
Chapter 9:
Classes with Instance Variables
or Classes=Methods+Variables

Asserting Java
© Rick Mercer

Classes

� Classes are
○  a collection of methods and data
○  a blueprint used to construct many objects
○  a great way to partition a software system
○  A way to implement any type

�  A type defines a set of values, and the allowable operations on
those values

One class constructing
three different objects,
each with its own set of
 values (state)

Computing Fundamentals, Rick Mercer Franklin, Beedle and Associates, 2003

2

Putting it All Together in a Class

�  Even though quite different in specific methods
and state, virtually all classes have these things in
common:

-  variables store the state of the objects
-  constructors initialize the state of an object
-  some messages modify the state of objects
-  some messages provide access to the state of

objects

3

General form of a Java class
public class class-name {
 //--instance variables
 private class-name identifier ;
 private primitive-type identifier ;

 // Constructor

 public class-name (parameters) {
 }

 //--Methods
 public return-type method-name-1 (parameters) {
 }

 public return- type method-name-N (parameters) {
 }
}

4

An Example class BankAccount
public class BankAccount {
 //--instance variables
 private String ID;
 private double balance;

 // Constructor to initialize the state
 public BankAccount(String initID, double initBalance) {
 ID = initID;
 balance = initBalance;
 }

 // Credit this account by depositAmount
 public void deposit(double depositAmount) {
 balance = balance + depositAmount;
 }

 // Debit this account by withdrawalAmount
 public void withdraw(double withdrawalAmount) {
 balance = balance - withdrawalAmount;
 }

5

3 modify, now 3 access, state
 public String getID() {
 return ID;
 }

 public double getBalance() {
 return balance;
 }

 public String toString() {
 return ID + " $" + balance;
 }

} // End class BankAccount

6

Objects are a lot about
Operations and State

�  The methods declared public are the messages
that may be sent to any instance of the class the
objects

�  The instance variables declared private store
the state of the objects
○  no direct access from outside the class

�  Every instance of a class has it own separate state
○  If you have 5,234 BankAccount objects, you'll have

5,234 IDs and 5, 234 balances

7

The Unified Modeling Language (UML) class
diagram -- another view of a class methods and state

 +BankAccount(String, double)
 +withdraw(double)
 +deposit(double)
 +double getBalance()
 +String getID()

 -String ID
 -double balance

BankAccount

8

Sample Messages

 BankAccount anAcct = new BankAccount("Moss", 500.00);
 anAcct.withdraw(60);
 anAcct.deposit(147.35);
 // These assertions should pass
 assertEquals("Moss", anAcct.getID());
 assertEquals(500.0, anAcct.getBalance(), 0.001);

9

Instance Variables
� State of objects stored as instance variables
○  these are the variables that are declared inside the

class, but outside of the method bodies
○  each instance of the class (object) has its own values

stores in its own instance variables with 954 objects you
have 954 sets of instance variables

○  all methods in the class can access instance variables
�  and most methods will reference at least one of the instance

variables the data and methods are related
○  when declared private, no one else can access the

instance variables the state is encapsulated, nice and safe
behind methods

10

Constructors
� Constructor
○  a special method that initializes the state of objects
○  gets invoked when you construct an object
○  has the same name as the class
○  does not have a return type

�  a constructor returns a reference to the instance of the class
�  Assigning object references to reference variables

11

 String aString = new String("Initial state");
 BankAccount anAcct = new BankAccount("Katey", 10.00);
 JFrame window = new JFrame("My Application");

Constructors
� General form: calling a constructor to construct and

initialize an object
 class-name object-name = new class-name (initial-state);

○  class-name: name of the class
○  object-name: any valid Java identifier
○  initial-state: zero or more arguments supplied during

instance creation.

12

Constructors

 public BankAccount(String initID, double initBalance)
 {
 ID = initID;
 balance = initBalance;
 }

 BankAccount anAcct
 = new BankAccount("Kellen", 123.45);
 13

•  A constructor uses the arguments initial-state to help
initialize the private instance variable

Methods that Access State
� Other methods return the current value of an object's

data member, or return some information related to
the state of an object

�  Some accessing methods simply return values of
instance variables, others require some processing

14

 anAccount.getBalance() // return current balance
 aString.substring(0, 3) // Get part of a string

return in non-void methods

�  Java's return statement provide the means to
return information, General form

 return expression ;
� When return executes, the value of expression

replaces the message control returns to the
message

�  expression must match the return type of
method heading
○  String return type means you must return a String
○  double return type? Return a double

�  You can not return an value from a void method

15

Returning state

public String getID() {
 return ID;
}

public double getBalance() {
 return balance;
}

System.out.println(+ anAcct.getID() + ": "
 + anAcct.getBalance());

Output: Kellen 123.45

An instance of BankAccount

16

Methods that Modify State

�  Some methods modify (change) the state of an object:

17

 anAccount.withdraw(120.00)
 // Account balance has been reduced by 120.00

 // Modify the state of any BankAccount object
 public void withdraw(double amount) {
 // balance is an instance variable
 balance = balance + amount;
 }

Naming Conventions

� Rules #1, 2, and 3:
1: Always use meaningful names
2: Always use meaningful names
3: Always use meaningful names

� Rule #4
 Constructors: Same name as the class

18

public or private?

� When designing a class, do this at least for now

○  declare constructors and methods public
○  declare instance variables private

� Public messages can be sent from
wherever the object is in scope

� Private state can not be messed up

19

 BankAccount myAcct = new BankAccount("Me", 10.00);
 myAcct.balance = myAcct.balance + 99999999.99;

Protecting an Object's State
•  Access modes make operations available to

clients and also protect the state
•  Instance variables and methods are known as

follows

 Access Mode Where is the symbol known?

 public From all methods of the class and in the scope
 (where it is known) of the object

 private Known only in the class

20

Some Guidelines
� Recommendations for writing your first classes:
○ declare instance variables private after class

definition
○ declare constructors public no return type, no

static!
○ declare most methods public no static!

� however, private helper methods are often useful
○  look at examples in Book and on the Code

Demos page as patterns
� use one file to store the class (no main method)
� use a unit test to test instances of the class

21

Object-Oriented Design
Guidelines

� Object-oriented design guideline
○  a rule of thumb intended to help produce good object-

oriented software
�  Example: When deciding what access users of a

class should have to methods and instance variables
� OOD Guideline

 All data should be hidden within its class
�  Translation: make instance variables private

22

Why private?
�  If balance were public, what is it after this?

 myAcct.balance = myAcct.balance - myAcct.balance;

� With balance private, compiletime error occurs
�  You want programmers to use the methods
○  imagine the other things that occur during a real

withdraw
�  write a transaction to a file
�  check for trying to withdraw more than balance

�  Also, you can later change the class
�  Also, programmers only need to know the methods

23

Cohesion within a class

�  The methods of a class should be strongly related
○  don't put a blastOff method in BankAccount

�  The instance variables should be strongly related
○  don't put double acceleration in BankAccount

� Cohesion means solidarity, hanging together
� Classes with high cohesion are a better design
○  the methods and data are related

� OOD Guideline
Keep related data and behavior in one place

24

