly interpreted by the algorithm as two . . .FF. . . patterns overlap-
ping in the middle, hence correctly identifying the two contiguous corruption
sites.

This does not happen in the the case shown in Figure 18(c) where two cor-
ruption sites are distance IN apart. Here, the pattern observed is . . .TFFFFT. . .

Parsing this string as before, that is, two values at a time, will result in the al-
gorithm identifying three contiguous corruption sites instead of the correct two.
Thus the corruption is overestimated and the middle IN × IV rectangle is a
false positive. Any attempt to circumvent this problem by increasing the look-
ahead to three chains (i.e. parse four values at a time) is doomed because the
case where there are indeed three contiguous corruption sites produces the
same pattern as the case shown in Figure 18(c), making the two indistinguish-
able. For this reason, occurrence of false positives is inevitable in the RGBY
algorithm, and moreover, in the worst-case scenario where corruption sites al-
ternate with corruption-free areas of width IN , RGBY can produce up to 50%
false positives.

C. THE TILED BITMAP ALGORITHM

Here we present an improved version of the Polychromatic Algorithm [Pavlou
and Snodgrass 2006a] called the Tiled Bitmap Algorithm. The original Poly-
chromatic Algorithm utilized multiple Red and Blue chains while retaining the
Green chain from the RGB Algorithm. These two kinds of chains and their
asymmetry complicated this algorithm. The Tiled Bitmap Algorithm relocates
these chains to be more symmetric, resulting in a simpler pattern.

We proceed to modify the Polychromatic Algorithm by:

—Removing the Green chain altogether.

—Adding two new subchains in the Red and Blue chain groups. For odd i, the
algorithm computes the main red hash chain from NE2·i−3 to NE2·i−1, while
for even i the blue and green chains are computed over the intervals NE2·i−3

to NE2·i−1 and NE2·i−2 to NE2·i, respectively.

—Shifting the first group of Red1 to the right.
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Fig. 19. Improvements introduced to the Polychromatic Algorithm.

As Figure 19 shows, the main green chain Green0
i is “broken” in half and is

substituted by Red1
i+1 and Blue1

i . The second half of the Green0
i chain becomes

the “missing” Red1
i+1 chain in the next group of red chains, in order to complete

the logarithmic number of chains defined in an IV . The first half of the Green0
i

chain, however, covers the complimentary interval of what is missing in the
group of blue chains. Hence we first take the complement of this first half and
then add it as the missing Blue1

i chain. This leads to an increase in the number
of hash chains by one per IV . This is the price paid in order to have each group of
chains function as a bitmap and to have the ability to perform the combinatorial
bit pattern analysis described shortly.

Next, in a completely independent step, we shift to the right the Red1 group
of hash chains (which was shorter than the rest). In this way, all the remaining
hash chain groups are also shifted to the right by IV /2 days. This has the result
of aligning the hash chain groups, with the actual validation intervals, and thus
making the structure of the algorithm more regular. Each hash chain group is
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repeated and thus “tiles” the action line and will serve later as a bitmap. Hence
the name of this algorithm: Tiled Bitmap Algorithm.

Finally, we make this algorithm more general by fixing the length of the tile
to cover an IN and have V number of tiles between successive validations as
shown in Figure 9 in Section 8.3.

If the CE is data-only, the result of validating the entire tile of hash chains
(marked with a “�” in Figure 9) and concatenating the result of each subchain
creates a binary string whose numerical value is the relative position of the
compromised granule within the tile. In this way, we can easily establish a
mapping between the binary string representation of the truth value pattern
(1 = Success, 0 = Failure) within each hash chain group and the desired time
(granule) down to Rs.

Let us turn to an example involving a corruption. Consider CE1 in Figure 9.
We find the first tile in which a corruption has occurred via binary search in
order to locate tRVS. In this figure, CE1 has tl = 19 and a relative position within
the second IN of 2. If we validate the hash chains of the tile in which the CE
transpired, then we get the string 00010 (most significant bit corresponds to
the chain that covers all the days in IN ), termed the target bit pattern. The
numerical value of the target string 00010 is 2, which is exactly the relative
position of the granule within the second IN .

Now, let’s see what happens if a timestamp corruption occurs and both tl
and tp are within the same tile. Figure 9 also shows a postdating CE2 with
tl = 20 and tp = 27, which are both in the second tile (IN = 16). If each of
these were to appear on their own, the target bit patterns produced by the tile
validation would be 0011 (3rd granule within N ) and 1010 (10th granule within
N ). However, since both occur at the same time within the same IN , and the
hash chains are linked together, then the bit patterns given are ANDed and the
target 0010 is the actual result of the validation, as shown in Figure 20. This
target corresponds to the existence of the two suspect days tl and tp, without
being able to distinguish between the two. (NB: if g is a specific granule while
r is its relative position within IN , then (g − 1) mod N = r.)

In reality, the situation is more involved: when dealing with multiple CEs,
there might be many combinations of bit patterns which, when ANDed, can yield
the target bit pattern computed during forensic analysis. Thus even the simple
case where a single post/backdating CE does not have its endpoints in different
tiles can introduce ambiguity. For example, we cannot distinguish between the
two scenarios shown in Figure 21 because in both cases the target bit pattern is
the same. In the first case, both CE2 and CE3 produce the target bit pattern 0010
because the AND operation is commutative: 0011∧1010 = 1010∧0011. For this
reason, we cannot distinguish between CE2 and CE3. Moreover, distinguishing
between CE2, CE3 and CE4, CE5 is also impossible because CE4 and CE5 also
produce the same target bit pattern as before. More specifically, CE4 produces
the bit pattern 0010∧0111 = 0010, and CE5 produces again 0110∧1010 = 0010.

Hence we introduce the notion of a candidate set [Pavlou and Snodgrass
2006b], because the pre-image of the target bit pattern under the bit-wise AND
function is not unique. More formally, we define the length l of a binary number
b, denoted by |b| = l , as the number of its digits. We seek to find the pre-images
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Fig. 20. The bitmap of a single tile.

Fig. 21. Examples of CEs resulting in the same target bit pattern.

of all the binary numbers of length l , B = {b : |b| = l }, under a family of bit-wise
AND functions whose domain is a finite Cartesian product:

ANDk : Bk −→ B

ANDk((b1, b2, . . . , bk)) = b1 ∧ b2 ∧ . . . ∧ bk .

Observe that the maximum number k of sets participating in the Cartesian
product is 2l , since if k is allowed to take a value beyond that, it will force a
repetition of one of the binary numbers. This is not informative or useful in any
way, since repeated AND ing operations with the same binary number leave the
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Fig. 22. The Tiled Bitmap Algorithm.

result invariant (the operation is idempotent). In other words, repetition is not
allowed and hence, for a given k-tuple, all its components are distinct. Also note
that the value of k uniquely identifies a specific ANDk function in this family.
The candidate set is the set of all binary numbers that appear as components in
at least one of the pre-images (i.e., k-tuples) of a specific binary number termed
the target:

Ctarget,k = {b ∈ B | ∃ b1, b2, . . . , bk−1 ∈ B (ANDk((b, b1, . . . , bk−1)) = target)}.

This candidate set captures all potential sites of corruption. In this example
the candidate set obtained for CE2, CE3 and CE4, CE5 will be the same in both
cases and is equal to

C0010,2 = {0010, 0011, 0110, 0111, 1010, 1011, 1110, 1111} .

The pseudocode for the Tiled Bitmap Algorithm is provided in Figure 22.
In this algorithm, the partial hash chains within a tile are denoted by
c0(t), c1(t), . . . , clg N (t), with ci(t) denoting the ith hash chain of the tile that
starts at time instant t. The algorithm begins looking at the black chains as
the Polychromatic Algorithm does. This bounds tc: LTB < tc ≤ UTB as before.
The binary search on the black chains also finds the value of tRVS. Lines 7 and
8 adjust the start of the iteration to coincide with the beginning of a tile. On
line 9 the algorithm iterates through the different tiles and checks (line 10) if
the longest partial chain c0(t) evaluates to false. If not, it moves on to the next
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tile. If the chain evaluates to false (line 10), the algorithm iterates through the
rest of the partial chains in the tile (line 12) and concatenates the result of each
validation to form the target number (line 13). Then, the candidateSet function
is called to compute all the pre-images of the target number according to the
user-specified parameter k, discussed previously, and in more detail elsewhere
[Pavlou and Snodgrass 2006b].

On lines 15–16 the candidate granules are renumbered to reflect their global
position. The call to find tRVS takes 2 · lg(D/N ) time because it performs a bi-
nary search on the cumulative black hash chains in order to locate tRVS. The
“while” loop on line 9 takes �D/N� in the worst case. In reality, because of
the “if” statement on line 10, the body of the loop gets executed only if corrup-
tion is initially detected by using c0(t). Hence the actual running time of the
loop is �(F ), where F is the number of times the validation of a c0(t) chain
fails. The “for” loop on line 12 takes lg(IN /Rs), while the candidateSet function
takes �(lg(IN/Rs)+2z ). The loop on line 15 takes �(2z ), where z is the number
of zeros in the target binary number. Hence the run time of this algorithm is
as follows:

�(lg(D/N ) + F · (lg(IN/Rs) + (lg(IN /Rs) + 2z ) + 2z ))
= �(lg(D/N ) + F · (lg N + 2z ))
= O(lg(D/N ) + (D/N ) · (lg N + N ))
= O(D).

The upper bound is obtained as follows. F in the worst case is O(D/N ), that
is, the total number of tiles. 2z in the worst case is N because that is the total
number of granules (Rs units) within a tile.

D. FORENSIC COST FOR WORST-CASE DISTRIBUTION
OF CORRUPTION SITES

In Section 9.1, we analyzed the worst-case forensic cost for the Monochro-
matic Algorithm. Here, we proceed with a similar analysis for the RGBY, Tiled
Bitmap, and a3D forensic analysis algorithms.

D.1 The RGBY Algorithm

As with the previous algorithm, in the RGBY Algorithm, the spatial detection
resolution (Rs) is IN , so after normalizing by Rs, N = 1. Also recall that V = 2
for this algorithm. In this algorithm, during normal processing at each valida-
tion event, we validate one chain and notarize two partial chains; hence we have
(D/2) · 3 interactions with the digital notarization service during validation.

During forensic analysis, we have to perform a linear search, which could in-
volve all partial hash chains previously notarized, that is, two at each validation
event, and hence 2 · (D/2).

NormalProcessingRGBY = Number of Notarizations
+ Number of Validations

= D
+ 3 · (D/2)
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Table XI. Forensic Areas for 1 ≤ κ ≤ D Corruption Sites

(RGBY)

# Corruption Sites

(1 ≤ κ ≤ D)
AreaP AreaU AreaN

1 2 0 TotalArea − 2

2 4 0 TotalArea − 4

3 4 0 TotalArea − 4

.

.

.
.
.
.

.

.

.
.
.
.

κ 4 0 TotalArea − 4

ForensicAnalysisRGBY = Binary search for finding tRVS

+ Linear scan of partial chains
= 2 · lg(D)

+ 2 · (D/2)

The RGBY Algorithm can detect multiple corruption sites which, if suffi-
ciently apart, can produce distinct AreaP , each equal to V · N 2 = 2. In the worst
case, however, if corruptions alternate with corruption-free areas of spatial di-
mension IN , then the RGBY algorithm produces false positives by identifying
the intervening corruption-free area as part of AreaP , as shown in Figure 23.
This makes AreaP = 4 for all κ > 1, and AreaU = 0.

FCRGBY (D, 1, 2, κ) = (D + 3 · (D/2) + 2 · lg D + 2 · (D/2))

+
(

2 +
κ∑

i=2

4

)

For κ = 1, the last term is an empty sum, and thus is equal to zero. Hence:

FCRGBY (D, 1, 2, 1) = (D + 3 · (D/2) + 2 · (D/2) + 2 · lg D) + 2

= O(D)

FCRGBY (D, 1, 2, κ ≥ 2) = (D + 3 · (D/2) + 2 · (D/2) + 2 · lg D)

+ (2 + (κ − 1) · 4) (3)

= O(κ + D).

D.2 The Tiled Bitmap Algorithm

Unlike the previous two algorithms, the Tiled Bitmap Algorithm effects a spa-
tial resolution (Rs) that is smaller than the notarization interval. Also V and
N are both set by the DBA, and hence appear as variables.

The normal processing component is made up of the number of notarizations
required for the black chains, the number of notarizations for the partial chains
that make up each tile, and the number of validations performed:

NormalProcessing tiled bitmap = Number of black chain notarizations
+ Number of within-tile notarizations
+ Number of validations.
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Fig. 23. Three types of forensic area for RGBY and κ corruption sites.

For each validation event, during normal processing, the Tiled Bitmap Algo-
rithm contacts the notarization service once to validate the database and then
notarizes all the chains within a tile, which are 1 + lg N in number:

NormalProcessing tiled bitmap = D/N
+ (1 + lg N ) · (D/N )

+ D/(V · N ).

For forensic analysis, we have to perform a binary search to find tRVS and
then a linear search to locate corruptions for each tile. The linear search could
involve κ tiles in the worst case:

ForensicAnalysis tiled bitmap = Binary search for finding tRVS

+ Number of chains validated within tiles
= 2 · lg(D/N )

+ (1 + lg N ) · κ.

The algorithm returns a candidate set Ctarget,2, each element of which cor-
responds to a distinct corruption region of area V · N 2. The cardinality of
the candidate set is equal to 2 raised to the number of zeros z in the tar-
get [Pavlou and Snodgrass 2006b] and thus |Ctarget,2| = 2z . The maximum
value z can take is the length l of the target, which is lg N . This implies that
|Ctarget,2| = O(2lg N ) = O(N ), as it should be (!).

Note that the worst-case scenario for the Tiled Bitmap Algorithm occurs
when each of the κ corruption sites occurs in the first granule of each tile as
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Fig. 24. Three types of forensic area for Tiled Bitmap and κ corruption sites.

Table XII. Forensic Areas for 1 ≤ κ ≤ D Corruption Sites

(Tiled Bitmap)

# Corruption Sites

(1 ≤ κ ≤ D)
AreaP AreaU AreaN

1 V · N2 0 TotalArea − V · N2

2 V · N2 0 TotalArea − V · N2

3 V · N2 0 TotalArea − V · N2

.

.

.
.
.
.

.

.

.
.
.
.

κ V · N2 0 TotalArea − V · N2

shown with a • in Figure 24. Subsequent corruption sites (shown with � and
�) within the same tile as the ones in the first tile do not alter the cardinality of
the candidate set and thus do not cause an increase in AreaP . Note that AreaP
is the entire tile in this (improbable) worst case. We still normalize IN and IV
by Rs, which implies that N is larger than 1 (actually, it must be a power of 2):

FCtiled bitmap(D, N , V , κ) = ((D/N ) + (1 + lg N ) · (D/N ) + D/(V · N )

+ 2 · lg(D/N ) + (1 + lg N ) · κ)

+ (κ · V · N 2) (4)

= O(κ · V · N 2 + (D · lg N )/N + lg D).

In this case, even though the cost of normal processing and forensic analysis
have increased because of the increased number of notarizations and valida-
tions that need to be performed, the area has shrunk considerably. The entire
AreaU is zero, while AreaP has seen a modest increase.
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It is worth noting here that there exists a case when the candidate set will find
the corruption site with perfect precision. This happens when the corruption
only occurs inside the last granule of the tile (shown with � and disregarding
the other corruption sites in that tile). In this case, the resulting target bit string
uniquely identifies the corrupted granule so we know that there exists only one
corruption site in the tile, along with its exact location.

D.3 The a3D Algorithm

In the a3D Algorithm, during normal processing, for every validation event, we
notarize one cumulative black chain, we validate once the entire database, and
we notarize a number of partial hash chains depending on the Rs unit. The total
number of notarizations performed in D units was calculated in Section 8.4; see
equation (1) in that section. (Recall that we normalize IN and tFVF by Rs, the
spatial detection resolution. Recall also that in the a3D Algorithm, V = 1.)
There we proved that the total number of notarizations is equal to O(D):

NormalProcessinga3D = Total Number of Validations
+ Total Number of Notarizations

= D/N
+ N (D) + D/N − (1 + 
lg(D/N )�)

= O(D).

The forensic analysis cost depends on the actual distribution of the κ corrup-
tion sites. A worst-case scenario arises when each successive corruption site
that is added causes the maximum possible number of validations in the al-
gorithm. To explain this, we utilize the binary tree representation of the hash
chains in the algorithm. The algorithm is forced to perform the maximum num-
ber of validations whenever a new site corrupts a leaf that belongs to a subtree
rooted at a node whose previous validation has yielded a true result, and this
subtree has maximal height. Figure 25 shows a tree of height four and the
validation results after the addition of κ = 8 corruptions sites. A (nonunique)
sequence of adding corruption sites, which satisfies the condition for worst-case
scenario stated previously, is given with numbers underneath the leaves. For
example, the first site in Figure 25 is a corruption on the data covered by hash
chain P1,0,0, the second site corrupts data covered by hash chain P5,0,8, and so
on. It’s easy to see that the existence of κ = D/2 properly distributed corruption
sites can force the validation of all the hash chains covering the first D units.

The number of validations in forensic analysis with each successive addition
of a corruption site, satisfies the following recursive formula:

V(κ) = V(κ − 1) + 2 · (H − depth(κ)) , (5)

where V(κ) is the number of hash chains validated by the algorithm when κ

corruption sites exist under a worst-case distribution, the height of the tree
H is lg N + �lg(D/N )� = �lg D�, and depth(κ) is the depth of the root of the
maximal-height subtree in which the new corruption site occurs. For κ ≥ D/2,
depth(k) = H. The validation of the hash chain corresponding to this root eval-
uates to true before the κth corruption occurs, and false afterwards.
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Fig. 25. Worst-case scenario for corruption site distribution (a3D).

The base case for this recursion is V(0) = 1 and corresponds to the case when
the result of the validation of the root of the entire tree (B8 in this case) was true,
implying that no corruption has occurred (κ = 0). For V(1), there exists a single
corruption site in the subtree of maximal height which, in this case, is the en-
tire complete binary tree. This first corruption site corresponds to the number
‘1’ in Figure 25. The corruption site will thus force the validation of the fol-
lowing sequence of hash chains: B8, B4, B2, B1, P1,0,0, P1,0,1, P2,1,1, P4,2,1, P8,3,1.
The number of chains validated (for a specific κ) is by definition V(κ), hence,
V(1) = 9. Alternatively, V(1) = V(0) + 2 · (4 − lg 1) = 1 + 2 · 4 = 9. We now solve
this recursion.

THEOREM D.1. The solution to the recursion V(κ) = V(κ −1)+2 · (H −depth)
is V(κ) = 2 · κ · (H − �lg κ�) + (1 + [κ �= 2i]) · 2
lg κ�+1 − 1, for some i ∈ N ∪ {0}.

PROOF. The variable depth denotes the depth of the root of the maximal-
height subtree in which the new corruption occurs. This depth is a function of
κ, namely, depth = �lg κ�:

V(κ) = V(κ − 1) + 2 · (H − depth)

= V(κ − 1) + 2 · (H − �lg κ�)

= V(κ − 2) + 2 · (H − �lg(κ − 1)�) + 2 · (H − �lg κ�)

...

= V(κ − i) + 2 · (H − �lg(κ − (i − 1))�) + . . . + 2 · (H − �lg κ�).
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So, in order to get a closed form, we unfold the recursion until V(κ − i) = V(0),
which implies κ = i. We substitute i = κ in our recursive formula and get

V(κ) = V(0) + 2 · (H − �lg 1�) + . . . + 2 · (H − �lg κ�)

= V(0) + 2 ·
κ∑

j=1

(H − �lg j �)

= V(0) + 2 ·
κ∑

j=1

H − 2 ·
κ∑

j=1

�lg j �

= 1 + 2 · κ · H − 2 ·
κ∑

j=1

�lg j � .

If we expand the last term, we find that
∑κ

j=1�lg j � = 0 + 1 + 2 + 2 + 3 + 3 +
3 + 3 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + . . . + �lg κ�. We observe that the terms
of the sum can be divided into “groups,” each group having the same number
repeated a power of 2 number of times. The numbers repeated are 1, 2, 3, up
to �lg j �. Thus we can evaluate the original sum by summing the sums of each
group, for example, 1 ·1+2 ·22 +3 ·22 +4 ·23 + . . .+ j ·2 j−1. If κ is a power of 2,
then the last “group” of numbers will be complete, otherwise we will a partial
final “group.” For this reason, we first add up all the complete “groups” in the

sum, i.e.,
∑
lg κ�

j=1 j · 2 j−1. Then we add what is left over, i.e., κ − 2
lg κ� times the

last summand which is �lg κ�. If we put all the terms together we get:

κ∑
j=1

�lg j � =

lg κ�∑
j=1

j · 2 j−1 + (
κ − 2
lg κ�) · �lg κ� .

We then substitute this sum evaluation into V(κ) and get the following:

V(κ) = 1 + 2 · κ · H − 2 ·
( 
lg κ�∑

j=1

j · 2 j−1 + (κ − 2
lg κ�) · �lg κ�
)

= 1 + 2 · κ · H −

lg κ�∑
j=0

j · 2 j − 2 · κ · �lg κ� + 2
lg κ�+1 · �lg κ�.

The sum
∑
lg κ�

j=0 j · 2 j is evaluated using a known formula,

n∑
k=0

k · xk = x − (n + 1) · xn+1 + n · xn+2

(1 − x)2
, for x �= 1 .

V(κ) = 1 + 2 · κ · H − 2 − (
lg κ� + 1) · 2
lg κ�+1 + 
lg κ� · 2
lg κ�+2

(1 − 2)2

− 2 · κ · �lg κ� + 2
lg κ�+1 · �lg κ�
= 1 + 2 · κ · H − 2 + 
lg κ� · 2
lg κ�+1 + 2
lg κ�+1 − 
lg κ� · 2
lg κ�+2

− 2 · κ · �lg κ� + 2
lg κ�+1 · �lg κ�
= 2 · κ · H − 1 + 2
lg κ�+1 · (
lg κ� + 1 − 2 · 
lg κ� + �lg κ�) − 2 · κ · �lg κ�
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Table XIII. Forensic Areas for 1 ≤ κ ≤ D Corruption Sites

(a3D)

# Corruption Sites

(1 ≤ κ ≤ D)
AreaP AreaU AreaN

1 N 0 TotalArea − N
2 N 0 TotalArea − N
.
.
.

.

.

.
.
.
.

.

.

.

κ N 0 TotalArea − N

= 2 · κ · H − 1 + 2
lg κ�+1 · (�lg κ� − 
lg κ� + 1) − 2 · κ · �lg κ�
= 2 · κ · (H − �lg κ�) + (�lg κ� − 
lg κ� + 1) · 2
lg κ�+1 − 1

= 2 · κ · (H − �lg κ�) + ( [κ �= 2i] + 1) · 2
lg κ�+1 − 1 , for some i ∈ N ∪ {0}.
Here we use Iverson brackets [Graham et al. 2004, p. 24].

Note that for values of κ between D/2 and D, the value of V(κ) is unchanged
atV(D/2) = 2·D−1. This is because, as we have seen, when κ is equal or exceeds
D/2, all the hash chains covering the first D days will have to be validated.

Thus we can calculate the cost during forensic analysis quite simply

ForensicAnalysisa3D = V(κ)

We now examine the breakdown of the three types of areas in the a3D Algo-
rithm. Each granule corresponds to a distinct region of area of height V ·N = N
(normalized) and width 1 (!) and thus, total AreaP = κ · V · N = κ · N . More-
over, since this algorithm will detect all κ corruption sites, this implies that
AreaU = 0. The breakdown of the different areas is given in Table XIII.

FCa3D(D, N , 1, κ) = (D/N + N (D) + D/N − (1 + 
lg(D/N )�) + V(κ))

+ AreaP

= (D/N + 2 · D − 1 + D/N − (1 + 
lg(D/N )�)

+ 2 · κ · (�lg D� − �lg κ�) + (1 + [κ �= 2i]) · 2
lg κ�+1 − 1)

+ (κ · N ) (6)

= O(κ · N + D + κ · lg D)

In the case of the a3D Algorithm, we see an increase in the cost of normal
processing and forensic analysis, but the area produced by this algorithm is op-
timal. AreaU is zero, while AreaP achieves its minimum because, by definition,
each granule cannot be shrunk below the spatial resolution Rs (as discussed in
Section 8.4). For a reason why the temporal dimension of the area, that is, the
uncertainty of tc, cannot be shrunk further, see Section 10.

Finally, when κ > D/2, rather than doing κ binary searches, we can simply
scan the Rr units, reducing the forensic cost to O(κ · N + D + D) = O(κ · N ).

E. FORENSIC COST FOR BEST-CASE DISTRIBUTION
OF CORRUPTION SITES

We perform an analysis of the forensic cost of the four algorithms assuming a
best-case distribution of κ corruption sites.
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Fig. 26. Three types of forensic area for best-case distribution of κ corruption sites

(Monochromatic).

Table XIV. Forensic Areas for Best-case Distribution of κ

Corruption Sites (Monochromatic)

# Corruption Sites

(1 ≤ κ ≤ D)
AreaP AreaU AreaN

1 V 0 TotalArea − V
2 V 0 TotalArea − V
3 V 0 TotalArea − V
.
.
.

.

.

.
.
.
.

.

.

.

κ V 0 TotalArea − V

E.1 Monochromatic Algorithm

A best-case distribution for the Monochromatic algorithm occurs when each
of the κ corruption sites appears in a different notarization interval at the
rightmost end of the trapezoid in the corruption diagram. This means that the
sites occur starting from the most recent IN and going back to older notarization
intervals in a contiguous manner, as shown in Figure 26. As in Section 9, we
examine how each corruption site partitions the trapezoid—bound by the last
validation event—into the three types of forensic area, that is, AreaP , AreaU ,
and AreaN . Observe that, unlike in the worst-case distribution, the corruption
sites are examined from right to left. This, in conjunction with the fact that only
one corruption site occurs within each notarization interval, allows each site
to be positively identified. Hence Table XIV shows that each site is associated
with an AreaP but not with an AreaU .
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Fig. 27. Three types of forensic area for best-case distribution of κ corruption sites (RGBY).

All the terms in the forensic cost formula remain the same, as in the worst-
case, except for the forensic areas. Summing AreaP over all corruption sites, we
can compute the forensic cost for the Monochromatic Algorithm:

FCmono(D, 1, V , κ) = (D + D/V + 2 · lg D)

+
(

V +
κ∑

i=2

V

)

= D + D/V + 2 · lg D + V + (κ − 1) · V
= O(κ · V + D).

The forensic cost of the Monochromatic Algorithm for best-case distribution is
asymptotically smaller than cost for worst-case distribution, which is O(κ ·V ·D).

E.2 RGBY Algorithm

In the case of the RGBY Algorithm, the best-case distribution of corruption
sites is exactly the same as in the Monochromatic Algorithm. The sites occur
starting from the most recent IN and going back to older notarization intervals
in a contiguous manner, as shown in Figure 27. Once again, because of the
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Table XV. Forensic Areas for Best-case Distribution of κ

Corruption Sites (RGBY)

# Corruption Sites

(1 ≤ κ ≤ D)
AreaP AreaU AreaN

1 2 0 TotalArea − 2

2 2 0 TotalArea − 2

3 2 0 TotalArea − 2

.

.

.
.
.
.

.

.

.
.
.
.

κ 2 0 TotalArea − 2

assumption of only one site per IN , we have only positive areas associated with
each site.

Table XV shows the breakdown of the three types of the forensic areas for
each of the κ corruption sites. All the terms in the forensic cost formula remain
the same as in the worst case, except for the forensic areas. Summing AreaP over
all corruption sites, we can compute the forensic cost for the RGBY Algorithm:

FCRGBY (D, 1, 2, κ) = (D + 3 · (D/2) + 2 · (D/2) + 2 · lg D)

+
(

κ∑
i=1

2

)

= O(κ + D).

The forensic cost of the RGBY Algorithm for best-case distribution is asymp-
totically the same as the cost for worst-case distribution, which is also
O(κ + D).

E.3 Tiled Bitmap Algorithm

The best-case distribution for the Tiled Bitmap Algorithm happens when the
corruption sites occur one in each tile, tampering the last granule in the tile, as
shown in Figure 28. The resulting bit string uniquely identifies the corrupted
granule, so we can positively identify the corruption site in the tile with no false
positives.

Table XVI shows that each AreaP has area V · N , and thus summing over
all corruption sites yields the new forensic cost.

FCtiled bitmap(D, N , V , κ) = ((D/N ) + (1 + lg N ) · (D/N ) + D/(V · N )

2 · lg(D/N ) + (1 + lg N ) · κ) + (κ · V · N )

= O(κ · V · N + (D · lg N )/N + lg D)

The new cost is asymptotically lower than the corresponding cost for worst-case
distribution. In particular, the κ · V · N 2 term in the worst-case cost has lost a
factor of N .

E.4 a3D Algorithm

The best-case distribution of corruption sites for the a3D Algorithm, is one in
which the sites occur consecutively in leaves of the tree as shown in Figure 29.
The numbers labeled with “Order of κ” show the order with which the sites are
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Fig. 28. Three types of forensic area for best-case distribution of κ corruption sites (Tiled Bitmap).

examined. This order is such that moving from one site to the next incurs a
minimum increase in the number of chains validated in the tree. This defers
the validation of the entire tree until the last (16th) site has been examined.

The number of validations in the forensic analysis with each successive cor-
ruption site satisfies the following recursive formula,

Vb(κ) = Vb(κ − 1) + 2 · (H − depthb(κ)) for 1 ≤ κ ≤ D , (7)

where Vb(κ) is the number of hash chains validated by the algorithm when
κ corruption sites exist under a best-case distribution, the height of the tree
H is lg N + �lg(D/N )� = �lg D�, and depthb(κ) is the depth of the root of the
maximal-height subtree in which the new corruption site occurs, again, under
a best-case distribution. The validation of the hash chain corresponding to this
root evaluates to true before the κth corruption occurs, and false afterwards.

To find how depthb depends on κ, we first number the nodes of the tree in
a breadth-first manner. The numbers are shown in courier font in Figure 29.
Observe that the leaves under this numbering scheme are labeled by p and the
correspondence between p and κ is p = κ + D − 1. Observe also that we only
need to deal with leftmost paths of subtrees, since any site occurring in a leaf
of a rightmost path contributes zero to Vb. Recall that, for all nodes in a binary
tree, if the parent has index i, its children have indices 2 · i and 2 · i + 1. Hence,
in order to find the number of the root (inner node) of the subtree given a p
number of a leftmost leaf, we must divide p by 2x , where x is the maximum
integer such that 2x | p but 2x+1 � p. In other words, x is the zero-based index,
counting from the right end of the leftmost “1” in the binary representation of
p. We can use Iverson brackets [Graham et al. 2004, p. 24] to express x as the
sum x = ∑

1≤l≤
lg p� [p mod 2l = 0]. Given the position of the root, we can find
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Table XVI. Forensic Areas for Best-case Distribution of κ

Corruption Sites (Tiled Bitmap)

# Corruption Sites

(1 ≤ κ ≤ D)
AreaP AreaU AreaN

1 V · N 0 TotalArea − V · N
2 V · N 0 TotalArea − V · N
3 V · N 0 TotalArea − V · N
.
.
.

.

.

.
.
.
.

.

.

.

κ V · N 0 TotalArea − V · N

its depth by the following formula:

depthb(κ) =
⌊⌊

lg

(
p

2x

)⌋⌋
, (8)

where p = κ + D − 1 and x = ∑
1≤l≤
lg p� [p mod 2l = 0].

We can now substitute (8) in the recursion, unfold it, and get a closed form:

Vb(κ) = 1 + 2 · κ · lg D − 2 ·
κ∑

i=1

⌊
lg

(
(p − i)

/(
2

∑
1≤l≤
lg(p−i)� [(p−i)mod2l =0]

))⌋
.

We do not attempt to evaluate the sum, but we rather try to find the asymptotic
upper bound for Vb. The idea is to minimize the value of the sum so that the
entire expression can be bounded from above. The minimum value the numer-
ator in the summand can take is D − 1 when i = κ, while the maximum value
the denominator can take is 2H = D, that is, when we are considering the root
of the entire tree. This makes the sum easy to bound as shown in equation (9):

Vb(κ) = 1 + 2 · κ · lg D − 2 ·
κ∑

i=1

⌊
lg

(
(p − i)

/
(2

∑
1≤l≤
lg(p−i)� [(p−i)mod2l =0])

)⌋

≤ 1 + 2 · κ · lg D − 2 ·
κ∑

i=1

lg((D − 1)/D)

≤ 1 + 2 · κ · lg D − 2 · κ lg((D − 1)/D) (9)

≤ 1 + 2 · κ · lg D + 2 · κ lg(D/(D − 1))

≤ 1 + 2 · κ · lg D + 2 · κ · lg D ⇒
Vb(κ) = O(κ · lg D).

Putting everything together, we can now evaluate the best-case forensic cost
of the a3D Algorithm:

FCa3D(D, N , 1, κ) = (D/N + N (D) + D/N − (1 + 
lg(D/N )�) + V(κ))

+ AreaP

= (D/N + 2 · D − 1 + D/N − (1 + 
lg(D/N )�)

+ κ · lg D)

+ (κ · N )

= O(κ · N + D + κ · lg D).
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Fig. 29. Three types of forensic area for best-case distribution of κ corruption sites (a3D).

Table XVII. Forensic Areas for Average-Case Distribution of κ Corruption Sites

(Monochromatic)

# Corruption Sites

(1 ≤ κ ≤ D)
AreaP AreaU AreaN

1 V 0 TotalArea − V
2 0 (2 · TotalArea − V )/3 (TotalArea + V )/3

3 0 (3 · TotalArea − V )/4 (TotalArea + V )/4

.

.

.
.
.
.

.

.

.
.
.
.

κ 0 (κ · TotalArea − V ) · 1
κ+1

(TotalArea + V ) · 1
κ+1

The asymptotic forensic cost for the worst-case distribution is thus identical to
that for the best-case distribution of a large number of corruption sites, namely,
O(κ · N + D + κ · lg D).

F. FORENSIC COST FOR AVERAGE-CASE DISTRIBUTION
OF CORRUPTION SITES

In this section, we give an analysis of the forensic cost of the four algorithms,
assuming an average distribution of κ corruption sites. The analysis for the
Monochromatic and RGBY Algorithms are similar in approach and detail, that,
for each corruption site, we examine how it partitions the trapezoid bound below
by the last validation event, into the three types of forensic area AreaP , AreaU ,
and AreaN . However, to obtain an estimate of the forensic cost of the Tiled
Bitmap Algorithm, we employ the average size of the candidate set instead
of considering the distribution of the corruption sites. In the case of the a3D
Algorithm, the analysis is much simpler, since we have shown that the forensic
cost is the same for best and worst case distributions of corruption sites.
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Fig. 30. Three types of forensic area for average-case distribution of κ corruption sites (Monochro-

matic).

F.1 Monochromatic Algorithm

In order to obtain a bound on the forensic cost of the Monochromatic Algorithm,
we assume that the κ corruption sites are evenly distributed in the trapezoid,
as shown in Figure 30. Each successive addition of a corruption site splits the
area evenly and hence, if there are κ sites, then each intervening area between
them has size (TotalArea − κ · V )/(κ + 1).

Figure 30 shows that only the first corruption site can be positively identified
as was true in the worst-case distribution. We consider the forensic cost of a
single corruption site (κ = 1) separately from the cases where κ > 1, the reason
being that the area breakdown is different in the two cases. Notice that for κ ≥ 2,
the last term in the cost formula (10) is a partial sum of a harmonic series. It
is an established result [Graham et al. 2004, p. 276] that a partial sum of the
harmonic series Hn is bounded above by 
lg n� + 1.

FCmono(D, 1, V , 1) = (D + D/V + 2 · lg D) + V
= O(V + D)

FCmono(D, 1, V , κ ≥ 2) = (D + D/V + 2 · lg D)

+
(

V +
κ∑

i=2

(i · TotalArea − V )/(i + 1)

)

≤ D + D/V + 2 · lg D + V + (κ − 1) · TotalArea

− V ·
κ∑

i=2

1/(i + 1) (10)
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≤ D + D/V + 2 · lg D + V + (κ − 1) · TotalArea
− V · (
lg(κ + 1)� − 1/2)

= O(κ · V · D)

The forensic cost of the Monochromatic Algorithm for the average case distri-
bution is asymptotically the same as the cost for worst-case distribution.

F.2 RGBY Algorithm

The forensic cost of the RGBY Algorithm for the worst-case distribution of κ

corruption sites is asymptotically the same as the one for best-case distribution:
O(κ + D). This implies that the forensic cost for the average case distribution
of corruption site is the same.

F.3 Tiled Bitmap Algorithm

To obtain an estimate of the forensic cost of the Tiled Bitmap Algorithm, we do
not consider the distribution of the κ corruption sites. Rather, for each site we
must deduce its relative position within a tile so that the size of the candidate
set can be computed. Furthermore, given a uniform distribution of κ, we have no
way of enforcing that each site will belong to a different tile. For these reasons,
we consider the average size of the candidate set instead.

LEMMA 1. The average cardinality of the candidate sets for k = 2 and for a
given l = lg N is |C| = 3l −1

2l .

PROOF. The average is |C| = 1
2l ·((∑l

z=0

(
l
z

)
·2z )−1).

∑l
z=0

(
l
z

)
·2z is the binomial

expansion of (2 + 1)l = 3l . So |C| = 3l −1
2l .

Note that |C| = 3l −1
2l < 1.5l = O(1.5l ). For l = 10, a candidate set will contain

on average about 5% of the possible binary numbers of length l . For l > 20, a
candidate set will contain on average only about 0.3% of the possible strings.
This is expected, since the fraction 1.5l

2l decreases as l increases.
This decrease in candidate set cardinality as l increases has implications for

forensic analysis. Recall that the goal is to determine the set of possible corrup-
tion events implied by a provided target binary number. While the number of
possibilities grows as l gets larger, the percentage of possible granules declines.

We have showed that the average cardinality of all possible candidate sets
for a fixed-length target is |C| = (3l − 1)/2l . Recall that l = lg N .

AreaP =
κ∑

i=1

|C| · V · N = κ · 3lg(N ) − 1

2lg(N )
· V · N = κ · 3lg3(N )/ lg3 2 − 1

N
· V · N

= κ · V · (N lg 3 − 1)

Thus the forensic cost of the algorithm, taking the average cardinality of the
candidate set, is:

FCtiled bitmap(D, N , V , κ) = ((D/N ) + (1 + lg N ) · (D/N ) + D/(V · N )

+ 2 · lg(D/N ) + (1 + lg N ) · κ)
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+ (κ · V · (N lg 3 − 1))

= O(κ · V · N lg 3 + (D · lg N )/N + lg D) .

This replaces a factor of N 2 with N lg 3, making the average cost asymptotically
lower than in the worst case.

F.4 a3D Algorithm

The forensic cost of the a3D Algorithm for the worst-case distribution of κ

corruption sites is asymptotically the same as the one for best-case distribution:
O(κ · N + D + κ · lg D). This implies that the forensic cost for the average case
distribution of corruption site is the same.
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