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Abstract

This paper presents an object–oriented approach to the problem of finding optimal binary search trees.

We show that object–oriented techniques produce a solution that is an improvement over those created

procedurally and that is well within the reach of our undergraduate students. Combining the study of

optimality with that of object–oriented design helps the students gain a deeper appreciation of both.

1 Introduction

Finding optimal solutions to problems and applying object–oriented design techniques are both standard topics
in a data structures and algorithms course. Too frequently they receive separate treatments, while in reality
they have profound influences on each other. An object–oriented design typically distributes the responsibility
for managing a data structure across its components. This allows the programmer to not only optimize the
overall data structure, but to optimize the components as well. Students gain insight into both optimality and
object–oriented design by examining the interplay between them. This interaction is beginning to be explored
by other researchers as well [3].
This paper takes a dynamic programming problem, that of finding an optimal binary search tree, and

shows how the standard solution may be improved by applying object–oriented techniques to the design of its
components. These optimizations extend the solution found in most textbooks. The authors have used this
example in several sections of data structures and algorithms. We have found the material well within the
reach of our students. Because it integrates optimization and object–oriented concepts, we have found that it
helps students better understand both.
In Sections 2 and 3, we briefly visit object–oriented binary search trees and optimal binary search trees. Sec-

tion 4 introduces our ideas for creating optimal object–oriented binary search trees, and the paper’s conclusion
can be found in Section 5.

2 Review of Object–Oriented Binary Search Trees

We assume the reader is familiar with binary trees and binary search trees. They are covered in depth in many
standard texts such as [1, 4, 5, 7, 8]. The purpose of this section is to review an object–oriented implementation
of binary search trees.

Definition: A binary tree T is a structure defined on a finite set of nodes that either contains no nodes,
or is composed of three disjoint sets of nodes: a root node, a binary tree called its left subtree, and a binary
tree called its right subtree [5].

Definition: A binary search tree (BST) is a binary tree whose nodes are organized according to the
binary search tree property: keys in the left subtree are all less than the key at the root; keys in the right
subtree are all greater than the key at the root; and both subtrees are themselves BSTs. (Note: We are
assuming unique keys.)
A variety of possible implementations of object–oriented BSTs are possible, with variations due to design

philosophies and language capabilities [2]. Our implementation uses two node classes, Node and NullNode.



Both are derived from the abstract class AbstNode. The Node class represents internal nodes; each Node

object contains a key value and two subtrees. The NullNode class represents “external” or “empty” nodes. A
NullNode object contains no key value and has no subtrees.
With this approach, there is never a need to check if a reference is null. Dispatching works correctly because

left and right subtrees exist for all internal nodes and are never referenced by a NullNode object. We cannot
completely eliminate comparisons, however. Insertion and search keys must still be compared to the tree’s
keys.
Our object–oriented approach to searching a BST is to distribute the responsibility to each node. We

illustrate the approach by presenting Java code fragments for searching. Other basic tree operations follow
similar principles.
Our Java instance method for searching a Node: 1

boolean search (Key search_key) {

if (search_key.lt(key))

return left.search(search_key);

else if (search_key.gt(key))

return right.search(search_key);

else

return true;

}

If a NullNode node is reached, the search has failed. Our Java instance method for searching a NullNode
is trivial:

boolean search (Key searchkey) {

return false;

}

This approach to BSTs gives slightly more efficient code than a procedural approach, because there is no
check for null pointers/references. The trade–off is that the program makes calls to NullNodes that exist for
no reason other than to terminate recursion.

3 Optimal Binary Search Trees Revisited

Optimal Binary Search Trees are covered in many algorithms texts [1, 5, 7, 8]. Our treatment closely parallels
that found in [5].
For any set of keys, there are many different binary search trees. The time required to seek a given key can

vary from tree to tree depending on the depth of the node where the key is found, or the length of the branch
searched if the key is not present.

3.1 Basic Definitions

When we know the probability of the search key equaling each key and the probability of the search key falling
between each pair of adjacent keys, we may calculate the average search time (AST) for the tree.
Let K = < key1, key2, . . . , keyn > be a sequence of keys in sorted order. The keys are associated with the

internal nodes of a BST.
Let D = < d0, d1, . . . , dn > be a sequence of ranges representing the intervals between two keys. d0

represents all possible keys less than key1. dk represents all possible keys between keyk and keyk+1. dn

represents all possible keys greater than keyn.
Conceptually, the ranges are associated with the external nodes that terminate each branch of a BST. The

NullNode class presented in Section 2 does not model them. In Section 4 we implement this idea in the form
of a RangeNode class.
Let pi be the probability of the search key equaling keyi, and let qk be the probability of the search key

falling within dk’s interval. Of course,
∑

pi +
∑

qk = 1. Let AST (i, j) be the mean value of the number of
nodes visited during a search of a tree containing keys i through j. Then:

1Interested readers may find Java implementations of the classes used in this paper at www.cs.uwp.edu/staff/hansen.
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AST (i, j) =

j
∑

k=i

ckpk +

j
∑

l=i−1

blql for 1 ≤ i ≤ j ≤ n

where ck = 1 + depth(keyk) and bl = 1 + depth(dl). AST (1, n) is the average search time for the entire tree.
The average search times vary significantly among the BSTs containing the set of keys, K. An optimal

BST is one that gives the minimum AST for K.

3.2 An Example

An example will clarify these definitions and concepts. Consider the following sequences of keys and probabil-
ities:

K = < 2 , 5 , 7 , 8 >

p = < 0.15 , 0.10 , 0.10 , 0.05 >

q = < 0.10 , 0.05 , 0.25 , 0.15 , 0.05 >

The spacing of the p and q probabilities reflects their significance. For example, the probability of searching
for 2 is 0.15, and the probability of searching for a value between 5 and 7 is 0.25.

(�∞, 2) (2, 5) (5, 7) (7, 8)

(8,∞)

2

5

7

8

Figure 1: One possible BST with AST = 3.30

The AST of the tree in Figure 1 is calculated as shown in the following table:

c1p1 = 3 · 0.15 = 0.45
c2p2 = 2 · 0.10 = 0.20
c3p3 = 3 · 0.10 = 0.30
c4p4 = 1 · 0.05 = 0.05
b0q0 = 4 · 0.10 = 0.40
b1q1 = 4 · 0.05 = 0.20
b2q2 = 4 · 0.25 = 1.00
b3q3 = 4 · 0.15 = 0.60
b4q4 = 2 · 0.05 = 0.10

3.30

The AST of the tree in Figure 2 is calculated in a similar fashion. The tree in Figure 2 is optimal for the
given p and q probabilities.

3.3 Finding the Optimal BST

To find an optimal BST, we first note that each subtree must also be optimal. If it weren’t, we could find a
better overall BST by replacing the subtree with an optimal one. This insight leads us to the recurrence for
the AST of the optimal BST. AST (i, j) for a subtree α is the sum of the AST s of α’s subtrees plus w(i, j),
which is the cost contributed by searching the root of α as we perform searches that terminate at nodes within
α.
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Figure 2: A second possible BST with AST = 2.75

w(i, j) =

j
∑

m=i

pm +

j
∑

r=i−1

qr

AST (i, j) =

{

mini≤k≤j

(

AST (i, k − 1)+AST (k + 1, j)
)

+ w(i, j) for 1 ≤ i ≤ j ≤ n

qi−1 for j = i− 1

Note that we use j = i− 1 for the empty tree that lies between nodei−1 and nodei.
Solving this recurrence gives the AST and provides the structure of the optimal BST. The recurrence

contains many overlapping subproblems, making it an ideal candidate for evaluation by dynamic programming
techniques.

4 Further Optimizing the BST

It is important for students to explore the assumptions made when developing the solution in the previous
section. There were two assumptions that should be reviewed:

1. We assumed that the optimal tree will be created from the two types of nodes presented in Section 2,
namely Node and NullNode.

2. We also assumed that the only important metric for measuring optimality is AST .

In this section we challenge each of those assumptions. We show that modifying the assumptions may improve
the optimal BST further.

4.1 An Expanded Node Hierarchy

In Section 2 an “external” or “empty” node represented an empty tree. In Section 3 we associated a range
with each external node. The external nodes in Figures 1 and 2 are labeled with the interval of values they
represent. The intervals are determined by the sequence of keys, not the tree. Both of the sample trees show
the same intervals, just arranged differently.
The binary search tree property applies to both the keys in internal nodes and the intervals in external

nodes. Every value in the interval of an external node satisfies the property.
Modeling the external nodes with intervals rather than NullNodes brings our implementation model closer

to our conceptual model. There are four types of intervals: (left key, right key), (−∞, right key),
(left key, ∞) and (−∞, ∞). A separate class is developed for each because each uses a different search
technique. In the discussion that follows, we use only the first of these for illustrative purposes; the concepts
extend to the others.
A RangeNode represents the interval of possible values falling between two keys. As such, it represents

the first of our four interval types. A RangeNode must contain the two bounding key values, left key and
right key, in order to test whether or not a search key lies within its interval. Because the binary search tree
property applies to range nodes, such nodes need not be relegated to the leaves. Range nodes and ordinary
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nodes may each appear high in the tree or at the leaves. Thus, RangeNodes also must contain left and right
subtrees. Either variety of node may be the root of a subtree.
The advantage of being able to place range nodes anywhere in the tree is that doing so may improve the

AST. If there is a high probability of the search key matching an interval, raising the interval’s RangeNode
high in the tree can significantly improve the AST.
A RangeNode delegates its search to its left subtree or right subtree as appropriate. It reports failure if the

search key lies between left key and right key. The instance method for searching a RangeNode:

boolean search (Key search_key) {

if (search_key.le(left_key))

return left.search(search_key);

else if (search_key.ge(right_key))

return right.search (search_key);

else

return false;

}

A path from root to leaf passes through both ordinary nodes and range nodes. As before, a search must
terminate somewhere along a path. Before the end of a branch is reached, the search key is found, or a range
node is encountered whose interval contains the search key.
No changes are needed for internal nodes. Polymorphic dispatching allows internal nodes to reference other

internal nodes and range nodes, as needed.
The optimal BST recurrence may be adapted to handle range nodes. In this adaptation, Nodes and

RangeNodes are treated uniformly.
Let R =< r1 . . . r2n+1 > = < q0, p1, q1, p2, . . . pn, qn > The recurrence is now:

AST (i, j) =

{

mini≤k≤j

(

AST (i, k − 1)+AST (k + 1, j)
)

+
∑j

m=i rm for 1 ≤ i ≤ j ≤ 2n+ 1

0 otherwise

Because there are 2n+ 1 elements in R, the entire tree’s AST is found by solving AST (1, 2n+ 1).

(5, 7)

(7, 8)

(�∞, 2)

(2, 5) (8,∞)

2

5 7 8

Figure 3: The optimal BST when range nodes may be distributed throughout the tree. AST = 2.30

Figure 3 shows the improved optimal BST generated for the data provided in Section 3. Comparing this
tree with that of Figure 2, we notice that some of the range nodes have risen high in the tree. Computing
AST for this tree shows that the average search time has been reduced to 2.30 from 2.75. This is a significant
improvement even in this very small tree.
The search path for 5 is highlighted in Figure 3. 5 is less than the range in the root, and we move to its

left subtree. 5 is greater than 2, and we move right to discover the match with 5. Now consider a search for 6.
This search fails at the root because 6 falls within the range of the root node, indicating that it is not stored
within the tree.

4.2 Reducing the Number of Key Comparisons

At this point of our classroom presentation, our better students are complaining that AST is an unfair metric.
Their objection is legitimate. Recall that AST is defined as the mean of the number of nodes visited during

5



a search. We have been able to reduce AST only by adding 2n more if statements to the tree. If, instead of
AST , we count the total number of key comparisons executed, different results are obtained. Let:

AST ′(i, j) =

j
∑

k=i

c
′

kpk +

j
∑

l=i−1

b
′

lql for 1 ≤ i ≤ j ≤ n

where c
′

k is the number of key comparisons executed when searching for keyk, and b
′

l is the number of key
comparisons executed when searching in the range (keyl−1, keyl). When applied to the trees from Figures 2
and 3, AST ′ = 3.50 and 3.80, respectively. This metric suggests that the original tree is better choice than the
modified tree. This is not surprising. When using AST ′, searching a NullNode is free, because it contains no
key comparisons. Searching a RangeNode is not free. Following the left branch of a RangeNode incurs a cost
of one key comparison, while following the right branch or having the search terminate at the node requires
two key comparisons.
We can reduce AST ′ in either BST by applying a search strategy [6]. Different search strategies are used

at different nodes throughout the tree. The strategies are based on the number of children the node has, and,
when there are two children, evaluating the condition most likely to be true before considering the others.
If a RangeNode is at a leaf, a search of the node can report failure without checking any conditions. Any

search that reaches this node will already have reduced the possible values of the search key to those within
the RangeNode’s interval. None of these values appear in the tree. In this case the search method returns
false. In fact, when a RangeNode appears at a leaf, we use a NullNode in its place.
Similarly, if a Node is at a leaf, any search of the node always returns true. A search that reaches this node

will have already reduced the possible values of the search key to one; namely, the key stored in the Node. We
can simplify the search method to return the constant true. We use a LeafNode class for this situation.
Looking again at Figure 3, we see that some nodes have only one child. We develop four more classes for

these cases. A Node may have only a left child or only a right child. Similarly, a RangeNode may have only
a left child or only a right child. These classes each contain a single if in their search methods and only one
child reference.
When a node has two children, the search method will require two conditions. The key to optimizing these

nodes is to check the most probable condition first. Only when that condition fails do we check the less likely
condition.
For Nodes, there are three search strategies (conditions that could be checked first):

(1) searchKey < key

(2) searchKey == key

(3) searchKey > key

The appropriate strategy for each node is chosen when the node is first added to the tree. In the dynamic
programming solution the trees are built from the bottom up. Left and right subtrees already exist and are
joined by adding the root node. The sum of the probabilities for the left and right subtrees are easy to
calculate. Choosing a search strategy for nodei involves finding the maximum of these three values: pi, the
total probability for nodei’s left subtree, and the total probability for nodei’s right subtree.
For RangeNodes there are only two strategies, as testing for key equality is not an option because there is

no key:
(1) searchKey < leftKey

(2) searchKey > rightKey

Applying the search strategy to the tree in Figure 3 reduces AST ′ from 3.80 to 3.10. As stated at the
beginning of this section, AST ′ for the tree in Figure 2 was 3.50. The improved tree using our search strategy
performs fewer comparisons and visits fewer nodes.

4.3 The Trade–offs

Both AST and AST ′ affect the execution time of a sequence of searches. Students should understand how
each of the optimization techniques discussed influences AST and AST ′.
Using range nodes improves AST while usually increasing AST ′. Range nodes give the biggest improvement

when there are high probabilities of the search key falling between two keys.
Using the search strategy will improve AST ′ while not changing AST . The search strategy always improves

the efficiency of searching leaves and nodes with only one child. For nodes with two children it gives the largest
improvement when individual keys have high probabilities or when there is a heavy right branch. In both cases,
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the simple search incurs a cost of two comparisons, while the improved search strategy only incurs a cost of
one comparison.
The two approaches may be combined. The resulting tree will generally show a marked improvement in

both AST and AST ′.
An interesting student exercise asks them to compare execution times of BSTs that use the different opti-

mization techniques. Carefully designed data sets lead students to a deeper appreciation of both optimization
approaches.

5 Conclusion

In this paper we have presented new perspectives on merging optimal binary search trees with object–oriented
programming. This merger draws material from dynamic programming and object–oriented design, and is
approachable by undergraduate students. We have found that presenting this problem in a data structures
and algorithms course helps students integrate ideas from a variety of topics.
We are continuing to explore optimal BSTs, mining the problem for further ways in which object–oriented

design may be used. Java source code for optimal BSTs as presented in this paper may be downloaded from:
www.cs.uwp.edu/staff/hansen.
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