Chapter 17

Recursion
Recursion

♦ Outline

- Consider some recursive solutions to non-computer problems
- Compare iterative and recursive solutions
- Identify the recursive case and the base cases in some simple recursive algorithms
- Implement recursive methods (methods that call themselves)
Recursion can describe everyday examples

- Show everything in a folder and all its subfolders
 - show everything in top folder
 - show everything in each subfolder in the same manner
- How to look up a word in a dictionary
 - look up a word (use alphabetical ordering) or
 - look up word to define the word you are looking up
- Take attendance:

 if you are in the last row
 return #students in your row

 else
 return #students behind you + #students in your row
Recursive definition:
Arithmetic Expression

- Arithmetic expression is defined as
 - a numeric constant
 - an numeric identifier
 - an arithmetic expression enclosed in parentheses
 - 2 arithmetic expressions with a binary operator like + - / or *

Note: The term arithmetic expression is defined with the term arithmetic expression
 - but the first two bullets do not
Mathematical Examples

♦ Consider the factorial method (0!=1)

\[n! = n \times (n - 1) \times (n - 2) \times \ldots \times 1 \]

♦ The recursive definition:

\[
f(n) = \begin{cases}
 n \geq 1 & \Rightarrow n \times f(n - 1) \\
 n = 0 & \Rightarrow 1
\end{cases}
\]

♦ What is \(f(2) \)? _____________

♦ What is \(f(3) \)? _____________
Recursive and non-recursive solutions

// Non-recursive solution, using a loop
// precondition: n >= 0
public long factRep(int n) {
 long result = 1;
 for(int lcv = 2; lcv <= n; lcv++)
 result = lcv * result;
 return result;
}

// Recursive solution
// precondition: n >= 0
public long factRec(int n) {
 if(n == 0)
 return 1; // base case
 else
 return n * factRec(n - 1); // Recursive case
} // Don't call factRec(n + 1)!

@Test
given void testFacorialMethods() {
 assertEquals(1, factRep(0));
 assertEquals(1, factRec(0));
 assertEquals(1, factRep(1));
 assertEquals(1, factRec(1));
 assertEquals(2, factRep(2));
 assertEquals(2, factRec(2));
 assertEquals(6, factRep(3));
 assertEquals(6, factRec(3));
 assertEquals(24, factRep(4));
 assertEquals(24, factRec(4));
 assertEquals(3628800, factRep(10));
 assertEquals(3628800, factRec(10));
}
Trace factRec(4)

- Method calls itself until base case is reached

```
factRec( 0 ) = 1
```

```
factRec( 1 ) = 1 * 1
```

```
factRec( 2 ) = 2 * 1
```

```
factRec( 3 ) = 3 * 2
```

```
factRec( 4 ) = 4 * 6
```

24 replaces original method call
Return num to the b power

- Write $\text{pow}(\text{int } a, \text{ int } b)$ using this recursive definition

$$\text{pow}(\text{num, pow}) = \begin{cases}
\text{pow} == 0 \Rightarrow 1 \\
\text{pow} == 1 \Rightarrow \text{num} \\
\text{pow} \geq 2 \Rightarrow \text{num} \times \text{pow}(\text{num, pow - 1})
\end{cases}$$
Determine base and recursive cases

♦ When writing recursive methods
 — Make sure there is at least one base case
 • at least one situation where a recursive call is *not* made. There could be more than one base case
 – The method might return a value, or do nothing at all
 — There could be one or more recursive cases
 • a recursive call must be a simpler version of the same problem
 – the recursive call should bring the method closer to the base case *perhaps pass n-1 rather than n.*
Palindrome

♦ Palindrome is a String that equals itself when reversed: "racecar" "abba" "12321"
♦ Write a recursive method that returns true if a given string is a palindrome
 — What is/are the base case(s)?

```java
public void testIsPalindrome() {
    assertTrue(isPalindrome("A"));
    assertTrue(isPalindrome("racecar"));
    assertFalse(isPalindrome("not"));
    assertFalse(isPalindrome("Aba"));
    assertFalse(isPalindrome("1231"));
    assertFalse(isPalindrome("1233 21"));
}
```

— What is the recursive case?
Recursion = Recursion(Again-1);
A Combinatorial method

♦ This example of a recursive solution comes from the field of Combinatorics
♦ Problem: A D.J. plays 10 songs each hour. There are 40 different songs. How many different one hour sets are possible?
♦ Or in general given 40 different things, how many sets of size 10 can be chosen
♦ Or using the standard notation – \(n \) choose \(k \)

\[
\binom{n}{k}
\]
Recursive n choose k (con.)

- In any given hour, we could play "Stairway"
- All the possible sets are those that have "Stairway" and those that don't (sum below)
- After picking this one song--now a simpler problem--the DJ must pick 9 more from the remaining 39 songs (from 39 choose 9)
- Possible sets are those with "Stairway", and those without

\[
\binom{40}{10} = \binom{39}{9} + \binom{39}{10}
\]
From 5 choose 2

- Here is simpler problem, from 5 letters choose 2

\[
\begin{array}{cccc}
A & B & C & D \\
\end{array}
\quad \begin{array}{c}
\binom{5}{2} = \binom{4}{1} + \binom{4}{2}
\end{array}
\]

- All the sets with A (from 4 choose 1):
 - AB AC AD AE

- Those without A (from 4 choose 2, no A):
 - BC BD BE CD CE DE
Recursive n choose k (con.)

♦ Or, in general, we get

\[
\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}
\]

♦ Rewritten as a method named c that has two parameters n and k:

\[
c(n, k) = c(n - 1, k - 1) + c(n - 1, k)
\]

♦ We're getting closer but where is the base case?
The base cases for \(n \) choose \(k \)

- First, \(n \) must be at least as big as \(k \):
 - We cannot choose a 10 song set from 9 songs
- When \(n = k \), there is only one choice
 - only one possible 10 song set from 10 songs
- To be meaningful, \(k \) must be at least 1
 - We're not interested in sets with 0 songs
- When \(k \) is 1, there are \(n \) ways to choose
 - If we only play 1 song sets, and we have 10 songs to choose from, we get \(n \), or 10, possible sets
Finally, here is the recursive definition of \(n \) choose \(k \)

The recursive definition of \(n \) choose \(k \) summarizes all of these points:

\[
c(n,k) = \begin{cases}
k = 1 \Rightarrow n
n = k \Rightarrow 1
n > k \& \& k > 1 \Rightarrow c(n-1,k-1) + c(n-1,k)
\end{cases}
\]

What is \(c(5, 2) \)? ____________
What is \(c(4, 1) \)? ____________
What is \(c(4, 2) \)? ____________
What is \(c(6, 3) \)? ____________
How many poker hands are possible?_____
We don’t need recursion

♦ Could also use the factorial method
 — at least for not large arguments

\[
\binom{n}{k} = \frac{n!}{k!(n-k)!}
\]

♦ Example: From 4, choose 2

\[
\binom{4}{2} = \frac{4!}{2!(4-2)!} = \frac{24}{2 \times 2} = 6
\]
How Recursion works

♦ Method calls generate activation records
 – Depending on the system, the activation record might store
 • all parameter values and local values
 • return point -- where to go after the method finishes
 – imagine all this is in a box
 – the data is stored in an activation frame (a box) and pushed onto a stack -- one on top of the other
 – when the method finishes, the activation frame stack is popped
 • it disappears, control returns to where it was called
A method that calls itself

```java
public void forward(int n){
    if(n > 1)
        forward(n - 1); // recursive call: n goes toward 0
    System.out.print(n);
}

@Test
public void showRecursion(){
    int arg = 3;
    forward(arg);
    // RP# SHOW
    arg = 999;
}
```

```
start in showRecursion
arg 3

arg 3
```
The base case is reached

♦ Several activation frames are stacked
♦ When parameter \((n) == 1\), there is no recursive call.

- (1) execute the base case when \(n == 1\)

  ```java
  System.out.print(n);
  ```
- The output is 1 and the method is done

```
public void forward(int n){
    if(n > 1)
        forward(n - 1); // recursive call
    System.out.print(n);
}
```
Returning back to SHOW

— (2) Return to previous call and pop box on top
 • continue from RP# FORWARD, print 2
— (3) Return to previous call and pop box on top
 • continue from RP# FORWARD, print 3
— (4) Return to showRecursion, pop box on top
 • execute arg = 999 (to indicate we're back in SHOW)

The SHOW method is done, Output is **123**
Infinite Recursion

- A recursive method will keep calling itself until the base case is reached
 - there must be at least one base case
 - this could be to do nothing
 - each call should make progress towards a base case
 - call a simpler version
 - could be a smaller or larger argument than the parameter
 - could be a smaller portion of an array or linked structure

- How many method calls are in the next code?
Infinite Recursion

```java
assertEquals(2, (factRec(2))); // Stopped when n == 10301 on one machine

public long factRec(int n) {
    System.out.println(n);
    if (n == 0) {
        return 1; // base case
    } else {
        return n * factRec(n + 1);
    }
}

java.lang.StackOverflowError
```
Refactorings

♦ Refactoring: Making small changes to code without changing the meaning

♦ Two related refactorings from Martin Fowler's online refactoring catalog
 – Replace recursion with iteration
 – Replace iteration with recursion