
30

Forensic Analysis of Database Tampering

KYRIACOS E. PAVLOU and RICHARD T. SNODGRASS

University of Arizona

Regulations and societal expectations have recently expressed the need to mediate access to valu-

able databases, even by insiders. One approach is tamper detection via cryptographic hashing. This

article shows how to determine when the tampering occurred, what data was tampered with, and

perhaps, ultimately, who did the tampering, via forensic analysis. We present four successively

more sophisticated forensic analysis algorithms: the Monochromatic, RGBY, Tiled Bitmap, and

a3D algorithms, and characterize their “forensic cost” under worst-case, best-case, and average-

case assumptions on the distribution of corruption sites. A lower bound on forensic cost is derived,

with RGBY and a3D being shown optimal for a large number of corruptions. We also provide vali-

dated cost formulæ for these algorithms and recommendations for the circumstances in which each

algorithm is indicated.

Categories and Subject Descriptors: H.2.0 [Database Management]: General—Security, integrity,
and protection

General Terms: Algorithms, Performance, Security

Additional Key Words and Phrases: a3D algorithm, compliant records, forensic analysis algorithm,

forensic cost, Monochromatic algorithm, Polychromatic algorithm, RGBY algorithm, Tiled Bitmap

algorithm.

ACM Reference Format:
Pavlou, K. E. and Snodgrass, R. T. 2008. Forensic analysis of database tampering. ACM Trans.

Datab. Syst. 33, 4, Article 30 (November 2008), 47 pages. DOI = 10.1145/1412331.1412342

http://doi.acm.org/10.1145/1412331.1412342

1. INTRODUCTION

Recent regulations require many corporations to ensure trustworthy long-
term retention of their routine business documents. The US alone has
over 10,000 regulations [Gerr et al. 2003] that mandate how business data
should be managed [Chan et al. 2004; Wingate 2003], including the Health
Insurance Portability and Accountability Act: HIPAA [1996], Canada’s PIPEDA

NSF grants IIS-0415101, IIS-0639106, and EIA-0080123 and a grant from Microsoft provided

partial support for this work.

Authors’ address: K. E. Pavlou and R. T. Snodgrass, Department of Computer Science, University

of Arizona, Tucson, AZ 85721-0077; email: {kpavlou, rts}@cs.arizona.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 0362-5915/2008/11-ART30 $5.00 DOI 10.1145/1412331.1412342 http://doi.acm.org/

10.1145/1412331.1412342

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 30, Publication date: November 2008.

30:2 • K. E. Pavlou and R. T. Snodgrass

[2000], Sarbanes-Oxley Act [2002], and PITAC’s advisory report on health
care [Agrawal et al. 2007]. Due to these and to widespread news coverage of
collusion between auditors and the companies they audit (e.g., Enron, World-
Com), which helped accelerate passage of the aforementioned laws, there has
been interest within the file systems and database communities about built-in
mechanisms to detect or even prevent tampering.

One area in which such mechanisms have been applied is audit log security.
The Orange Book [Department of Defense 1985] informally defines audit log
security in Requirement 4: “Audit information must be selectively kept and pro-
tected so that actions affecting security can be traced to the responsible party.
A trusted system must be able to record the occurrences of security-relevant
events in an audit log . . . Audit data must be protected from modification and
unauthorized destruction to permit detection and after-the-fact investigations
of security violations.”

The need for audit log security goes far beyond just the financial and med-
ical information systems mentioned previously. The 1997 U.S. Food and Drug
Administration (FDA) regulation “part 11 of Title 21 of the Code of Fed-
eral Regulations; Electronic Records; Electronic Signatures” (known affection-
ately as “21 CFR Part 11” or even more endearingly as “62 FR 13430”) re-
quires that analytical laboratories collecting data used for new drug approval
employ “user independent computer-generated time stamped audit trails”
[FDA 2003].

Audit log security is one component of more general record management
systems that track documents and their versions, and ensure that a previous
version of a document cannot be altered. As an example, digital notarization
services such as Surety (www.surety.com), when provided with a digital docu-
ment, generate a notary ID through secure one-way hashing, thereby locking
the contents and time of the notarized documents [Haber and Stornetta 1991].
Later, when presented with a document and the notary ID, the notarization
service can ascertain whether that specific document was notarized, and if so,
when.

Compliant records are those required by myriad laws and regulations to fol-
low certain “processes by which they are created, stored, accessed, maintained,
and retained” [Gerr et al. 2003]. It is common to use Write-Once-Read-Many
(WORM) storage devices to preserve such records [Zhu and Hsu 2005]. The
original record is stored on a write-once optical disk. As the record is modified,
all subsequent versions are also captured and stored, with metadata recording
the timestamp, optical disk, filename, and other information on the record and
its versions.

Such approaches cannot be applied directly to high-performance databases.
A copy of the database cannot be versioned and notarized after each transaction.
Instead, audit log capabilities must be moved into the DBMS. We previously
proposed an innovative approach in which cryptographically-strong one-way
hash functions prevent an intruder, including an auditor or an employee or
even an unknown bug within the DBMS itself, from silently corrupting the audit
log [Snodgrass et al. 2004]. This is accomplished by hashing data manipulated

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 30, Publication date: November 2008.

Forensic Analysis of Database Tampering • 30:3

by transactions and periodically validating the audit log database to detect
when it has been altered.

The question then arises, what do you do when an intrusion has been de-
tected? At that point, all you know is that at some time in the past, data some-
where in the database has been altered. Forensic analysis is needed to ascertain
when the intrusion occurred, what data was altered, and ultimately, who the
intruder is.

In this article, we provide a means of systematically performing forensic
analysis after an intrusion of an audit log has been detected. (The identification
of the intruder is not explicitly dealt with.) We first summarize the originally
proposed approach, which provides exactly one bit of information: has the au-
dit log been tampered with? We introduce a schematic representation termed
a corruption diagram for analyzing an intrusion. We then consider how addi-
tional validation steps provide a sequence of bits that can dramatically narrow
down the when and where. We examine the corruption diagram for this initial
approach; this diagram is central in all of our further analyses. We characterize
the forensic cost of this algorithm, defined as a sum of the external notarizations
and validations required and the area of the uncertainty region(s) in the cor-
ruption diagram. We look at the more complex case in which the timestamp of
the data item is corrupted, along with the data. Such an action by the intruder
turns out to greatly increase the uncertainty region. Along the way, we identify
some configurations that turn out not to improve the precision of the forensic
algorithms, thus helping to cull the most appropriate alternatives.

We then consider computing and notarizing additional sequences of hash
values. We first consider the Monochromatic Algorithm; we then present the
RGBY, Tiled Bitmap, and a3D Algorithms. For each successively more powerful
algorithm, we provide an informal presentation using the corruption diagram,
the algorithm in pseudocode, and then a formal analysis of the algorithm’s
asymptotic run time and forensic cost. We end with a discussion of related
and future work. The appendix includes an analysis of the forensic cost for the
algorithms, using worst-case, best-case, and average-case assumptions on the
distribution of corruption sites.

2. TAMPER DETECTION VIA CRYPTOGRAPHIC HASH FUNCTIONS

In this section, we summarize the tamper detection approach we previously
proposed and implemented [Snodgrass et al. 2004]. We just give the gist of our
approach, so that our forensic analysis techniques can be understood.

This basic approach differentiates two execution phases: online processing,
in which transactions are run and hash values are digitally notarized, and
validation, in which the hash values are recomputed and compared with those
previously notarized. It is during validation that tampering is detected, when
the just-computed hash value doesn’t match those previously notarized. The two
execution phases constitute together the normal processing phase as opposed
to the forensic analysis phase. Figure 1 illustrates the two phases of normal
processing.

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 30, Publication date: November 2008.

30:4 • K. E. Pavlou and R. T. Snodgrass

Fig. 1. Online processing (a) and Audit log validation (b).

In Figure 1(a), the user application performs transactions on the database,
which insert, delete, and update the rows of the current state. Behind the
scenes, the DBMS maintains the audit log by rendering a specified relation as a
transaction-time table. This instructs the DBMS to retain previous tuples dur-
ing update and deletion, along with their insertion and deletion/update time
(the start and stop timestamps), in a manner completely transparent to the
user application [Bair et al. 1997]. An important property of all data stored
in the database is that it is append-only: modifications only add information;
no information is ever deleted. Hence if old information is changed in any way,
then tampering has occurred. Oracle 11g supports transaction-time tables with
its workspace manager [Oracle Corporation 2007]. The Immortal DB project
aims to provide transaction time database support built into Microsoft SQL
Server [Lomet et al. 2005]. How this information is stored (in the log, in the re-
lational store proper, in a separate “archival store” [Ahn and Snodgrass 1988])
is not that critical in terms of forensic analysis, as long as previous tuples are
accessible in some way. In any case, the DBMS retains for each tuple hidden
Start and Stop times, recording when each change occurred. The DBMS en-
sures that only the current state of the table is accessible to the application,
with the rest of the table serving as the audit log. Alternatively, the table itself
could be viewed by the application as the audit log. In that case, the application
only makes insertions to the audited table; these insertions are associated with
a monotonically increasing Start time.

We use a digital notarization service that, when provided with a digital docu-
ment, provides a notary ID. Later, during audit log validation, the notarization
service can ascertain, when presented with the supposedly unaltered document
and the notary ID, whether that document was notarized, and if so, when.

On each modification of a tuple, the DBMS obtains a timestamp, computes
a cryptographically strong one-way hash function of the (new) data in the tuple
and the timestamp, and sends that hash value, as a digital document, to the
notarization service, obtaining a notary ID. The DBMS stores that ID in the
tuple.

Later, an intruder gets access to the database. If he changes the data or
a timestamp, the ID will now be inconsistent with the rest of the tuple. The

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 30, Publication date: November 2008.

Forensic Analysis of Database Tampering • 30:5

intruder cannot manipulate the data or timestamp so that the ID remains
valid, because the hash function is one-way. Note that this holds even when the
intruder has access to the hash function itself. He can instead compute a new
hash value for the altered tuple, but that hash value won’t match the one that
was notarized.

An independent audit log validation service later scans the database (as il-
lustrated in Figure 1(b)), hashes the data and the timestamp of each tuple, and
provides it with the ID to the notarization service, which then checks the no-
tarization time with the stored timestamp. The validation service then reports
whether the database and the audit log are consistent. If not, either or both
have been compromised.

Few assumptions are made about the threat model. The system is secure
until an intruder gets access, at which point he has access to everything: the
DBMS, the operating system, the hardware, and the data in the database.
We still assume that the notarization and validation services remain in the
trusted computing base. This can be done by making them geographically and
perhaps organizationally separate from the DBMS and the database, thereby
effecting correct tamper detection even when the tampering is done by highly
motivated insiders. (A recent FBI study indicates almost half of attacks were
by insiders [CSI/FBI 2005].)

The basic mechanism just described provides correct tamper detection. If
an intruder modifies even a single byte of the data or its timestamp, the inde-
pendent validator will detect a mismatch with the notarized document, thereby
detecting the tampering. The intruder could simply re-execute the transactions,
making whatever changes he wanted, and then replace the original database
with his altered one. However, the notarized documents would not match in
time. Avoiding tamper detection comes down to inverting the cryptographically-
strong one-way hash function. Refinements to this approach and performance
limitations are addressed elsewhere [Snodgrass et al. 2004].

A series of implementation optimizations minimize notarization service in-
teraction and speed up processing within the DBMS: opportunistic hashing,
linked hashing, and a transaction ordering list. In concert, these optimizations
reduce the run time overhead to just a few percent of the normal running time
of a high-performance transaction processing system [Snodgrass et al. 2004].
For our purposes, the only detail that is important for forensic analysis is that,
at commit time, the transaction’s hash value and the previous hash value are
hashed together to obtain a new hash value. Thus the hash value of each indi-
vidual transaction is linked in a sequence, with the final value being essentially
a hash of all changes to the database since the database was created. For more
details on exactly how the tamper detection approach works, please refer to
our previous paper [Snodgrass et al. 2004], which presents the threat model
used by this approach, discusses performance issues, and clarifies the role of
the external notarization service.

The validator provides a vital piece of information, that tampering has taken
place, but doesn’t offer much else. Since the hash value is the accumulation
of every transaction ever applied to the database, we don’t know when the
tampering occurred, or what portion of the audit log was corrupted. (Actually,

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 30, Publication date: November 2008.

30:6 • K. E. Pavlou and R. T. Snodgrass

Table I. Summary of Notation Used

Symbol Name Definition

CE Corruption event An event that compromises the database

The validation of the audit logVE Validation event
by the notarization service

The notarization of a documentNE Notarization event
(hash value) by the notarization service

lc Corruption locus data The corrupted data

tn Notarization time The time instant of a NE
tv Validation time The time instant of a VE
tc Corruption time The time instant of a CE

tl Locus time The time instant that lc was stored

IV Validation interval The time between two successive VEs

IN Notarization interval The time between two successive NEs

Temporal detection Finest granularity chosen to expressRt
resolution temporal bounds uncertainty of a CE

Spatial detection Finest granularity chosen to expressRs
resolution spatial bounds uncertainty of a CE

Time of most recent The time instant of the last NE whosetRVS
validation success revalidation yielded a true result

tFVF Time of first validation failure Time instant at which the CE is first detected

Upper bound of the spatial uncertaintyUSB Upper spatial bound
of the corruption region

Lower bound of the spatial uncertaintyLSB Lower spatial bound
of the corruption region

Upper bound of the temporal uncertaintyUTB Upper temporal bound
of the corruption region

Lower bound of the temporal uncertaintyLTB Lower temporal bound
of the corruption region

V Validation factor The ratio IV /IN

N Notarization factor The ratio IN /Rs

the validator does provide a very vague sense of when: sometime before now,
and where: somewhere in the data stored before now.)

It is the subject of the rest of this article to examine how to perform a forensic
analysis of a detected tampering of the database.

3. DEFINITIONS

We now examine tamper detection in more detail. Suppose that we have just
detected a corruption event (CE), which is any event that corrupts the data
and compromises the database. (Table I summarizes the notation used in this
article. Some of the symbols are introduced in subsequent sections.)

The corruption event could be due to an intrusion, some kind of human inter-
vention, a bug in the software (be it the DBMS or the file system or somewhere
in the operating system), or a hardware failure, either in the processor or on
the disk. There exists a one-to-one correspondence between a CE and its cor-
ruption time (tc), which is the actual time instant (in seconds) at which a CE
has occurred.

The CE was detected during a validation of the audit log by the notarization
service, termed a validation event (VE). A validation can be scheduled (that is,

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 30, Publication date: November 2008.

Forensic Analysis of Database Tampering • 30:7

is periodic) or could be an ad hoc VE. The time (instant) at which a VE occurred
is termed the time of validation event, and is denoted by tv. If validations are
periodic, the time interval between two successive validation events is termed
the validation interval, or IV . Tampering is indicated by a validation failure,
in which the validation service returns false for the particular query of a hash
value and a notarization time. What is desired is a validation success, in which
the notarization service returns true, stating that everything is OK: the data
has not been tampered with.

The validator compares the hash value it computes over the data with the
hash value that was previously notarized. A notarization event (NE) is the no-
tarization of a document (specifically, a hash value) by the notarization service.
As with validation, notarization can be scheduled (is periodic) or can be an
ad hoc notarization event. Each NE has an associated notarization time (tn),
which is a time instant. If notarizations are periodic, the time interval be-
tween two successive notarization events is termed the notarization interval,
or IN .

There are several variables associated with each corruption event. The
first is the data that has been corrupted, which we term the corruption locus
data (lc).

Forensic analysis involves temporal detection, the determination of the cor-
ruption time, tc. Forensic analysis also involves spatial detection, the determi-
nation of where, that is, the location in the database of the data altered in a CE.
(Note that the use of the adjective “spatial” does not refer to a spatial database,
but rather where in the database the corruption occurred.)

Recall that each transaction is hashed. Therefore, in the absence of other
information, such as a previous dump (copy) of the database, the best a forensic
analysis can do is to identify the particular transaction that stored the data
that was corrupted. Instead of trying to ascertain the corruption locus data,
we will instead be concerned with the locus time (tl), the time instant that
locus data (lc) was originally stored. The locus time specifically refers to the
time instant when the transaction storing the locus data commits. (Note that
here we are referring to the specific version of the data that was corrupted.
This version might be the original version inserted by the transaction, or a
subsequent version created through an update operation.) Hence the task of
forensic analysis is to determine two times, tc and tl .

A CE can have many lcs (and hence, many tl s) associated with it, termed
multi-locus: an intruder (hardware failure, etc.) might alter many tuples. A CE
having only one lc (such as due to an intruder hoping to remain undetected by
making a single, very particular change) is termed a single-locus CE.

The finest spatial granularity of the corrupted data would be an explicit
attribute of a tuple, or a particular timestamp attribute. However, this proves
to be costly and hence we define Rs, which is the finest granularity chosen to
express the uncertainty of the spatial bounds of a CE. Rs is called the spatial
detection resolution. This is chosen by the DBA.

Similarly, the finest granularity chosen by the DBA to express the uncer-
tainty of the temporal bounds of a CE is the temporal detection resolution,
or Rt .

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 30, Publication date: November 2008.

30:8 • K. E. Pavlou and R. T. Snodgrass

Fig. 2. Corruption diagram for a data-only single-locus retroactive corruption event.

4. THE CORRUPTION DIAGRAM

To explain forensic analysis, we introduce the Corruption Diagram, which is a
graphical representation of CE(s) in terms of the temporal-spatial dimensions
of a database. We have found these diagrams to be very helpful in understand-
ing and communicating the many forensic algorithms we have considered, and
so we will use them extensively in this article.

Definition. A corruption diagram is a plot in R
2 having its ordinate associ-

ated with real time and its abscissa associated with a partition of the database
according to transaction time. This diagram depicts corruption events and is
annotated with hash chains and relevant notarization and validation events.
At the end of forensic analysis, this diagram can be used to visualize the
regions (⊂ R

2) where corruption has occurred.

Let us first consider the simplest case. During validation, we have detected
a corruption event. Though we don’t know it (yet), assume that this corruption
event is a single-locus CE. Furthermore, assume that the CE just altered the
data of a tuple; no timestamps were changed.

Figure 2 illustrates our simple corruption event. While this figure may ap-
pear to be complex, the reader will find that it succinctly captures all the
important information regarding what is stored in the database, what is

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 30, Publication date: November 2008.

Forensic Analysis of Database Tampering • 30:9

notarized, and what can be determined by the forensic analysis algorithm about
the corruption event.

The x-axis represents when the data are stored in the database. The database
was created at time 0, and is modified by transactions whose commit time
is monotonically increasing along the x-axis. (In temporal database terminol-
ogy [Jensen and Dyreson 1998], the x-axis represents the transaction time of
the data.) In this diagram, time moves inexorably to the right.

This axis is labeled “Where.” The database grows monotonically as tuples
are appended (recall that the database is append-only). As above, we designate
where a tuple or attribute is in the database by the time of the transaction
that inserted that tuple or attribute. The unit of the x-axis is thus (transaction-
commit) time. We delimit the days by marking each midnight, or, more accu-
rately, the time of the last transaction to commit before midnight.

A 45-degree line is shown and is termed the action line, since all the action in
the database occurs on this line. The line terminates at the point labeled “FVF,”
which is the validation event at which we first became aware of tampering. The
time of first validation failure (or tFVF) is the time at which the corruption is first
detected. (Hence the name: a corruption diagram always terminates at the VE
that detected the corruption event.) Note that tFVF is an instance of a tv, in that
tFVF is a specific instance of the time of a validation event, generically denoted
by tv. Also note that in every corruption diagram, tFVF coincides with the current
time. For example, in Figure 2 the VE associated with tFVF occurs on the action
line, at its terminus, and turns out to be the fourth such validation event, VE4.

The actual corruption event is shown as a point labeled “CE,” which always
resides above or on the action line, and below the last VE. If we project this
point onto the x-axis, we learn where (in terms of the locus of corruption, lc)
the corruption event occurred. Hence the x-axis, which being ostensibly commit
time, can also be viewed as a spatial dimension, labeled in locus time instants
(tl). This is why we term the x-axis the where axis.

The y-axis represents the temporal dimension (actual time-line) of the
database, labeled in time instants. Any point on the action line thus indicates
a transaction committing at a particular transaction time (a coordinate on the
x-axis) that happened at a clock time (the same coordinate on the y-axis). (In
temporal database terminology, the y-axis is valid time, and the database is a
degenerate bitemporal database, with valid time and transaction time totally
correlated [Jensen and Snodgrass 1994]. For this reason, the action line is al-
ways a 45-degree line. Projecting the CE onto the y-axis tells us when in clock
time the corruption occurred, that is, the corruption time, tc. We label the y-axis
with “When.” The diagram shows that the corruption occurred on day 22 and cor-
rupted an attribute of a tuple stored by a transaction that committed on day 16.

There is a series of points along the action line denoted with “NE.” These
(naturally) identify notarization events, when a hash value was sent to the
notarization service. The first notarization event, NE0, occurs at the origin,
when the database was first created. This event hashes the tuples containing
the database schema and notarizes that value.

Notarization event NE1 hashes the transactions occurring during the first
two days (here, the notarization interval, IN , is two days), linking these hash

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 30, Publication date: November 2008.

30:10 • K. E. Pavlou and R. T. Snodgrass

values together using linked hashing. This is illustrated with the upward-right-
pointing arrow with the solid black arrowhead originating at NE0 (since the
linking starts with the hash value notarized by NE0) and terminating at NE1.
Each transaction at commit time is hashed; here, the where (transaction commit
time) and when (wall-clock time) are synchronized; hence this occurs on the
diagonal. The hash value of the transaction is linked to the previous transaction,
generating a linked sequence of transactions that is associated with a hash
value notarized at midnight of the second day in wall-clock time and covering
all the transactions up to the last one committed before midnight (hence NE1

resides on the action line). NE1 sends the resulting hash value to the digital
notarization service.

Similarly, NE2 hashes two days’ worth of transactions, links it with the pre-
vious hash value, and notarizes that value. Thus the value that NE12 (at the
top right corner of Figure 2) notarizes is computed from all the transactions
that committed over the previous 24 days.

In general, all notarization events (except NE0) occur at the tip of a corre-
sponding black hash chain, each starting at the origin and cumulatively hashing
the tuples stored in the database between times 0 and that NE’s tn.

Also along the action line are points denoted with “VE.” These are validation
events for which a validation occurred. During VE1, which occurs at midnight
on the sixth day (here, the validation interval, IV , is six days), rehashes all the
data in the database in transaction commit order, denoted by the long right-
pointing arrow with a white arrowhead, producing a linked hash value. It sends
this value to the notarization service, which responds that this “document” is
indeed the one that was previously notarized (by NE3, using a value computed
by linking together the values from NE0, NE1, NE2, and NE3, each over two
days’ worth of transactions), thus assuring us that no tampering has occurred
in the first six days. (We know this from the diagram, because this VE is not
at the terminus.) In fact, the diagram shows that VE1, VE2, and VE3 were
successful (each scanning a successively larger portion of the database, the
portion that existed at the time of validation). The diagram also shows that
VE4, immediately after NE12, failed, since it is marked as FVF; its time tFVF is
shown on both axes.

In summary, we now know that at each of the VEs up to but not including FVF
succeeded. When the validator scanned the database as of that time (tv for that
VE), the hash value matched that notarized by the VE. Then, at the last VE, the
FVF, the hash value didn’t match. The corruption event, CE, occurred before
midnight of the 24th day, and corrupted some data stored sometime during
those twenty four days. (Note that as the database grows, more tuples must
be hashed at each validation. Given that any previous hashed tuple could be
corrupted, it is unavoidable to examine every tuple during validation.)

5. FORENSIC ANALYSIS

Once the corruption has been detected, a forensic analyzer (a program) springs
into action. The task of this analyzer is to ascertain, as accurately as possible,
the corruption region: the bounds on where and when of the corruption.

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 30, Publication date: November 2008.

Forensic Analysis of Database Tampering • 30:11

From the last validation event, we have exactly one bit of information: vali-
dation failure. For us to learn anything more, we have to go to other sources of
information.

One such source is a backup copy of the database. We could compare, tuple-
by-tuple, the backup with the current database to determine quite precisely
the where (the locus) of the CE. That would also delimit the corruption time
to after the locus time (one cannot corrupt data that has not yet been stored!).
Then, from knowing where and very roughly when, the chief information officer
(CIO) and chief security officer (CSO) and their staff can examine the actual
data (before and after values) to determine who might have made that change.

However, it turns out that the forensic analyzer can use just the database
itself to determine bounds on the corruption time and the locus time. The rest
of this article will propose and evaluate the effectiveness of several forensic
analysis algorithms.

In fact, we already have one such algorithm, the trivial forensic analysis
algorithm: on validation failure, return the upper-left triangle, delimited by
the when and action axes, denoting that the corruption event occurred before
tFVF and altered data stored before tFVF.

Our next algorithm, termed the Monochromatic Forensic Analysis Algorithm
for reasons that will soon become clear, yields the rectangular corruption region
illustrated in the diagram, with an area of 12 days2 (two days by six days). We
provide the trivial and Monochromatic Algorithms as an expository structure
to frame the more useful algorithms introduced later.

The most recent VE before FVF is VE3 and it was successful. This implies
that the corruption event has occurred in this time period. Thus tc is somewhere
within the last IV , which always bounds the when of the CE.

To bound the where, the Monochromatic Algorithm can validate prior por-
tions of the database, at times that were earlier notarized. Consider the very
first notarization event, NE1. The forensic analyzer can rehash all the trans-
actions in the database in order, starting with the schema, and then from the
very first transaction (such data will have a commit time earlier than all other
data), and proceeding up to the last transaction before NE1. (The transaction
timestamp stored in each tuple indicates when the tuple should be hashed; a
separate tuple sequence number stored in the tuple during online processing
indicates the order of hashing these tuples within a transaction.) If that de novo
hash value matches the notarized hash value, the validation result will be true,
and this validation will succeed, just like the original one would have, had we
done a validation query then. Assume likewise that NE2 through NE7 succeed
as well.

Of course, the original VE1 and VE2, performed during normal database
processing, succeeded, but we already knew that. What we are focusing on here
are validations of portions of the database performed by the forensic analyzer
after tampering was detected. Computing the multiple hash values can be done
in parallel by the forensic analyzer. The hash values are computed for each
transaction during a single scan of the database and linked in commit order.
Whenever a midnight is encountered as a transaction time, the current hash

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 30, Publication date: November 2008.

30:12 • K. E. Pavlou and R. T. Snodgrass

value is retained. When this scan is finished, these hash values can be sent to
the notarization service to see if they match.

Now consider NE8. The corruption diagram implies that the validation of
all transactions occurring during day 1 through day 16 failed. That tells us
that the where of this corruption event was the single IN interval between the
midnight notarizations of NE7 and NE8, that is, during day 15 or day 16. Note
also that all validations after that, NE9 through NE11, also fail. In general, we
observe that revisiting and revalidating the cumulative hash chains at past
notarization events will yield a sequence of validation results that start out
to be true and then at some point switch to false (TT. . .TF. . .FF). This single
switch from true to false is a consequence of the cumulative nature of the black
hash chains. We term the time of the last NE whose revalidation yielded a
true result (before the sequence of false results starts) the time of most recent
validation success (tRVS). This tRVS helps bound the where of the CE because the
corrupted tuple belongs to a transaction that committed between tRVS and the
next time the database was notarized (whose validation now evaluates to false).
tRVS is marked on the Where axis of the corruption diagram as seen in Figure 2.

In light of these observations, we define four values:

—the lower temporal bound: LTB := max(tFVF − IV , tRVS),

—the upper temporal bound: UTB := tFVF,

—the lower spatial bound: LSB := tRVS, and

—the upper spatial bound: USB := tRVS + IN .

These define a corruption region, indicated in Figure 2 as a narrow rectangle,
within which the CE must fall. This example shows that, when utilizing the
Monochromatic Algorithm, the notarization interval, here IN = 2 days, bounds
the where, and the validation interval, here IV = 6 days, bounds the when.
Hence for this algorithm, Rs = IN and Rt = IV . (More precisely,

Rt = UTB − LTB = min(IV , tFVF − tRVS),

due to the fact that Rt can be smaller than IV for late-breaking corruption
events, such as that illustrated in Figure 3.)

The CE just analyzed is termed a retroactive corruption event: a CE with
locus time tl appearing before the next to last validation event. Figure 3 illus-
trates an introactive corruption event: a CE with a locus time tl appearing after
the next to last validation event. In this figure, the corruption event occurred
on day 22, as before, but altered data on day 21 (rather than day 16 in the previ-
ous diagram). NE10 is the most recent validation success. Here, the corruption
region is a trapezoid in the corruption diagram, rather than a rectangle, due to
the constraint mentioned earlier that a CE must be on or above the action line
(tc ≥ tl). This constraint is reflected in the definition of LTB.

It is worth mentioning here that these CEs are ones that only corrupt data.
It is conceivable that a CE could alter the timestamp (transaction commit time)
of a tuple. This creates two new independent types of CEs, termed postdating
or backdating CEs, depending on how the timestamp was altered. An analysis
of timestamp corruption will be provided in Section 7.

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 30, Publication date: November 2008.

Forensic Analysis of Database Tampering • 30:13

Fig. 3. Corruption diagram for a data-only single-locus introactive corruption event.

6. NOTARIZATION AND VALIDATION INTERVALS

The two corruption diagrams we have thus far examined assumed a notariza-
tion interval of IN = 2 and validation interval of IV = 6. In this case, nota-
rization occurs more frequently than validation and the two processes are in
phase, with IV a multiple of IN . In such a scenario, we saw that the spatial
uncertainty is determined by the notarization interval, and the temporal un-
certainty by the validation interval. Hence we obtained tall, thin CE regions.
One naturally asks, what about other cases?

Say notarization events occur at midnight every two days, as before, and
validation events occur every three days, but at noon. So we might have
NE1 on Monday night, NE2 on Wednesday night, NE3 on Friday night,
VE1 on Wednesday at noon, and VE2 on Saturday at noon. VE1 rehashes
the database up to Monday night and checks that linked hash value with
the digital notarization service. It would detect tampering prior to Monday
night; tampering with a tl after Monday would not be detected by VE1. VE2

would hash through Friday night; tampering on Tuesday would then be de-
tected. Hence we see that a nonaligned validation just delays detection of
tampering. Simply speaking, one can validate only what one has previously
notarized.

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 30, Publication date: November 2008.

30:14 • K. E. Pavlou and R. T. Snodgrass

If the validation interval were shorter than the notarization interval, that
is IN = 2, IV = 1, say every day at midnight, then a validation on Tuesday at
midnight could again only check through Monday night.

Our conclusion is that the validation interval should be equal to or longer
than the notarization interval, should be a multiple of the notarization interval,
and should be aligned, that is, validation should occur immediately after nota-
rization. Thus we will speak of the validation factor V such that IV = V · IN .
As long as this constraint is respected, it is possible to change V , or both IV
and IN , as desired. This, however, will affect the size of the corruption region
and subsequently the cost of the forensic analysis algorithms, as emphasized
in Section 9.

7. ANALYZING TIMESTAMP CORRUPTION

The previous section considered a data-only corruption event, a CE that does
not change timestamps in the tuples. There are two other kinds of corruption
events with respect to timestamp corruption. In a backdating corruption event,
a timestamp is changed to indicate a previous time/date with respect to the
original time in the tuple. We term the time a timestamp was backdated to
the backdating time, or tb. It is always the case that tb < tl . Similarly, a post-
dating corruption event changes a timestamp to indicate a future time/date
with respect to the original commit time in the tuple, with the postdating time
(tp) being the time a timestamp was postdated to. It is always the case that
tl < tp. Combined with the previously introduced distinction of retroactive and
introactive, these considerations induce six specific corruption event types.

{
Retroactive

Introactive

}
×

⎧⎪⎪⎨
⎪⎪⎩

Data-only

Backdating

Postdating

⎫⎪⎪⎬
⎪⎪⎭

For backdating corruption events, we ask that the forensic analysis deter-
mine, to the extent possible, when (tc), where (tl), and to where (tb). Similarly,
for postdating corruption events, we want to determine tc, tl , and tp. This is
quite challenging given the only information we have, which is a single bit for
each query on the notarization service.

It bears mention that neither postdating nor backdating CEs involve move-
ment of the actual tuple to a new location on disk. Instead, these CEs consist
entirely of changing an insertion-date timestamp attribute. (We note in pass-
ing that in some transaction-time storage organizations the tuples are stored in
commit order. If an insertion date is changed during a corruption event, the fact
that that tuple is out of order provides another clue, one that we don’t exploit
in the algorithms proposed here.)

Figure 4 illustrates a retroactive postdating corruption event (denoted by
the forward-pointing arrow). On day 22, the timestamp of a tuple written on
day 10 was changed to make it appear that that tuple was inserted on day 14
(perhaps to avoid seeming that something happened on day 10). This tampering
will be detected by VE4, which will set the lower and upper temporal bounds
of the CE, shown in Figure 4 as LTB = 18 and UTB = 24. The Monochromatic

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 30, Publication date: November 2008.

Forensic Analysis of Database Tampering • 30:15

Fig. 4. Corruption diagram for postdating and backdating corruption events.

Algorithm will then go back and rehash the database, querying with the no-
tarization service at NE0, NE1, NE2, It will notice that NE4 is the most
recent validation success, because the rehashed sequence will not contain the
tampered tuple: its (altered) timestamp implies it was stored on day 14. Given
that the query at NE4 succeeds and that at NE5 fails, the tampered data must
have been originally stored sometime during those two days, thus bounding tl
to day 9 or day 10. This provides the corruption region shown as the left-shaded
rectangle in the figure.

Since this is a postdating corruption event, tp, the date the data was altered
to, must be after the local time, tl . Unfortunately, all subsequent revalidations,
from NE5 onward, will fail, then giving us absolutely no additional information
as to the value of tp. The “to” time is thus somewhere in the shaded trapezoid
to the right of the corruption region. (We show this on the corruption diagram
as a two-dimensional region, representing the uncertainty of tc and tp. Hence
the two shaded regions denote just three uncertainties, in tc, tl , and tp.)

Figure 4 also illustrates a retroactive backdating corruption event
(backward-pointing arrow). On day 22, the timestamp of a tuple written on

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 30, Publication date: November 2008.

30:16 • K. E. Pavlou and R. T. Snodgrass

day 14 was changed to make it appear that the tuple in question was inserted
on day 10 (perhaps to imply something happened before it actually did). This
tampering will be detected by VE4, which will set the lower and upper tem-
poral bounds of the CE (as in the postdating case). Going back and rehash-
ing the data at NE0, NE1, . . . the Monochromatic Algorithm will compute that
NE4 is the most recent validation success. The rehashing up to NE5 will fail
to match its notarized value, because the rehashed sequence will erroneously
contain the tampered tuple that was originally was stored on day 14. Given
that the query at NE4 succeeds and that at NE5 fails, the new timestamp
must be sometime within those two days, thus bounding tb to day 9 or day 10.
The left-shaded rectangle in the figure illustrates the extent of the imprecision
of tb.

Since this is a backdating corruption event, the date the data was originally
stored, tl , must be after the “to” time, tb. As with postdating CEs, all subse-
quent revalidations, from NE5 onward, will fail, then giving us absolutely no
additional information as to the value of tl . The corruption region is thus the
shaded trapezoid in the figure.

While we have illustrated backdating and postdating corruption events sepa-
rately, the Monochromatic Algorithm is unable to differentiate these two kinds
of events from each other, or from a data-only corruption event. Rather, the
algorithm identifies the RVS, the most recent validation success, and from that
puts a two-day bound on either tl or tb. Because the black link chains that are
notarized by NEs are cumulative, once one fails during a rehashing, all future
ones will fail. Thus future NEs provide no additional information concerning
the corruption event.

To determine more information about the corruption event, we have little
choice but to utilize to a greater extent the external notarization service. (Recall
that the notarization service is the only thing we can trust after an intrusion.)
At the same time, it is important to not slow down regular processing. We’ll
show how both are possible.

8. FORENSIC ANALYSIS ALGORITHMS

In this section we provide a uniform presentation and detailed analysis of foren-
sic analysis algorithms. The algorithms presented are the original Monochro-
matic Algorithm, the RGBY Algorithm, the Tiled Bitmap Algorithm [Pavlou
and Snodgrass 2006b], and the a3D Algorithm. Each successive algorithm in-
troduces additional chains during normal processing in order to achieve more
detailed results during forensic analysis. This comes at the increased expense of
maintaining—hashing and validating—a growing number of hash chains. We
show in Section 9 that the increased benefit in each case more than compensates
for the increased cost.

The Monochromatic Algorithm uses only the cumulative (black) hash chains
we have seen so far, and as such it is the simplest algorithm in terms of
implementation.

The RGBY Algorithm introduced here is an improvement of the original RGB
Algorithm [Pavlou and Snodgrass 2006a]. The main insight of the previously

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 30, Publication date: November 2008.

Forensic Analysis of Database Tampering • 30:17

Fig. 5. Corruption diagram for a backdating corruption event.

presented Red-Green-Blue forensic analysis algorithm (or simply, the RGB
Algorithm) is that during notarization events, in addition to reconstructing the
entire hash chain (illustrated with the long right-pointed arrows in prior cor-
ruption diagrams), the validator can also rehash portions of the database and
notarize those values, separately from the full chain. In the RGB Algorithm,
three new types chains are added, denoted with the colors red, green, and blue,
to the original (black) chain in the so-called Monochromatic Algorithm. These
hash chains can be computed in parallel; all consist of linked sequences of hash
values of individual transactions in commit order. While additional hash val-
ues must be computed, no additional disk reads are required. The additional
processing is entirely in main memory. The RGBY Algorithm retains the red,
green, and blue chains and adds a yellow chain. This renders the new algorithm
more regular and more powerful.

The Tiled Bitmap Algorithm extends the idea of the RGBY Algorithm of
using partial chains. It lays down a regular pattern (a tile) of such chains over
contiguous segments of the database. What is more, the chains in the tile form a
bitmap that can be used for easy identification of the corruption region [Pavlou
and Snodgrass 2006b].

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 30, Publication date: November 2008.

30:18 • K. E. Pavlou and R. T. Snodgrass

Fig. 6. The Monochromatic Algorithm.

The a3D Algorithm introduced here is the most advanced algorithm in the
sense that it does not lay repeatedly a “fixed” pattern of hash chains over the
database. Instead, the lengths of the partial hash chains change (decrease or
increase) as the transaction time increases, in such as way that at each point
in time a complete binary tree (or forest) of hash chains exists on top of the
database. This enables forensic analysis to be sped up significantly.

8.1 The Monochromatic Algorithm

We provide the pseudocode for the Monochromatic Algorithm in Figure 6. This
algorithm takes three input parameters, as indicated next. tFVF is the time of

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 30, Publication date: November 2008.

Forensic Analysis of Database Tampering • 30:19

first validation failure, that is, the time at which the corruption of the log is
first detected. In every corruption diagram, tFVF coincides with the current time.
IN is the notarization interval, while V, called the validation factor, is the ratio
of the validation interval to the notarization interval (V = IV /IN , V ∈ N). The
algorithm assumes that a single CE transpires in each example. The resolutions
for the Monochromatic Algorithm are Rs = IN and Rt = IV = V · IN . (The
DBA can set the resolutions indirectly, by specifying IN and V .) Hence if a CE
involving a timestamp transpires and tl and tp/tb are both within the same IN ,
such a (backdating or postdating) corruption cannot be distinguished from a
data-only CE, and hence it is treated as such.

The algorithm first identifies tRVS, the time of most recent validation success,
and from that puts an IN bound on either tl or tb. Then depending on the value
of tRVS it distinguishes between introactive and retroactive CEs. It then reports
the (where) bounds on tl and tp (or tb) of both data-only and timestamp CEs,
since it cannot differentiate between the two. These bounds are given in terms
of the upper spatial bound (USB) and the lower spatial bound (LSB). The time
interval where time of corruption tc lies is bounded by the lower and upper
temporal bounds (LTB and UTB).

It is worth noting here that the points (tl , tc) and (tp, tc)—or (tb, tc)—
must always share the same when-coordinate, since both refer to a single CE.
The algorithm reports multiple possibilities for the CEs, since the algorithm
can’t differentiate between all the different types of corruption. Also, the bounds
are given in a way that is readable and quite simple. The results are captured
by a system of linear inequalities whose solution conveys the extent of the cor-
ruption region.

The find tRVS function, which is used on line 2 in the Monochromatic procedure
of Figure 6, finds the time of most recent validation success by performing
binary search on the cumulative black chains. It revisits past notarizations
and, by validating them, it decides whether to recurse to the right or to the left
of the current chain.

In this algorithm we use an array BlackChains of Boolean values to store the
results of validation during forensic analysis. The Boolean results are indexed
by the subscript of the notarization event considered: the result of validat-
ing NEi is stored at index i, that is, BlackChains[i]. Since we do not wish to
precompute all this information, the validation results are computed lazily,
that is, whenever needed. On line 7 we report only if there is schema corrup-
tion and no other special checks are made in order to deal with this special case
of corruption.

Note that on lines 6 and 11 these are the only possibilities for the validation
results of the NEs in question. No other case ever arises, since the results of
the validations of the cumulative black chains, considered from right to left,
always follow a (single) change from false to true.

The running time of the Monochromatic Algorithm is dominated by the sim-
ple binary search required to find tRVS. It ultimately depends on the number
of cumulative black hash chains maintained. Hence the running time of the
Monochromatic Algorithm is O(lg(tFVF/IN)).

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 30, Publication date: November 2008.

30:20 • K. E. Pavlou and R. T. Snodgrass

Fig. 7. Corruption diagram for the RGBY Algorithm.

8.2 The RGBY Algorithm

We now present an improved version of the RGB Algorithm that we call the
RGBY Algorithm. RGBY has a more regular structure and avoids some of RGB’s
ambiguities. The RGBY chains are of the same types as in the original RGB Al-
gorithm. The black cumulative chains are used in conjunction with new partial
hash chains, that is, chains that do not extend all the way back to the origin
of the corruption diagram. Another difference is that these partial chains are
evaluated and notarized during a validation scan of the entire database and,
for this reason, they are shown running parallel to the Where axis (instead of
being on the action axis) in Figure 7. The introduction of the partial hash chains
will help us deal with more complex scenarios, for example, multiple data-only
CEs or CEs involving timestamp corruption.

The partial hash chains in RGB are computed as follows. (We assume
throughout that the validation factor V = 2 and IN is a power of two.)

— for odd i the Red chain covers NE2·i−3 through NE2·i−1.

— for even i the Blue chain covers NE2·i−3 through NE2·i−1.

— for even i the Green chain covers NE2·i−2 through NE2·i.

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 30, Publication date: November 2008.

Forensic Analysis of Database Tampering • 30:21

In this new algorithm we simply introduce a new Yellow chain, computed as
follows:

— for odd i the Yellow chain covers NE2·i−2 through NE2·i.

In Figure 7 the colors of the partial hash chains are denoted along the When
axis with the labels Red, Green, Blue, and Yellow (the figure is still in black and
white). We use subscripts to differentiate between chains of the same color in
the corruption diagram. Each chain takes its subscript from the corresponding
VE. In the pseudocode we use instead a two-dimensional array called Chain. It
is indexed as Chain[color, number], where number refers to the subscript of the
chain, while color is an integer between 0 and 3 with the following meaning:

— if color = 0 then Chain refers to a Blue chain.

— if color = 1 then Chain refers to a Green chain.

— if color = 2 then Chain refers to a Red chain.

— if color = 3 then Chain refers to a Yellow chain.

We also introduce the following comparisons:

Chain[color1, number1] ≺ Chain[color2, number2] iff
(number1 < number2) ∨ (number1 = number2 ∧ color1 < color2),

Chain[color1, number1] = Chain[color2, number2] iff
(number1 = number2 ∧ color1 = color2).

The algorithm requires that V = 2. This is because the chains are divided
into two groups: red/yellow, added at odd-numbered validation events, and
blue/green, added at even-numbered validation events. Note that the find tRVS

routine from the Monochromatic Algorithm is used here. As with the Monochro-
matic Algorithm, the spatial detection resolution is equal to the validation inter-
val (Rs = IV) and the temporal detection resolution is equal to the notarization
interval (Rt = IN).

In this algorithm (shown in Figure 8), as well as in all subsequent ones, in-
stead of using an array BlackChains to store the Boolean values of the validation
results, as that used in find tRVS, we use a helper function called val check. This
function takes a hash chain as a parameter and returns the Boolean result of
the validation of that chain.

During the normal processing, the cumulative black hash chains are evalu-
ated and notarized. During a VE, the entire database is scanned and validated,
while the partial (colored) hash chains are evaluated and notarized.

On line 2 we initialize a set that accumulates all the corrupted granules
(in this case, days). Line 3 computes tRVS and lines 4–7 set the temporal and
spatial bounds of the oldest corruption. On lines 9–10, we compute what is
the most recent partial chain (lastChain), while on lines 11–13 we compute
the rightmost chain covering the oldest corruption (currChain). In Figure 7 the
oldest corruption is in the IN covering days 9 and 10, so currChain is Yellow3.
The “while” loop on line 14 linearly scans all the partial chains to the right of
tRVS, that is, from currChain to lastChain, and checks for the pattern . . .TFFT. . .

in order to identify the corrupted granules. To achieve this, the algorithm must
check the validation result of chainChain and its immediate successor. Lines

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 30, Publication date: November 2008.

30:22 • K. E. Pavlou and R. T. Snodgrass

Fig. 8. The RGBY Algorithm.

15–18 compute this successor denoted by succChain. If both the validation of
currChain and succChain return false, then we have located a corruption, and
the appropriate granule is added to Cset (lines 21–23).

The RGBY Algorithm was designed so that it attempts to find more than
one CE. However, the main disadvantage of the algorithm is that it cannot
distinguish between three contiguous corruptions and two corruptions with an
intervening IN between them. In both cases, the pattern of truth values of
the validated partial chains is . . . TFFFFT Hence in the latter case, the
algorithm will report all three IV × IN rectangles as corrupted. This is not
desirable because it introduces a false positive result. (Appendix B explains
this in more detail.)

The running time of the RGBY Algorithm is O(lg(tFVF/IN) + (tFVF/IV)) =
O(tFVF/IV). The lg(tFVF/IN) term arises from invoking find tRVS. The (tFVF/IV) term
is due to the linear scan of all the colored partial chains, which in the worst
case would be twice the number of VEs.

8.3 The Tiled Bitmap Algorithm

Appendix C presents an improved version of the Polychromatic Algo-
rithm [Pavlou and Snodgrass 2006a] called the Tiled Bitmap Algorithm. The

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 30, Publication date: November 2008.

Forensic Analysis of Database Tampering • 30:23

Fig. 9. Corruption diagram for the Tiled Bitmap Algorithm.

original Polychromatic Algorithm utilized multiple Red and Blue chains while
retaining the Green chain from the RGB Algorithm. These two kinds of chains
and their asymmetry complicated this algorithm. The Tiled Bitmap Algorithm
relocates these chains to be more symmetric, resulting in a simpler pattern.

The algorithm also uses a logarithmic number of chains for each tile of du-
ration IN . The spatial resolution in this case can thus be arbitrarily shrunk
with the addition of a logarithmic number of chains in the group. The result is
that, for this algorithm, and not for the previous two, Rs can be less than IN .
More specifically, the number of chains that constitute a tile is 1 + lg(IN/Rs).
We denote the ratio IN/Rs by N , the notarization factor. We require N to be a
power of 2. (NB: In the previous two algorithms N = 1.) This implies that for
all the algorithms, IN = N · Rs and Rt = V · IN = V · N · Rs . Also, because of
the fact that Rs can vary, we define D to be the number of Rs units in the time
interval from the start until tFVF, that is, D = tFVF/Rs.

As an example, in Figure 9, Rs = 1, IN = N = 24 = 16, V = 2, Rt = 32,
and D = 64. If we wanted an Rs of, say, 90 minutes (1/16 day), we would need

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 30, Publication date: November 2008.

30:24 • K. E. Pavlou and R. T. Snodgrass

another four chains: 1 + lg(IN/Rs) = 1 + lg(16/ 1
16

) = 9. (Appendix C explains
this figure in much more detail.)

In all of the algorithms presented thus far, discovering corruption (CEs or
postdating intervals) to the right of tRVS is achieved using a linear search that
visits potentially all the hash chains in this particular interval. Due to the
nature of these algorithms, this linear search is unavoidable. The Tiled Bitmap
algorithm reduces the size of the linear search by just iterating on the longest
partial chains (c(0)) that cover each tile. The running time of the Tiled Bitmap
Algorithm is shown in Appendix C to be O(D).

In addition, the Tiled Bitmap Algorithm may handle multiple CEs but it
potentially overestimates the degree of corruption by returning the candidate
set with granules which may or may not have suffered corruption (false pos-
itives). The number of false positives in the Tiled Bitmap Algorithm could be
significantly higher than the number of false positives observed in the RGBY
Algorithm. Figure 9 shows that the Tiled Bitmap Algorithm will produce a can-
didate set with the following granules (in this case, days): 19, 20, 23, 24, 27,
28, 31, 32. The corruptions occur on granules 19, 20, and 27, while the rest are
false positives. In order to overcome these limitations, we introduce the next
algorithm.

8.4 The a3D Algorithm

We have seen that the existence of multi-locus CEs can be better handled by
summarizing the sites of corruption via candidate sets, instead of trying to find
their precise nature. We proceed now to develop a new algorithm that avoids
the limitations of all the previous algorithms and at the same time handles the
existence of multi-locus CEs successfully. We call this new algorithm the a3D
Algorithm for reasons that will become obvious when we analyze it. The a3D Al-
gorithm is illustrated in Figure 10. Even though the corruption diagram shows
only VEs, it is implicit that these were preceded immediately by notarization
events (not shown). The difference between the Tiled Bitmap Algorithm and
a3D is that, in the latter, each chain is contiguous, that is, it has no gaps. It
was the gaps that necessitated the introduction of the candidate sets. Figure 10
shows that the corruption regions in the a3D Algorithm each correspond to a
single corruption. All existing corruptions at granules 4, 7, and 10 are identified
with no false positives. The difference between a3D and the other algorithms
is a slowly increasing number of chains at each validation. In Figure 10, the
chains are named using letters B for the black cumulative chains, and P for the
partial chains. Observe that there is one diagonal full chain at VE1, and two
partial chains. VE2 has a full black chain (B2, with the subscript the day—Rs
unit—of the validation event), retains the chains (P2,0,2 and P2,0,3), and adds
a longer partial chain (P2,1,1). (We will explain these three subscripts shortly.)
We add another chain at VE4 (P4,2,1) and another chain at VE8 (P8,3,1).

The a3D Algorithm assumes that, given an Rs, tFVF 	= 0, D = tFVF/Rs, and
V = 1 (which implies that Rt = IN).

The beauty of this algorithm is that it decides what chains to add based on the
current day/Rs unit. In this way, the number of chains increases dynamically,

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 30, Publication date: November 2008.

Forensic Analysis of Database Tampering • 30:25

Fig. 10. Corruption diagram for the a3D Algorithm.

which allows us to perform binary search in order to locate the corruption. If
we dissociate the decision of how many chains to add from the current day, then
we are forced to repeat a certain fixed pattern of hash chains, which results in
the drawbacks seen in the Tiled Bitmap Algorithm.

During normal processing, the algorithm adds partial hash chains (shown
with white-tipped arrows). These partial chains are labeled as P with three
subscripts. The first subscript is the number m of the current VE, such as P4,2,1

added at VE4. The second subscript, level, identifies the (zero-based) vertical
position of the chain P within a group of chains added at VEm. This subscript
also provides the length of the partial chain as 2level. For example, chain P4,2,1

has length 22 = 4. The final subscript, comp (for component), determines the
horizontal position of the chain: all chains within a certain level have a position
comp that ranges from 0 to 2level−1. For example, hash chain P4,2,1 is the second
chain at level 2. The first chain at level 2 is P2,2,0, which just happens to be the
black chain B2; the third chain at this level is P6,2,2; and the fourth chain is
P8,2,3.

The addition of partial hash chains allows the algorithm to perform a
bottom-up creation of a binary tree whose nodes represent the hash chains (see
Figure 11). Depending on when the CE transpires, there maybe nodes missing
from the complete tree, so in reality we have multiple binary trees that are
subtrees of the next complete tree. In Figure 11, the nodes/chains missing are
those in the shaded region, while there are three complete subtrees each rooted
at B4 = P4,3,0, P6,2,2, and P7,1,6, respectively.

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 30, Publication date: November 2008.

30:26 • K. E. Pavlou and R. T. Snodgrass

Fig. 11. The a3D Algorithm performs a bottom-up creation of a binary tree.

The a3D Algorithm is given in Figure 12. Note that when val check is called
with a hash chain P [m, level, comp] for whom m is a power of 2, level ≥ lg(N),
and comp = 0, these chains are actually black chains whose validation result
can be obtained through BlackChains[m]. All black chains appear only on the
leftmost path from the root to the leftmost child; however, not all chains on this
path are black.

The a3D function evaluates the height of the complete tree, regardless of
whether we have a single tree or a forest (line 5). Then it calls the recursive
a3D helper function, which performs the actual search. In the recursive part of
a3D helper, the function calls itself (lines 8–9, 11–12) with the appropriate hash
(sub-)chain only if the current chain does not exist or evaluates to false (line 6).
In this case, we are relying on short-circuit Boolean evaluation for correctness.
All of the compromised granules are accumulated into Cset .

The running time of the algorithm is dominated by the successive calls to
the recursive function a3D helper. The worst-case running time is captured by
the recursion T (D) = 2 · T (D/2) + O(1), that is, we have to recurse to both the
left and right children. The solution to this recursion gives us T (D) = �(D),
so the algorithm is linear in the number of Rs units. In the best case, the
algorithm recurses on only one of the two children, and thus the running time is
O(lg D).

The algorithm takes its name from the fact that, for a given D, the algorithm
makes in the worst case 3·D number of notarization contacts, as in the following:

Total Number of Notarizations = number of chains in tree
+ number of black chains not in tree

= N (D)

+ D/N − (1 +
lg(D/N)�) (1)

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 30, Publication date: November 2008.

Forensic Analysis of Database Tampering • 30:27

Fig. 12. The a3D Algorithm.

where

N (D) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, D = 0 (i)

2i+1 − 1 = 2 · D − 1, D = 2i, i ∈ N, D > 0 (ii)

N (2
lg D�) + N (D − 2
lg D�), D mod 2 = 0 ∧ D 	= 2i, D > 0 (iii)
N (D − 1), D mod 2 = 1 (iv)

N is the number of hash chains, which is the same as the number of nodes in
the complete binary tree or the forest.

Case (iv) of this recursion shows that, for odd D, N (D) is always equal to the
number of hash chains of the previous even D. For this reason, we only need
consider the case when D is even. What case (iii) essentially does at each stage
of the recursion is to decompose D into a sum of powers of 2; each such power
under the action of N yields 2i+1 − 1 notarizations. (This is also the number of

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 30, Publication date: November 2008.

30:28 • K. E. Pavlou and R. T. Snodgrass

nodes in the subtree of height i.) Thus to evaluate this recurrence we examine
the binary representation of D. Each position in the binary representation
where there is a ‘1’ corresponds to a power of 2 with decimal value 2i. Summing
the results of each one of these decimal values under the action of N gives
the desired solution to N (D). This solution can be captured mathematically
using Iverson brackets [Graham et al. 2004, p. 24] (here, & is a bit-wise AND
operation):

N (D) =

lg D�∑
i=0

(2i+1 − 1) · [D&2i 	= 0].

The total number of notarizations is bounded above by the number 3 · D. This
loose bound can be derived by simply assuming that the initial value of D is a
power of 2. Assuming also that the complete binary tree has height H = lg D,
then

Total Number of Notarizations ≤ 2 · D − 1 + D/N − (1 +
lg(D/N)�)

< 2 · D + D/N minimum value of N = 1

≤ 3 · D.

8.5 Summary

We have presented four forensic analysis algorithms: Monochromatic, RGBY,
Tiled Bitmap, and a3D.

Assuming worst case scenarios, the running time of the Monochromatic Al-
gorithm is O(lg D); for the rest it is O(D). Each of these algorithms manages
the trade-off between effort during normal processing and effort during foren-
sic analysis; the algorithms differ in the precision of their forensic analysis.
So, while the Monochromatic Algorithm has the fastest running time, it offers
no information beyond the approximate location of the earliest corruption. The
other algorithms work harder, but also provide more precise forensic informa-
tion. In order to more comprehensively compare these algorithms, we desire to
capture this tradeoff and resulting precision in a single measure.

9. FORENSIC COST

We define the forensic cost as a function of D (expressed as the number of Rs
units), N , the notarization factor (with IN = N · Rs), V , the validation factor
(with V = IV /IN), and κ, the number of corruption sites (the total number of tl ’s,
tb’s, and tp’s). A corruption site differs from a CE because a single timestamp
CE has two corruption sites.

FC(D, N , V , κ) = α · NormalProcessing(D, N , V)

+ β · ForensicAnalysis(D, N , V , κ)

+ γ · AreaP (D, N , V , κ) + δ · AreaU (D, N , V , κ)

Forensic cost is a sum of four components, each representing a cost that we
would like a forensic analysis algorithm to minimize, and each weighted by a
separate constant factor: α, β, γ , and δ. The first component, NormalProcessing,

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 30, Publication date: November 2008.

Forensic Analysis of Database Tampering • 30:29

is the number of notarizations and validations made during normal processing
in a span of D days. The second component, ForensicAnalysis, is the cost of foren-
sic analysis in terms of the number of validations made by the algorithm to yield
a result. Note that this is different from the running time of the algorithm. The
rationale behind this quantity is that each notarization or validation involves
an interaction with the external digital notarization service, which costs real
money.

The third and fourth components informally indicate the manual labor re-
quired after automatic forensic analysis to identify exactly where and when
the corruption happened. This manual labor is very roughly proportional to the
uncertainty of the information returned by the forensic analysis algorithm. It
turns out that there are two kinds of uncertainties, formalized as different ar-
eas (to be described shortly). That these components have different units than
the first two components is accommodated by the weights.

In order to make the definition of forensic cost applicable to multiple corrup-
tion events, we need to distinguish between three regions within the corruption
diagram. These different areas are the result of the forensic analysis algorithm
identifying the corrupted granules. This distinction is based on the information
content of each type.

— AreaP or corruption positive area is the area of the region in which the foren-
sic algorithm has established that corruption has definitively occurred.

— AreaU or corruption unknown area is the area of the region in which we don’t
know if or where a corruption has occurred.

— AreaN or corruption negative area is the area of the region in which the
forensic algorithm has established that no corruption has occurred.

Each corruption site is associated with these three types of regions of varying
area. More specifically, each site induces a partition of the horizontal trape-
zoid bound by the latest validation interval into three types of forensic area.
Figure 13 shows this for a specific example of the RGBY Algorithm with two cor-
ruption events (CE1, CE2) and three corruption sites (κ = 3). For each corrup-
tion site, the sum of the areas, denoted by TotalArea = AreaP + AreaU + AreaN ,
corresponds to the horizontal trapezoid as shown. Hence TotalArea = (V · N) ·
(D − (1/2) · V · N). Moreover, the forensic cost is a function of the number of
corruption sites κ, each associated with the three areas AreaP , AreaU , AreaN .
Hence in evaluating the forensic cost of a particular algorithm, we have to com-
pute AreaP and AreaU for all κ, for example, AreaP (D, N , V , κ) = ∑

κ AreaP .
The stronger the algorithm, the less costly it is, with smaller AreaP and AreaU .
It is also desirable that AreaN is large but, since TotalArea is constant, this is
achieved automatically by minimizing AreaP and AreaU .

We now proceed to compute the forensic cost of our algorithms. We ignore
the weights, since these constant factors will not be relevant when we use order
notation.

9.1 The Monochromatic Algorithm

In the Monochromatic Algorithm, the spatial detection resolution (Rs) is the
notarization interval, IN , that is, N = 1. Recall that the Monochromatic

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 30, Publication date: November 2008.

30:30 • K. E. Pavlou and R. T. Snodgrass

Fig. 13. Three types of forensic area for RGBY and κ = 3.

Algorithm can only detect a single corruption site, even though there could
be κ of them in a single corruption diagram.

NormalProcessingmono = Number of Notarizations
+ Number of Validations

= D + D/V

In forensic analysis calculations, we require D to be a multiple of V because
tFVF is a multiple of IV and only at that time instant can the forensic analysis
phase start. ForensicAnalysismono = 2 · lg D, since tRVS is found via binary search
on the black chains; the factor of two is because a pair of contiguous chains must
be consulted to determine which direction to continue the search.

For the detected corruption site, AreaP has a different shape depending on
the position of the corruption site. As the corruption site moves from left to
right (from earlier days to later days), the shape of the region changes from
rectangular, to trapezoidal, and finally, to triangular. However, since we are
dealing with worst-case scenario, the upper bound of AreaP is V · N 2 = V .
Figure 14 shows such a worst-case distribution of κ corruption sites and how
each site partitions the horizontal trapezoid into different forensic areas. In
the worst-case, the corruption detected occurs within the first IN , which makes
AreaP = 0 of all other corruption sites because they cannot be detected. This

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 30, Publication date: November 2008.

Forensic Analysis of Database Tampering • 30:31

Fig. 14. Three types of forensic area for Monochromatic and κ corruption sites.

Table II. The Forensic Areas for 1 ≤ κ ≤ D Corruption Sites

(Monochromatic)

Corruption Sites

(1 ≤ κ ≤ D)
AreaP AreaU AreaN

1 V 0 TotalArea − V

2 0 TotalArea − V V

.

.

.
.
.
.

.

.

.
.
.
.

κ 0 TotalArea − V V

results in:

AreaU = (κ − 1) · (TotalArea − V)

= (κ − 1) · [V · (D − (1/2) · V) − V]

= (κ − 1) · V · (D − (1/2) · V − 1).

as shown in Table II.
Hence the forensic cost for the Monochromatic Algorithm is as follows:

FCmono(D, IN , V , κ) = (D + D/V + 2 · lg D)

+
(

V +
κ∑

i=2

(TotalArea − V)
)
.

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 30, Publication date: November 2008.

30:32 • K. E. Pavlou and R. T. Snodgrass

Table III. Summary of the Forensic Cost Assuming

Worst-case Distribution of Corruption Sites

Worst-Case Forensic Cost
Algorithm

(κ = 1) (1 < κ ≤ D)

Monochromatic O(V + D) O(κ · V · D)

RGBY O(κ + D)

Tiled Bitmap O(κ · V · N2 + (D · lg N)/N + lg D)

a3D O(κ · N + D + κ · lg D)

We consider the forensic cost of a single corruption site (κ = 1) separately
from the cases where κ > 1, the reason being that the area breakdown
is different in the two cases. Note that for κ = 1,

∑κ
i=2(TotalArea − V)

is an empty sum, equal to zero.

FCmono(D, 1, V , 1) = (D + D/V + 2 · lg D) + V
= O(V + D)

FCmono(D, 1, V , κ ≥ 2) = (D + D/V + 2 · lg D)

+ (V + (κ − 1) · (TotalArea − V))

= O(κ · V · D) (2)

In order to arrive at the order notation we make, here and in the following
sections, the simplifying assumptions that 1 ≤ V ≤ κ ≤ D and 1 ≤ N ≤ κ ≤ D.

9.2 Summary

In Appendix D we perform a similar worst-case forensic cost analysis for the
RGBY, Tiled Bitmap, and a3D Algorithms; Appendices E and F provide best-
case and average-case analyses, respectively, for all four algorithms.

We summarize the forensic cost for worst-case distribution of corruption sites
of the algorithms in Table III. Tables IV and V summarize the forensic cost for
average-case and best-case forensic cost, respectively. In the first two tables,
we consider the number of corruptions κ = 1 separately from 1 < κ ≤ D for the
Monochromatic Algorithm. Recall that the forensic cost is a function of D, N ,
V , and κ and that for some of the algorithms N or V may be fixed.

In Table III we see in the rightmost column that Monochromatic depends on
the product of κ and D, whereas RGBY depends on their sum. Tiled Bitmap has
a complex combination of N and V and a3D adds a lg D multiplier to κ. If we
consider the case when κ = 1 for all algorithms, we see that they are generally
linear in D, except for Tiled Bitmap.

Observe that Table IV (average case) mirrors almost exactly the forensic
cost of the worst-case distribution shown in Table III. This is not the case with
Table V where the Monochromatic Algorithm is very cheap under best-case dis-
tribution and thus has a clear advantage over Tiled Bitmap and a3D. However,

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 30, Publication date: November 2008.

Forensic Analysis of Database Tampering • 30:33

Table IV. Summary of the Forensic Cost Assuming

Average-case Distribution of Corruption Sites

Average-Case Forensic Cost
Algorithm

(κ = 1) (1 < κ ≤ D)

Monochromatic O(V + D) O(κ · V · D)

RGBY O(κ + D)

Tiled Bitmap O(κ · V · N lg 3 + (D · lg N)/N + lg D)

a3D O(κ · N + D + κ · lg D)

Table V. Summary of the Forensic Cost Assuming

Best-case Distribution of Corruption Sites

Best-Case Forensic Cost
Algorithm

(1 ≤ κ ≤ D)

Monochromatic O(κ · V + D)

RGBY O(κ + D)

Tiled Bitmap O(κ · V · N + (D · lg N)/N + lg D)

a3D O(κ · N + D + κ · lg D)

this only happens in the unlikely case where the position of the κ corruption
sites allows the Monochromatic Algorithm to definitively identify them all.

In Table V (best case), for the Monochromatic Algorithm, we see that the
forensic cost is lowest under best-case distribution, while for average-case and
worst-case the forensic costs are asymptotically the same. Specifically, the num-
ber of granules D starts as an additive factor O(κ · V + D) in the best case and
becomes a multiplicative factor O(κ · V · D) in the average and worst cases. The
forensic cost of the RGBY algorithm under all assumed distributions remains
the same and is equal O(κ + D). The forensic cost of the Tiled Bitmap Algo-
rithm differs under each distribution. The difference lies with the exponent of
N in the first term, which starts from 1, goes to lg 3, and then to 2. The a3D
Algorithm, like the RGBY Algorithm, is very stable, with the same forensic cost
of O(κ · N + D + κ · lg D) under any assumed distribution of corruption events.

9.3 Audit System Implementation

A full implementation of the audit system was built on top of the TUC (Tempo-
ral Upward Compatibility), CLK (Clock), and STP (Stamper) modules that were
previously added to an underlying Berkeley DB system so that it could sup-
port transaction time [Snodgrass et al. 2004]. A notarization service requester
utility and a database validator utility were implemented as separately run-
ning programs; both send requests to and receive responses from an external

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 30, Publication date: November 2008.

30:34 • K. E. Pavlou and R. T. Snodgrass

digital notarization service, in this case Surety. The existence of the audit sys-
tem imposed a 15% increase in time in the worst case when tuples are suf-
ficiently small (10 bytes). The impact on time when record size and record
number were larger was even less than 15%. Hence the overhead for runtime
hashing is small. The Monochromatic forensic analysis algorithm has been in-
corporated into this system, and the rest of the algorithms are in the process of
being incorporated. We can make the following observations. We have an idea
of what the overhead is for the Monochromatic Algorithm because the normal
processing part was evaluated before [Snodgrass et al. 2004]; the only part that
is missing is the forensic analysis phase, which revalidates past hash chains.
All algorithms have the same number of I/O operations (and hence performance
in terms of time) as the Monochromatic for the normal processing phase, since
for all algorithms the database is scanned entirely only during validations.

9.4 Illustrating and Validating the Forensic Cost

We have implemented the Monochromatic, RGBY, Tiled Bitmap, and a3D Algo-
rithms in C. The entire implementation is approximately 1480 lines long and the
source code is available at http://www.cs.arizona.edu/projects/tau/tbdb/.
The forensic cost has been validated experimentally by inserting counters in
the appropriate places in the code. More specifically, the forensic cost and its
normal processing component have been validated for values 1 ≤ D ≤ 256 and
1 ≤ κ ≤ 256 as shown in Figures 15, 16, and 17.

To examine the effects of the various parameters on the theoretical cost, we
provide graphs showing the growth of forensic cost against these parameters.
These are drawn on the same set of axes as the graphs derived experimentally.
In all graphs, we have uniformly used D = 256 and Rs = 1. For the Monochro-
matic Algorithm, N is required to be 1, so IN = 1, and we also set V = 8. For
the RGBY Algorithm, N is also required to be 1 and V is required to be 2, so this
dictates Rt = 2. For the Tiled Bitmap Algorithm, we set N = 8, which implies
four chains, and we also set V = 1. For the a3D Algorithm, we similarly set
N = 8 and V = 1. All algorithms have Rt = 8 except for RGBY. The settings
used in the experimental validation are summarized in Table VI.

Rather than using the cost formulas in order notation to create the graphs,
we used the more involved (and more accurate) cost functions derived for
each algorithm: equation (2) in Section 9.1 for the Monochromatic Algorithm,
equation (3) in Appendix D.1 for the RGBY Algorithm, and equation (4) in Ap-
pendix D.2 for the Tiled Bitmap Algorithm. For the a3D Algorithm we used
the even more precise recursive formula equation (5) in Appendix D.3 to cal-
culate the cost of normal processing instead of the one shown within (6) in
Appendix D.3. Also, for values of D that are not a multiple of V · IN we use
the largest multiple of V · IN less than D to calculate the cost of the forensic
analysis stage.

Note that all cost plots show both the predicted forensic cost (denoted by
“(P)” in the plot legend) and the actual forensic cost values (denoted by “(A)” in
the plot legend). The different types of symbols on the curves were added for
clarity and correspond to a subset of the actual data points.

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 30, Publication date: November 2008.

Forensic Analysis of Database Tampering • 30:35

Fig. 15. Forensic cost against κ for D = 256.

We start by examining the growth of forensic cost of the algorithms against κ,
as shown in the graphs in Figure 15. Figure 15(a) shows how the forensic cost
increases with κ. Most of the predicted forensic costs are very close to the
actual values and in these cases (e.g., a3D algorithm) the two lines overlap.
Figure 15(b) is a magnification of the region in Figure 15(a) where κ takes val-
ues between 1 and 40. The cheapest algorithm for κ = D is RGBY, while the
most expensive is Monochromatic. Observe in Figure 15(b) that for κ = 1 the

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 30, Publication date: November 2008.

30:36 • K. E. Pavlou and R. T. Snodgrass

Fig. 16. Forensic cost against D for κ = 1 and κ = 2.

costs of Monochromatic and Tiled Bitmap are comparable and have the lowest
value of all other algorithms.

Even more interestingly, the RGBY algorithm starts off as being the most
expensive algorithm and then becomes the cheapest. This can be explained by
observing that ambiguity in the corruption region (large AreaU for κ > 1) in-
creases the cost of the Monochromatic Algorithm. The Tiled Bitmap Algorithm
suffers considerably from false positives (for every true corruption site there
exist N − 1 false positives) On the other hand the comparison of a3D to RGBY

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 30, Publication date: November 2008.

Forensic Analysis of Database Tampering • 30:37

Fig. 17. Cost of Normal Processing against D.

Table VI. Settings Used in Experimental Validation of Forensic

Cost Assuming Worst-case Distribution of Corruption Sites (values

in bold are non-configurable)

Algorithm

Parameters Monochromatic RGBY Tiled Bitmap a3D

Rs 1 1 1 1

N 1 1 8 8

V 8 2 1 1
D 256 256 256 256

is more subtle. a3D starts below RGBY but eventually becomes more expensive.
The reason is that, initially, RGBY has to linearly scan all its partial chains,
whereas a3D does not (this happens only for D/2 ≤ κ ≤ D). However, the over-
head of validating the a3D tree outweighs the impact of the presence of false
positives produced by RGBY.

Figure 16 shows how the forensic cost increases with time D for different
numbers of corruption sites, namely, κ = 1, and κ = 2. As expected for κ = 1
(Figure 16(a)), the Monochromatic Algorithm has the lowest forensic cost for
roughly the first half of the range of values of D. For the second half, the Tiled
Bitmap Algorithm becomes the cheapest because it is able to definitively iden-
tify all the corruption negative areas through a logarithmic number of chains.

When κ = 2 the Tiled Bitmap Algorithm is cheapest, as shown in Fig-
ure 16(b). This is because Tiled Bitmap need only identify a single additional
tile, whereas a3D (the second cheapest algorithm) has to process an entire sub-
tree of maximal height. Also, for this value of κ the Monochromatic Algorithm
becomes the most expensive algorithm.

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 30, Publication date: November 2008.

30:38 • K. E. Pavlou and R. T. Snodgrass

Table VII. Sample Forensic Costs for the Four Implemented

Algorithms

Forensic Cost Monochromatic RGBY Tiled Bitmap a3D

Predicted 512352 1934 17610 3128

Actual 512354 1935 16714 3134

Finally, Figure 17 shows how the cost of only the normal processing phase
varies with the number of days D. Note that this cost is independent of κ. Here
we see clearly that the most expensive normal processing phase belongs to the
RGBY Algorithm. a3D is the next most expensive algorithm, while Tiled Bitmap
is the cheapest in terms of normal processing. This suggests that shifting the
cost/amount of work done to the normal processing phase may not always pay
off during forensic analysis.

Table VII shows the predicted and actual forensic costs for the four imple-
mented algorithms when D = κ = 256. The two values in each of the four
cases differ by about 6% for Tiled Bitmap; for the other three, the actual and
predicted were nearly identical.

10. A LOWER BOUND FOR FORENSIC COST

We wish to derive a realistic lower bound for the Forensic Cost measure in terms
of κ corruption sites, validation factor V , notarization interval IN , and D days
before the corruption is first detected.

The optimal value for AreaU is 0, whereas the optimal value for AreaP is
κ · V · IN ·w, where w is the width and V · IN = IV is the height of the rectangle
in which the corruption site is located.

Keep in mind that these algorithms do not aim at reducing the tc uncertainty.
The size of the uncertainty of this temporal dimension depends solely on the
size of the validation interval (IV) and therefore it can be reduced if and only
if IV is reduced. No other factor involving external notarization can have any
impact on it. This is due to the fact that the tc uncertainty is bounded above
by the current time—the time the CE was discovered—and is also bounded
below by the last time we checked the database, the last VE time. This is
by definition the validation interval. Any new strategies introduced that are
purely native to the system cannot be trusted and thus violate the working
premise of this approach: no extra assumptions should be made about the
system.

To obtain bounds on the Normal Processing and Forensic Analysis phases, we
start with a rather optimistic scenario. Suppose that we had a priori knowledge
(both when and where) of the exact κ granules to be corrupted in the future.
Then the optimal algorithm would notarize κ hash chains of length one, each
covering the granule to be corrupted. Similarly, the forensic analysis would
validate those κ hash chains and that would find all corruption sites, each
bounded by a rectangle of height V · IN and width w = 1 granule (where a
granule is a unit of Rs). Thus a lower bound would be

FClower bound1
= (κ + κ) + κ · V · IN · 1 = 2 · κ + κ · V · IN .

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 30, Publication date: November 2008.

Forensic Analysis of Database Tampering • 30:39

However, we do not feel it is fair to tax our algorithms with the burden of
precognition. While we still assume that κ and D are known, we have no a priori
knowledge of where the corruption sites are going to occur (within D). Given
this information, we seek to find the optimal value for n ≥ κ, the number of no-
tarizations during normal processing. The cost of Normal Processing = n, while
the cost of Forensic Analysis = κ · lg n. This is because, for every κ, we must per-
form binary search in order to locate it. The width w for AreaP is D/2n because
each notarization provides a single bit of information in the where dimension.

FClower bound2
= (n + κ · lg n)

+ κ · V · IN · D/2n

If we assume that the width w can take a minimum value of w = 1, then it
follows that n = lg D. If we substitute this value of n into the previous FC
expression, we get:

FClower bound2
= (lg D + κ · lg lg D) + κ · V · IN .

This lower bound makes fewer assumptions about the information available
and therefore FClower bound1

≤ FClower bound2
. Our final lower bound is:

FClower bound = κ · V · IN + κ · lg lg D + lg D , κ ≤ D
= O(κ · V · N + lg D).

Table VIII compares this lower bound with the worst-case forensic cost of our
algorithms, characterized for “small κ” and “large κ.” In particular, we elimi-
nate κ by assuming it is either equal to O(1) or O(D), respectively. Note that
for the Monochromatic Algorithm, if κ = O(1), we assume that V D, thus
simplifying the cost from O(V +D) to O(D). Tables IX and X repeat this compar-
ison with average- and best-case forensic costs derived in Appendices E and F.
The lower bound across all three tables is the same because the only way for
the lower bound to decrease in the best-case and average-case analysis is for the
binary search to be faster during forensic analysis. All other components are
essential, that is, n notarizations are required, and the width w must equal 1.
Binary search in the best-case takes O(1), eliminating the lg lg D factor, which
in asymptotic notation is irrelevant. In the average-case forensic cost, the av-
erage running time of binary search is O(lg n) so the lower bound remains the
same. Hence there is only the notion of a single lower bound.
For best-case forensic cost, the Monochromatic algorithm (which requires N =
1) and the RGBY algorithm (which requires N = 1 and V = 2) are optimal
for large κ. Observe also that the asymptotic forensic cost of both the RGBY
Algorithm and that of the a3D Algorithm (which requires V = 1) for all possible
cases (worst, best, average) is optimal for large κ and is close to optimal for
small κ.

11. RECOMMENDATIONS

Given the forensic cost formulæ and the insights from the previous sections,
our recommendation is that it is best to provide users with three algorithms:

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 30, Publication date: November 2008.

30:40 • K. E. Pavlou and R. T. Snodgrass

Table VIII. Worst-case Forensic Cost and Lower Bound

Worst-Case Forensic Cost
Algorithm

Small κ (κ = O(1)) Large κ (κ = O(D))

Monochromatic O(D) O(V · D2)

RGBY O(D)

Tiled Bitmap O(V · N2 + (D · lg N)/N + lg D) O(V · N2 · D)

a3D O(N + D) O(N · D)

Lower Bound O(V · N + lg D) O(V · N · D)

Table IX. Average-case Forensic Cost and Lower Bound

Average-Case Forensic Cost
Algorithm

Small κ (κ = O(1)) Large κ (κ = O(D))

Monochromatic O(D) O(V · D2)

RGBY O(D)

Tiled Bitmap O(V · N lg 3 + (D · lg N)/N + lg D) O(V · N lg 3 · D)

a3D O(N + D) O(N · D)

Lower Bound O(V · N + lg D) O(V · N · D)

Table X. Best-case Forensic Cost and Lower Bound

Best-Case Forensic Cost
Algorithm

Small κ (κ = O(1)) Large κ (κ = O(D))

Monochromatic O(D) O(V · D)

RGBY O(D)

Tiled Bitmap O(V · N + (D · lg N)/N + lg D) O(V · N · D)

a3D O(N + D) O(N · D)

Lower Bound O(V · N + lg D) O(V · N · D)

Monochromatic, a3D and, depending on the application requirements, RGBY or
Tiled Bitmap. The reason for considering RGBY and Tiled Bitmap as optional
is that both these algorithms, unlike the Monochromatic and a3D, suffer from
false positives. The RGBY Algorithm has the same optimal characteristics as
a3D and is the cheapest when a large number of corruptions is expected. On

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 30, Publication date: November 2008.

Forensic Analysis of Database Tampering • 30:41

the other hand, the Tiled Bitmap Algorithm has the lowest forensic cost in the
long term for a fixed small number of corruptions but suffers from more false
positives than RGBY, which translates into more human effort when trying to
pinpoint the exact corruptions at a later stage. The Tiled Bitmap Algorithm is
also indicated when efficiency during normal processing is critical.

If only two algorithms are to be used, then both Monochromatic and a3D
should be implemented. If only one algorithm is needed, the choice would be
again between the Monochromatic and a3D Algorithms. The Monochromatic
Algorithm is by far the simplest one to implement and it is best-suited for
cases when multiple corruptions are not anticipated or when only the earliest
corruption is desired. The a3D Algorithm is the second easiest algorithm to
implement and it is the only algorithm that exhibits all three of the most desir-
able characteristics: (i) it identifies multiple corruptions, (ii) it does not produce
false positives, and (iii) it is stable and optimal for large κ (and near optimal
for small κ). Hence this algorithm is indicated in situations where accuracy in
forensic analysis is of the utmost importance.

12. RELATED WORK

There has been a great deal of work on records management, and indeed,
an entire industry providing solutions for these needs, motivated recently by
Sarbanes-Oxley and other laws requiring audit logs. In this context, a “record”
is a version of a document. Within a document/record management system
(RMS), a DBMS is often used to keep track of the versions of a document and
to move the stored versions along the storage hierarchy (disk, optical stor-
age, magnetic tape). Examples of such systems are the EMC Centera Com-
pliance Edition Content Addressed Storage System,1 the IBM System Storage
DR series,2 and NetApp’s SnapLock Compliance.3 Interestingly, these systems
utilize magnetic disks (as well as tape and optical drives) to provide WORM
storage of compliant records. As such, they are implementations of read-only
file systems (also termed append-only), in which new files can only be added.
Several designs of read-only file systems have been presented in the research
literature [Fu et al. 2000; Mazières et al. 1999]. Both of these systems (as well
as Ivy [Muthitacharoen et al. 2002]) use cryptographic signatures so that pro-
grams reading a file can be assured that it has not been corrupted.

Hsu and Ong [2004] have proposed an end-to-end perspective to establishing
trustworthy records, through a process they term fossilization. The idea is that
once a record is stored in the RMS, it is “cast in stone” and thus not modifiable.
An index allows efficient access to such records, typically stored in some form
of WORM storage. Subsequently, they showed how the index itself could be
fossilized [Zhu and Hsu 2005]. Their approach utilizes the WORM property
provided by the systems just listed: that the underlying storage system supports

1http://www.emc.com/products/detail/hardware/centera.htm (accessed April 28, 2008)
2http://www.ibm.com/systems/storage/disk/dr/ (accessed April 28, 2008)
3http://www.netapp.com/us/products/protection-software/snaplock.html (accessed April 28,

2008)

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 30, Publication date: November 2008.

30:42 • K. E. Pavlou and R. T. Snodgrass

reads from and writes to a random location, while ensuring that any data that
has been written cannot be overwritten.

This is an appealing and useful approach to record management. We have
extended this perspective by asserting that every tuple in a database is a
record, to be managed. The challenge was two-fold. First, a record in a RMS is a
heavyweight object: each version is stored in a separate file within the file sys-
tem. In a DBMS, a tuple is a lightweight object, with many tuples stored on a
single page of a file storing all or a good portion of a database. Secondly, records
change quite slowly (examples include medical records, contacts, financial re-
ports), whereas tuples change very rapidly in a high-performance transactional
database. It is challenging to achieve the functionality of tracked, tamper-free
records with the performance of a DBMS.

This raises the interesting question: since record management systems often
use relational databases internally, how effective can these systems really be?
Given the central role of audit logs in performing auditing of interactions with
the records (tracking, modifications, exposure), the audit logs themselves are
as valuable as the records they reference. It is critical that such audit logs and
tracking information be correct and unalterable. It is not sufficient to say, “the
records we store in our RMS are correct, because we store all interactions and
tracking data in a separate audit log.” The integrity of the underlying database
is still in question. While Zhu and Hsu [2005] provide a partial answer through
their fossilized index (mentioned previously), the rest of the database might
still be tampered.

Johnston [2006] goes back thousands of years to show that in many cases,
tamperproofing is economically inferior to tamper detection: “Often, it’s just
not practical to try to stop unauthorized access or to respond to it rapidly when
detected. Frequently, it’s good enough to find out some time after the fact that
trespassing took place”.

The first work to show that records management could be effectively merged
with conventional databases was that by Barbará et al. [2000] on using
checksums to detect data corruption. By computing two checksums in dif-
ferent directions and using a secret key, they were able to dramatically in-
crease the effort an intruder would have to make to tamper the database.
Our paper on tamper detection removed one assumption, that the system
could keep a secret key that would not be seen by insiders [Snodgrass et al.
2004]. We showed that cryptographic techniques coupled with a carefully-
considered architectural design and an external digital notarization service
could solve one part of the puzzle: detecting tampering. In this article we con-
sider another part of the puzzle: forensic analysis once tampering has been
detected.

Computer forensics is now an active field, with over fifty books published in
the last ten years4 and another dozen already announced for 2008. However,
these books are generally about preparing admissible evidence for a court case,
through discovery, duplication, and preservation of digital evidence. There are
few computer tools for these tasks, in part due to the heterogeneity of the data.

4http://www.e-evidence.info/books.html (accessed April 28, 2008)

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 30, Publication date: November 2008.

Forensic Analysis of Database Tampering • 30:43

One substantive example of how computer tools can be used for forensic anal-
ysis is Mena’s book [2003]. The more narrow the focus, the more specialized
tools there are that can help. Carvey and Kleiman’s book [2007] covers just
variants of that operating system and explains how to use the author’s Foren-
sic Server Project system to obtain data from a Windows system in a foren-
sically sound manner. Closer to home, Schneier and Kelsey [1999] describe a
secure audit log system, but do not consider forensic analysis of such audit
logs.

Goodrich et al. [2005] introduce new techniques for using indexing struc-
tures for data forensics. The usual way of detecting malicious tampering of
a digital object using cryptographic one-way hashes to store a cryptographic
hash of the item and then to use it later as a reference for comparison. The
approach of Goodrich et al. goes beyond the single bit (true/false) of informa-
tion provided by a hash: they store multiple hashes (and attempt to minimize
the required number of such values) to pinpoint which of a given set of items
has been modified. They encode authentication information in the topology of
the data structure of items (not in the stored values themselves) so that al-
terations can be detected. This is important because this approach requires no
additional space other than the cryptographic master key used by the auditing
agent. Their techniques are based on a new reduced-randomness construction
for nonadaptive combinatorial group testing (CGT). In particular, they show
how to detect up to d defective items out of a total of n items, with the num-
ber of tests being O(d2 lg n). Moreover, they provide forensic constructions of
several fundamental data structures, including binary search trees, skip lists,
arrays, linked lists, and hash tables.

Several differences exist between Goodrich’s approach and the one outlined
in the current article.

—The threat model in Goodrich et al. does not allow changes in the topology of
the data structure, whereas ours places no such restrictions.

—The objective in Goodrich et al. is to minimize the number of hashes stored
that would make it possible to identify d corruptions, given a particular data
structure. In the current article, we seek a structure of hash chains with
the lowest forensic cost, which includes both normal processing and forensic
analysis components.

—Their CGT method is probabilistic whereas ours is deterministic.

—Goodrich et al.’s work applies to main-memory structures, whereas ours ap-
plies to disk-resident data items.

—There exists an upper bound on the number of modified items that can be de-
tected, for example, for a balanced binary search tree storing n elements, the
bound is O(n1/3/ log2/3 n). Our approach can detect up to κ = n corruptions.

Goodrich’s approach in constructing forensic data structures might be general-
izable to detecting changes in key values stored in a B-tree. This could then
provide some information about data values, thereby possibly reducing the
number of hashes needed and thus the forensic cost.

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 30, Publication date: November 2008.

30:44 • K. E. Pavlou and R. T. Snodgrass

Earlier, we introduced the approach of using cryptographic hash functions
for tamper detection [Snodgrass et al. 2004] and introduced the first forensic
analysis algorithms for database tampering [Pavlou and Snodgrass 2006a].
The present article significantly extends that research, with pseudocode for
one previous algorithm (Monochromatic) and three new algorithms: the RGBY
(a refinement of the previous RGB Algorithm), Tiled Bitmap (a refinement of
the previous Polychromatic Algorithm), and a3D forensic analysis Algorithms.

We refine the definition of forensic strength to arrive at a notion of “forensic
cost” that encompasses multiple corruption events. The objective is to minimize
this cost in order to achieve a higher forensic strength. The definition of forensic
cost retains some of the key characteristics of the original definition [Pavlou and
Snodgrass 2006a], while adopting a more sophisticated treatment of the region
and uncertainty areas returned by the forensic algorithms, and incorporating
the notions of temporal and spatial resolution. We characterize and validate
experimentally the forensic cost for all four algorithms presented in this article.
We also present a lower bound that considers multiple corruption events.

13. SUMMARY AND FUTURE WORK

New laws and societal expectations are raising the bar concerning stewardship
of stored data. Corporate and governmental databases are now expected and
in many cases required to mediate access, to preserve privacy, and to guard
against tampering, even by insiders.

Previously-proposed mechanisms can detect that tampering has occurred.
This article considers the next step, that of determining when, what, and hence
indirectly providing clues as to who, through the use of various forensic analysis
algorithms that utilize additional information (in this case, partial hash chains)
computed during periodic validation scans of the database.

We introduced corruption diagrams as a way of visualizing corruption
events and forensic analysis algorithms. We presented four such algorithms,
the Monochromatic, RGBY, Tiled Bitmap, and a3D Algorithms, and showed
through a formal forensic cost comparison (with worst-case, best-base, and
average-case assumptions), validated with an implementation, that each suc-
cessive algorithm adds extra work in the form of main-memory processing, but
that the resulting additional precision in the obtained information more than
counterbalances this extra work. Finally, we provided a lower bound for forensic
cost and showed that only the a3D Algorithm is optimal for a large number of
corruptions and close to optimal in all cases, without producing false positives.

Our recommendation is that, at an initial stage, it is best to provide users
with the Monochromatic and a3D Algorithms. The Monochromatic Algorithm
is the easiest to implement and is indicated when multiple corruptions are not
anticipated or when only the earliest corruption site is desired. The a3D Algo-
rithm is stable with optimal forensic cost (for large κ), is able to determine the
“where”, and the “when” of a tampering quite precisely and efficiently, and is
able to effectively handle multiple corruption events. The other two algorithms
produce false positives and can be provided as dictated by the application re-
quirements. The RGBY Algorithm has optimal cost (for large κ) and is cheapest

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 30, Publication date: November 2008.

Forensic Analysis of Database Tampering • 30:45

when many corruption sites are anticipated. The Tiled Bitmap Algorithm has
the lowest forensic cost in the long term for a fixed number of corruptions and
is also indicated when efficiency during normal processing is critical.

We are integrating these algorithms into a comprehensive enterprise solu-
tion for tamper detection and analysis that manages multiple databases with
disparate security risks and requirements. Also, we are examining the interac-
tion between a transaction-time storage manager and an underlying magnetic-
disk-based WORM storage. As archival pages are migrated to WORM storage,
they would be thus protected from tampering, and so would not need to be
rescanned by the validator. It is an open question how to extend the forensic
analysis algorithms to accommodate schema corruption.

Our challenge is in a sense the dual of that considered by Stahlberg et al.
[2007]. As mentioned in Section 2, we utilize a transaction-time table to re-
tain previous states and perform forensic analysis on this data once tampering
is detected. Stahlberg considers the problem of forensic analysis uncovering
data that has been previously deleted, data that shouldn’t be available. It is
an open question as to how to augment our approach for forensic analysis to
accommodate secure deletion.

Finally, it might make sense to augment database storage structures, such
as indexes, in a manner similar to that proposed for main-memory structures
by Goodrich et al. [2005], to aid in forensic analysis.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital
Library. The appendix discusses the subtleties involved in the forensic analysis
of introactive corruption events, and demonstrates how false positives arise in
the RGBY Algorithm. It also describes the Tiled Bitmap Algorithm, discusses
the notion of a candidate set, and gives the running time of the algorithm.
Finally, it analyzes the forensic cost for the algorithms, using worst-case, best-
case, and average-case assumptions on the distribution of corruption sites.

ACKNOWLEDGMENTS

Huilong Huang, Qing Ju, Melinda Malmgren, and Shilong (Stanley) Yao con-
tributed to the implementation. We thank Travis Wheeler for his help with
the characterization of forensic cost and thank the reviewers for their concrete
suggestions which helped improve the presentation of the material.

REFERENCES

AGRAWAL, R., GRANDISON, T., JOHNSON, C., AND KIERNAN, J. 2007. Enabling the 21st century health-

care IT revolution. Comm. ACM, 50, 2, 34–42.

AHN, I. AND SNODGRASS, R. T. 1988. Partitioned storage structures for temporal databases. Inform.
Syst., 13, 4, 369–391.

BAIR, J., BÖHLEN, M., JENSEN, C. S., AND SNODGRASS, R. T. 1997. Notions of upward compatibility

of temporal query languages. Bus. Inform. 39, 1, 25–34.

BARBARÁ, D., GOEL, R., AND JAJODIA, S. Using checksums to detect data corruption. In Proceedings
of the International Conference on Extending Database Technology, Lecture Notes in Computer

Science, vol. 1777, Springer, Berlin, Germany.

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 30, Publication date: November 2008.

30:46 • K. E. Pavlou and R. T. Snodgrass

CARVEY, H. AND KLEIMAN, D. 2007. Windows Forensics and Incident Recovery, Syngres.

CHAN, C. C., LAM, H., LEE, Y. C., AND ZHANG, X. 2004. Analytical Method Validation and Instrument
Performance Verification, Wiley-IEEE.

CSI/FBI. 2005. Tenth Annual Computer Crime and Security Survey, http://www.cpppe.umd.edu/

Bookstore/Documents/2005CSISurvey.pdf (accessed April 25, 2008).

DEPARTMENT OF DEFENSE. 1985. Trusted Computer System Evaluation Criteria. DOD-5200.28-

STD, http://www.dynamoo.com/orange (accessed April 25, 2008).

F.D.A. 2003. Title 21 Code of Federal Regulations (21 CFR Part 11) Electronic records; Electronic

Signatures, http://www.fda.gov/ora/compliance ref/part11/ (accessed April 28, 2008).

FU, K., KAASHOEK, M. F., AND MAZIÈRES, D. 2000. Fast and secure distributed read-only file system.

In Proceedings of the USENIX Symposium on Operating Systems Design and Implementation
(OSDI). USENIX Association, Berkeley, CA, 181–196.

GERR, P. A., BABINEAU, B., AND GORDON, P. C. 2003. Compliance: The effect on information

management and the storage industry. Tech. rep. Enterprise Storage Group. http://www.

enterprisestrategygroup.com/ESGPublications/ReportDetail.asp?ReportID=201 (accessed May

4, 2008).

GOODRICH, M. T., ATALLAH, M. J., AND TAMASSIA, R. 2005. Indexing information for data forensics.

In Proceedings of the Conference on Applied Cryptography and Network Security (ACNS). Lecture

Notes in Computer Science, vol. 3531, Springer, Berlin, Germany, 206–221.

GRAHAM, R. L., KNUTH, D. E., AND PATASHNIK, O. 2004. Concrete Mathematics, 2nd Ed., Addison–

Wesley.

HABER, S. AND STORNETTA, W. S. 1991. How to time-stamp a digital document. J. Cryptology, 3, 2,

99–111.

HIPAA. 1996. The Health Insurance Portability and Accountability Act. U.S. Dept. of Health &

Human Services. http://www.cms.hhs.gov/HIPAAGenInfo/ (accessed April 25, 2008).

HSU, W. W. AND ONG, S. 2004. Fossilization: a process for establishing truly trustworthy records.

Tech. rep. RJ 10331, IBM.

JENSEN, C. S. AND DYRESON, C. E., Eds. 1998. A consensus glossary of temporal database concepts—

(February 1998 Version). In Temporal Databases: Research and Practice, Etzion, O., Jajodia, S.,

and Sripada S., Eds. Springer, 367–405.

JENSEN, C. S. AND SNODGRASS, R. T. 1994. Temporal specialization and generalization. IEEE Trans.
Knowl. Data Eng. 6, 6, 954–974.

JOHNSTON, R. G. Tamper-indicating seals. 2006. Am. Sci. 94, 6, 515–524.

LOMET, D., BARGA, R., MOKBEL, M. F., SHEGALOV, G., WANG, R., AND ZHU, Y. 2005. Im-

mortal DB: transaction time support for SQL server. In Proceedings of the Interna-
tional ACM Conference on Management of Data (SIGMOD), ACM, New York, 939–941.

http://research.microsoft.com/research/db/immortaldb/ (accessed April 25, 2008).

MAZIÈRES, D., KAMINSKY, M., KAASHOEK, M. F., AND WITCHEL, E. 1999. Separating key management

from file system security. In Proceedings of the ACM Symposium on Operating Systems Principles
(SOSP). ACM, New York, NY, 124–139.

MENA, J. 2003. Investigative Data Mining for Security and Criminal Detection. Butterworth

Heinemann.

MUTHITACHAROEN, A., MORRIS, R., GIL, T. M., AND CHEN, B. 2002. Ivy: A read/write peer-to-peer file

system. In Proceedings of the 5th Symposium on Operating Systems Design and Implementation
(SOSDI). ACM, New York, NY, 31–44.

ORACLE CORPORATION. 2007. Oracle Database 11g Workspace Manager Overview. Or-

acle White Paper, http://www.oracle.com/technology/products/database/workspace manager/

pdf/twp AppDev Workspace Manager 11gR1.pdf (accessed April 28, 2008).

PAVLOU, K. E. AND SNODGRASS, R. T. 2006a. Forensic analysis of database tampering. In Proceedings
of the ACM SIGMOD International Conference on Management of Data (SIGMOD). ACM, New

York, NY, 109–120.

PAVLOU, K. E. AND SNODGRASS, R. T. 2006b. The pre-images of bitwise AND functions in forensic

analysis. Tech. rep., TIMECENTER.

PIPEDA. 2000. Personal Information Protection and Electronic Documents Act. Bill C-6,

Statutes of Canada, http://www.privcom.gc.ca/legislation/02 06 01 01 e.asp.

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 30, Publication date: November 2008.

Forensic Analysis of Database Tampering • 30:47

SARBANES-OXLEY ACT. 2002. U.S. Public Law No. 107–204, 116 Stat. 745, The Public Company

Accounting Reform and Investor Protection Act.

SCHNEIER, B. AND KELSEY, J. 1999. Secure audit logs to support computer forensics. ACM Trans.
Inform. Syst. Sec. 2, 2, 159–196.

SNODGRASS, R. T., YAO, S. S., AND COLLBERG, C. 2004. Tamper detection in audit logs. In Proceed-
ings of the International Conference on Very Large Databases (VLDB). Toronto, Canada. Morgan

Kaufmann, San Francisco, CA, 504–515.

STAHLBERG, P., MIKLAU, G., AND LEVINE, B. N. 2007. Threats to privacy in the forensic analysis of

database systems. In Proceedings of the ACM SIGMOD International Conference on Management
of Data (SIGMOD). Beijing, China. ACM, New York, NY, 91–102.

WINGATE, G., Ed. 2003. Computer Systems Validation: Quality Assurance, Risk Management, and
Regulatory Compliance for Pharmaceutical and Healthcare Companies. Informa Healthcare.

ZHU, Q. AND HSU, W. W. 2005. Fossilized index: The linchpin of trustworthy non-alterable elec-

tronic records. In Proceedings of the ACM SIGMOD International Conference on Management of
Data (SIGMOD). Baltimore, Md. ACM, New York, NY, 395–406.

Received December 2007; revised June 2008; accepted August 2008.

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 30, Publication date: November 2008.

