
More Java Drawing in 2D

Animations with Timer

Drawing Review

 A simple two-dimensional coordinate system exists for

each graphics context or drawing surface such as a JPanel

 Points on the coordinate system represent single pixels

(no world coordinates exist)

 Top left corner of the area is coordinate <0, 0>

 A drawing surface has a width and height

 example: JPanel has getWidth() and

getHeight()methods

 Anything drawn outside of that area is not visible

 You see no errors or exceptions either

JComponent

 To begin drawing we first need a class which extends

JComponent. Use JPanel.

 Once we subclass JPanel we can override the

paintComponent() method to specify what we want

the panel to paint when repainting

 When painting we paint to a Graphics context (which

is given to us as an argument to paintComponent)

4

Extend JPanel

public class DrawingPanel extends JPanel {

private Arc2D pieArc;

public DrawingPanel() {

pieArc = new Arc2D.Double(Arc2D.PIE);

pieArc.setArc(20.0, 20.0, 33.0, 33.0, 15.0, 320.0, Arc2D.PIE);

}

@Override

public void paintComponent(Graphics g) {

super.paintComponent(g);

Graphics2D g2 = (Graphics2D) g;

g2.setPaint(Color.RED);

g2.fill(pieArc);

g2.drawLine(5, 80, 100, 80);

}

}

4

paintComponent(Graphics g)

 paintComponent() is the method which is called

when repainting a Component.

 It should never be called explicitly, but instead

repaint() should be invoked which will then call

paintComponent()on the appropriate Components

 When overriding paintComponent()the first line

should be super.paintComponent(g)which will

clear the panel for drawing

Graphics vs. Graphics2D

 We are passed a Graphics object to

paintComponent() which we paint to

 Cast the object passed to a Graphics2D which has

much more functionality.

 Graphics2D has more sophisticated control over

geometry, coordinate transformations, color management,

and text layout. This is the fundamental class for

rendering 2-D shapes, text and images on the Java(tm)

platform

 Why didn’t Java just pass Graphics2D?

 Legacy support

Using Java Geometry

We've seen Rectangle

 Classes within java.awt.geom

AffineTransform, Arc2D, Arc2D.Double, Arc2D.Float, Area,

CubicCurve2D, CubicCurve2D.Double, CubicCurve2D.Float,

Dimension2D, Ellipse2D,Ellipse2D.Double, Ellipse2D.Float,

FlatteningPathIterator, GeneralPath, Line2D,

Line2D.Double, Line2D.Float, Path2D, Path2D.Double,

Path2D.Float, Point2D, Point2D.Double, Point2D.Float,

QuadCurve2D, QuadCurve2D.Double, QuadCurve2D.Float,

Rectangle2D, Rectangle2D.Double, Rectangle2D.Float,

RectangularShape, RoundRectangle2D,

RoundRectangle2D.Double, RoundRectangle2D.Float

Using Java Geometry (cont.)

 Note: Arc2D.Double means that Double is an inner

class contained in Arc2D

pieArc = new Arc2D.Double(Arc2D.PIE);

pieArc.setArc(20.0, 20.0, 33.0, 33.0, 15.0, 320.0, Arc2D.PIE);

 The difference between g2.draw() and g2.fill() is

that draw will draw an outline of the object while fill will

fill in the object

Alpha (Transparency)

 We can assign transparency (alpha) values to drawing

operations so that the underlying graphics partially shows

through when you draw shapes or images.

 Create an AlphaComposite object using

AlphaComposite.getInstance with a mixing rule

 There are 12 built-in mixing rules but we only care about
AlphaComposite.SRC_OVER

 See AlphaComposite API for more details

 Alpha values range from 0.0f to 1.0f, completely transparent

and completely opaque respectively

 Pass the AlphaComposite object to g2.setComposite()

so that it will be used in our rendering

Alpha (Transparency, cont.)
pieArc = new Arc2D.Double(Arc2D.PIE);

pieArc.setArc(20.0, 20.0, 66.0, 66.0, 15.0, 320.0, Arc2D.PIE);

pieArcRed = new Arc2D.Double(Arc2D.PIE);

pieArcRed.setArc(35.0, 35.0, 66.0, 66.0, -15.0, 240, Arc2D.PIE);

//

g2.setPaint(Color.BLUE);

g2.fill(pieArc);

Composite originalComposite = g2.getComposite();

AlphaComposite alphaComposite = // 0.1f would make red faint

AlphaComposite.getInstance(AlphaComposite.SRC_OVER, 0.5f);

g2.setComposite(alphaComposite);

g2.setPaint(Color.RED);

g2.fill(pieArcRed);

g2.setComposite(originalComposite);

// Run animation.DrawPanelMain

Animation with javax.swing.Timer

 At its simplest, animation is the time-based alteration of
graphical objects through different states, locations, sizes and
orientations

 This code set a timer to send an actionPerformed message
to its listener(s) every 10 milliseconds

timer = new javax.swing.Timer(10, new TimerListener());

timer.start();

 The code in the actionPerformed message of class
TimerListener that will be executed ever 10 ms

public class TimerListener implements ActionListener {

public void actionPerformed(ActionEvent evt) {

// Executes every so many ms the Timer has been set to

// from a separate thread that it created for itself

}

}
Advanced Swing F2-24

Animation: Simple Timer Example
public class RedBallPanel extends JPanel {

private static Random generator;

private Ellipse2D pellet;

private int tick;

private int x, y;

private Timer timer;

public RedBallPanel() {

generator = new Random();

startAnimating();

}

@Override public void

paintComponent(Graphics g) {

super.paintComponent(g);

Graphics2D g2 = (Graphics2D) g;

g2.setPaint(Color.RED);

g2.fill(pellet);

}

private void startAnimating() {

pellet = new Ellipse2D.Double();

tick = 0;

timer = new javax.swing.Timer(1000, new TimerListener());

timer.start();

}

public class TimerListener

implements ActionListener {

public void actionPerformed(

x = generator.nextInt(Main.FR..

y = generator.nextInt(Main.FR..

pellet.setFrame(x, y, 10, 10);

repaint();

tick++;

if (tick > 20)

timer.stop();

}

}

}

executes every 1000 ms

Animation: Double Buffering

Double buffering is the mechanism of using a
second bitmap (or buffer) which receives all of
the updates to a window during an update.

Once all of the objects of a window have been
drawn, then the bitmap is copied to the primary
bitmap seen on the screen.

 This prevents the flashing from appearing to the
user that occurs when multiple items are being
drawn to the screen.

Animation: Double Buffering In Swing

 Swing now (as of Java 6) provides true double

buffering. Previously, application programmers

had to implement double buffering themselves

 The no-arg constructor of JPanel returns a

JPanel with a double buffer (and a flow layout)

by default

 "...uses additional memory space to achieve fast,

flicker-free updates."

Animation: Double Buffering In Swing

Each box drawn

in order might be

detectable by user.

The entire backing

bitmap is copied at

once to the visible

bitmap, avoiding any

flicker.

Drawn

1st

Drawn

2nd

Drawn

3rd

Drawn

4th

Backing Bitmap

(not visible to user)

Window Bitmap

(visible to user)

Animated GIF’s

 Using animated GIF’s in your projects is okay, but there
is a better way to animate things

 Problems with animated GIF’s:
 The timings between frames are set in stone and cannot be

controlled by the programmer.

 During the first animation of the GIF it will appear that your
image is not loaded since the GIF loads each frame as it is
displayed (looks ugly, but can be avoided using image
loaders)

 Programmers also can’t control which frame to display or
start/stop on since the GIF just keeps animating

 Instead of Animated GIF’s, most 2D games will use what
is called a SpriteSheet and then animate using a Timer
or Thread

Sprite Sheets

 A sprite sheet is a depiction of various
sprites arranged in one image, detailing
the exact frames of animation for each
character or object by way of layout.

 The programmer can then control how
fast frames switch and which frame to
display. Additionally the whole sheet is
loaded at once as a single image and
won’t cause a loading glitch.

 In Java we can use the
BufferedImage method:

getSubimage(int x, int y, int w, int h)

 Returns a subimage defined by a
specified rectangular region.

