
13-1

Collection Considerations

Chapter 13

© Rick Mercer

Data Structures with Ja

©Rick Mercer
Data Structures with Java and JUnit

13-2

Outline

• Consider a Bag Abstract Data Type

• Java Interfaces

• Method headings only, must be implemented

by a Java class (or two or many)

• Data Structures

• Collections Classes

• Generics

• With Object parameters

• With type parameters <T>

13-3

Some Definitions

Abstract Data Type (ADT) A set of data values and
associated operations that are precisely specified
independent of any particular implementation.

Bag, Set, List, Stack, Queue, Map

Collection Class A Java language construct for
encapsulating the data and operations

ArrayList, LinkedList, Stack, TreeSet, HashMap

Data Structure An organization of information usually
in memory

arrays, linked structure, binary trees, hash tables

13-4

Why Collection classes?

• Need collections to store data to model

real world entities

• All courses taken by one student

• All students in a class

• A set of Poker Hands to simulate Texas

Hold'em game

• An appointment book

• List of things on your cell phone

• The movies in your movie queue

13-5

Common Methods

• Collection classes often have methods for
performing operations such as these

• Adding an object to the collection of objects

• Removing an object from the collection

• Getting a reference to a particular object find

• then you can send messages to the object while it is till in
the collection. Program do this a lot

• Retrieving certain objects such as the most recently
pushed (Stack) or least recently enqueued (Queue)

• Arranging objects in a certain order sorting

• The most basic collection is a Bag

13-6

NIST Definition of the Bag
http://xlinux.nist.gov/dads/HTML/bag.html

Bag

Definition: Unordered collection of values that may have duplicates

Formal Definition: A bag has a single query function,

occurencesOf(v, B), which tells how many copies of an element

are in the bag, and two modifier functions, add(v, B) and

remove(v, B). These may be defined with axiomatic semantics as

follows.

1. new() returns a bag

2. occurencesOf(v, new()) = 0

3. occurencesOf(v, add(v, B)) = 1 + occurencesOf(v, B)

4. occurencesOf(v, add(u, B)) = occurencesOf(v, B) if v ≠ u

5. remove(v, new()) = new()

6. remove(v, add(v, B)) = B

7. remove(v, add(u, B)) = add(u, remove(v, B)) if v ≠ u

where B is a bag and u and v are elements.

isEmpty(B) may be defined with the following additional axioms:

8. isEmpty(new()) = true

9. isEmpty(add(v, B)) = false

Also known as multi-set.

http://xlinux.nist.gov/dads/HTML/bag.html

13-7

We use Java interfaces rather

than axiomatic expressions
/**

* This interface specifies the methods for a Bag ADT. A bag

* is also known as a multi-set because bags are like a set

* with duplicate elements allowed.

*/

public interface Bag {

// Return true if there are no elements in this Bag.

public boolean isEmpty();

// Add a v to this collection.

public void add(Object v);

// Return how often the value v exists in this StringBag.

public int occurencesOf(Object v);

// If an element that equals v exists, remove one

// occurrence of it from this Bag and return true.

// If occurencesOf(v) == 0, simply return false.

public boolean remove(Object v);

}

13-8

The Java interface construct

• A Java interface describes a set of
methods:

• no constructors

• no instance variables

• The interface must be implemented by
some class.

• Over 1,000 java classes implement one or more
interfaces

• Consider a simple interface

13-9

interface BarnyardAnimal

public interface BarnyardAnimal {

public String sound();

}

• Interfaces have public method headings
followed by semicolons.

• no { } static methods are allowed but rare

• No methods are implemented

• One or more classes implement the methods

13-10

Classes implement interfaces

• To implement an interface, you must have all

methods as written in the interface

public class Cow implements BarnyardAnimal {

public String sound() {

return "moo";

}

}

public class Chicken implements BarnyardAnimal {

public String sound() {

return "cluck";

}

}

13-11

Cow and Chicken are also known as a
BarnyardAnimal

BarnyardAnimal aCow = new Cow();

BarnyardAnimal aChicken = new Chicken();

assertEquals(_______, aCow.sound());

assertEquals(_______, aChicken.sound());

• Fill in the blanks so the assertions pass

• We can store references to a Cow and a
Chicken into reference variable of type
BarnyardAnimal

13-12

Comparable interface (less silly)

• Can assign an instance of a class that implements
an interface to a variable of the interface type
Comparable str = new String("abc");

Comparable acct = new BankAccount("B", 1);

Comparable day = new Date();

• A few classes that implement Comparable

BigDecimal BigInteger Byte ByteBuffer

Character CharBuffer Charset CollationKey

Date Double DoubleBuffer File Float

FloatBuffer IntBuffer Integer Long

LongBuffer ObjectStreamField Short

ShortBuffer String URI

• Comparable defines the "natural ordering"
When is one object less than or greater than another?

13-13

Implementing Comparable

• Any type can implement Comparable to
determine if one object is less than, equal or
greater than another

public interface Comparable<T> {

/**

* Return 0 if two objects are equal; less than

* zero if this object is smaller; greater than

* zero if this object is larger.

*/

public int compareTo(T other);

}

13-14

Let BankAccount be Comparable

public class BankAccount implements Comparable<BankAccount> {

private String ID;

private double balance;

public BankAccount(String ID...

// stuff deleted

public int compareTo(BankAccount other) {

// Must complete this method or else it's an error.

// Compare by ID, might as well use String's compareTo

return getID().compareTo(other.getID());

}

}

Add this method

guarantee this class

has a compareTo

13-15

A test method—IDs are compared

@Test

public void testCompareTo() {

BankAccount a = new BankAccount("Alice", 543.21);

BankAccount z = new BankAccount("Zac", 123.45);

assertTrue(a.compareTo(a) == 0);

assertTrue(z.compareTo(z) == 0);

assertTrue(a.compareTo(z) < 0);

assertTrue(z.compareTo(a) > 0);

assertTrue(a.compareTo(z) <= 0);

assertTrue(z.compareTo(a) >= 0);

assertTrue(z.compareTo(a) != 0);

assertTrue(a.compareTo(z) != 0);

}

13-16

Generic Collections Classes

1) With Object parameters

2) With Java generics using type parameters

13-17

Outline

• Class Object, casting, and a little

inheritance

• Generic Collections with Object[]

• Using <Type> to give us type safety

• Autoboxing / Unboxing

13-18

Can have one Collection

class for any type
public class ArrayBag implements Bag {

// --Instance variables

private Object[] data;
private int n;

// Construct an empty bag that can store any type

public ArrayBag() {

data = new Object[20];
n = 0;

}

public void add(Object element) { }

public int occurencesOf(Object element) { }

public boolean remove(Object element) { }

}

13-19

What was that Object thing?

• Java has a class named Object

• It communicates with the operating system to

allocate memory at runtime

• Object has 11 methods

• Object is the superclass of all other classes

• All classes extend Object or a class that extends

Object , or a class that extends a class that

extends Object, or …

13-20

EmptyClass inherits all 11 methods

defined in class Object

public class EmptyClass extends Object {

// This class inherits Object's 11 methods

}

// Inherits 11 methods from Object

EmptyClass one = new EmptyClass();

EmptyClass two = new EmptyClass();

System.out.println(one.toString());

System.out.println(one.hashCode());

System.out.println(one.getClass());

System.out.println(two.toString());

System.out.println(two.hashCode());

System.out.println(one.equals(two));

one = two;

System.out.println(one.equals(two));

Output

EmptyClass@ffb8f763

-4655261

class EmptyClass

EmptyClass@ffbcf763

-4393117

false

true

13-21

One way assignment: up the

hierarchy, but not down

• Can assign any reference to an Object object

Object obj1 = new String("a string");

Object obj2 = new Integer(123);

System.out.println(obj1.toString());

System.out.println(obj2.toString());

Output

a string

123

• But not the other way compiletime error

String str = obj1; // incompatible types

^

Type mismatch: cannot convert from Object to String

13-22

Tricking the compiler into

believing obj1 is String

• Sometimes an explicit cast is needed

• Enclose the class name with what you know the
class to be in parentheses (String) and place it

before the reference to the Object object.

str = (String)obj1;

A reference to an Object object

13-23

Example Casts

Object obj1 = new String("A string");

String str = (String) obj1;

Object obj2 = new Integer(123);

Integer anInt = (Integer) obj2;

Object obj3 = new Double(123.45);

Double aDouble = (Double) obj3;

Object obj4 = new BankAccount(str, aDouble.doubleValue());

Double balance = ((BankAccount) obj4).getBalance();

13-24

ClassCastException

• Does this code compile by itself?

Object obj3 = new Double(123.45);

String aString = (String) obj3;

• Does that code run?

• Let's apply all of use of Object to one collection

class that can store any type (see next slide)

13-25

Object can store a reference to type

• The Object class allows collections of any type

• Use Object[] rather than any one specific type

public class ArrayBag implements Bag {

private Object[] data;

private int n;

public ArrayBag() {

data = new Object[20];
n = 0;

}

public void add(Object element) {

13-26

Object as a parameter and a return type

• add has an Object parameter

• get has an Object and return type

• This means that you add or retrieve references

to any type object even primitives as we'll see later

• This is possible because of inheritance

• can to assign a reference to Object

• All Java classes extend Object

13-27

One class for many types
but oh that ugly cast …

Bag names = new ArrayBag();

names.add("Kim");

names.add("Devon");

// cast required

String element = (String)names.get(0);

GenericArrayBag accounts = new GenericArrayBag();

accounts.add(new BankAccount("Kim", 100.00));

accounts.add(new BankAccount("Devon", 200.00));

// cast required

BankAccount current= (BankAccount)accounts.get(1);

13-28

Generics via Type Parameters <E>

A better way to implement collection classes

Assumption: GenericArrayBag has been implemented using an
Object[] instance variable, an Object parameter in add, and an

Object return type in get

13-29

One Problem with the old way using Object

parameters and return types

• Java "raw" types (no generics) do not check the type

• This is legal code
Bag name = new ArrayBag();

names.add(new Integer(2));

names.add(new BankAccount("Pat", 2.00));

names.add(new GregorianCalendar(2009, 0, 1));

names.add(1.23);

• So what type do you promise the compiler for these expressions?
names.get(0) ______

names.get(1) ______

names.get(2) ______

names.get(3) ______

• Often get the runtime error ClassCastException

• With version 5, Java added a better option: Generics

13-30

Generics

• Java 5 introduced Generics for type safety

• specify the type of element to be added or returned

• Reference types are passed as arguments between < >

Bag<String> strings = new ArrayBag<String>();

Bag<Integer> ints = new ArrayBag <Integer>();

Bag<BankAccount> accounts = new ArrayBag <BankAccount>();

• Change the class heading and the compiler sees E (or any

identifier you use) as the argument type used during

construction E could represent String, Integer, BankAccount, …

public class ArrayBag<E> implements Bag<E>

13-31

Can't add the wrong type

• Java generics checks the type at compile time

• See errors early--a good thing

• Known as "type safety" because you can't add different types

Bag<String> strings = new ArrayBag<String>();

strings.add("Pat"); // Okay

Strings.add(new BankAccount("Pat", 12)); // Error

ArrayBag <Integer> ints = new ArrayBag <Integer>();

int.add(1); // Okay

int.add(new String("Pat")); // Compiletime Error

13-32

Type parameter <E>

• Type parameters the new way to have a generic collection

public class ArrayBag<E> implements Bag<E> {

private Object[] data;

private int n;

public ArrayBag() {

data = new Object[20];

n = 0;

}

public void add(E element) { ... }

public E get(int index) { ... }

13-33

Can not have E[]

• We can not declare arrays of a generic parameter

public class ArrayBag<E> implements Bag<E> {

private E[] data;

public ArrayBag() {

data = new E[1000];

^

Cannot create a generic array of E

13-34

Can cast with (Type[])

• At runtime, the generic parameter E is really
Object

• We could use a cast like this: (E[])

public class ArrayBag<E> implements Bag<E> {

private E[] data;

public ArrayList() {

data = (E[]) (new Object[1000]);

}

13-35

Use Object[]

• Or we can use Object[] as the instance variable

public class ArrayBag<E> implements Bag<E> {

private Object[] data;

public ArrayBag() {

data = new Object[1000];

}

13-36

Another Advantage:

We can "appear" to add primitives

• Using this method heading

public void add(E element) { ... }

• How can this code be legal?

ArrayBag<Integer> ints = new ArrayBag <Integer>();

ints.add(new Integer(5));

ints.add(5); // 5 is int, not an Integer

13-37

Primitives are appear to be Objects

• To allow collections of primitive types, with Object[]
Java provided wrapper classes:

Integer Double Character Boolean Long Float

These allow you to treat primitives as Objects (need new)

• Before Java 5, wrapper objects can't handle arithmetic
operators
Integer anInt = new Integer(50);

int result = 2 * anInt - 3;

Error before Java 5

• Now objects appear as primitives and primitives as objects

Integer i = 3; // assign int to Integer

int j = new Integer(4); // Integer to int

int k = (3*new Integer(7)) + (4*i); // operators OK

13-38

How? Boxing / Unboxing

• Autoboxing is the process of treating a primitive as if it
were an reference type. When the compiler sees this
Integer anInt = 3;

— the code transforms into this

Integer anInt = new Integer(3);

• Java 1.4 arithmetic requires intValue or doubleValue
messages, for example:

int answer = 2 * anInt.intValue();

• Java 5 allows this
int answer = 2 * anInt;

13-39

Collection Classes

13-40

Structures to store elements

• Collection classes store data in many ways, here are 4

1) in contiguous memory (arrays)

2) or in a singly linked structure

"Bob"

first

"Chris"

"Zorro"

"Yean"

2 8 9 11 14 14 22 24 27 31

13-41

3) or in a hierarchal structure such as a tree

50

7525

12 35

28 41

66 90

81 95

91 100

54

root

13-42

4) or in hash tables

• Maps associate a key with a value

• e.g. your student ID and your student record

• Elements could be stored in a hash table

Array

Index

Key Object (state is shown, which is the

instance variables values of Employees

0 Smith D Devon 40.0 10.50 1 'S'

1 null null

2 Gupta C Chris 0.0 13.50 1 'S'

3 Herrs A Ali 20.0 9.50 0 'S'

4 null null

5 Li X Xuxu 42.5 12.00 2 'M'

