
3-1

Adapter Design Pattern

State Design Pattern

C Sc 335

Rick Mercer

2

Adapter Design Pattern

 Gang of Four state the intent of Adapter is to

 Convert the interface of a class into another interface that

the clients expect. Adapter lets classes work together that

could not otherwise because of incompatible interfaces.

 Use it when you need a way to create a new

interface for an object that does the right stuff but

has the wrong interface Alan Shalloway

3

Object Adapters

 Before Java 5.0, we often adapted an ArrayList or
HashMap to have an easier to use collection

 Use a Containment Relationship:

 A collection with ArrayList or HashMap instance variable

 Put the cast in the method once instead of everywhere

 http://www.refactoring.com/catalog/encapsulateDowncast.html

 Add Employees rather than Objects (type safe)

 Method names then mean more to the clients
 Employee getEmployeeWithID (String) good

 Object get(int) bad

 Not a compelling example with Java generics

 However, you might see some legacy code with

http://www.refactoring.com/catalog/encapsulateDowncast.html

4

Object Adapters

 Object Adapters rely on one object (the adapting

object) containing another (the adapted object)

 A Stack class should have a Vector and use only

Vectors add, get, and size methods (aka Wrapper)

 Stack should not extend Vector like Sun Oracle does

java.lang.Object

java.util.AbstractCollection<E>

java.util.AbstractList<E>

java.util.Vector<E>

java.util.Stack<E>

Class Adapters

 Class Adapters also come about by extending a class

or implementing an interface used by the client code

 You have used class adapters at least twice!

 Adapted your song collection so it could be stored in a

ListModel object, which in turn was used by a JList to

show a graphical view of the list elements

 JList needs the methods defined in the ListModel

interface: getSize() and getElementAt(int)

6

TableModel adapts your model class

 A JTable requires a TableModel object that
represents a class in model (the data to show)

 Your model class must have methods such as

 getColumnCount, getRowCount, getValueAt

 Why? JTable uses these methods to display view

 Need to adapt our model class to what JTable expects

 Adapt your model class to the interface expected
by JTable by implementing all 10 methods

7

Adapt my collection to look like

TableModel

 JTable shows a list of Employees like this

8

EmployeeList adapted to TableModel

public class EmployeeList implements TableModel {

private ArrayList<Employee> data =

new ArrayList<Employee>();

public EmployeeList() {

data.add(new Employee("Devon", 40, 15.75, 3, "M"));

data.add(new Employee("Kim", 0, 12.50, 1, "S"));

data.add(new Employee("Chris", 35, 20.50, 2, "M"));

}

public void add(Employee employee) {

data.add(employee);

}

public Iterator<Employee> iterator() {

return data.iterator();

}

}

9

Class Adapter

 Code demo: Adapt EmployeeList to the interface the
JTable needs by implementing TableModel

 Or we could have extended DefaultTableModel and
overridden the methods (let’s choose containment over
inheritance)

public class EmployeeList implements TableModel {

…. Implement TableModel methods ….
okay, to save time, see next slide for getValueAt

10

One TabelModel method

// Adapt tax and pay methods to getValueAt(int column)

public Object getValueAt(int rowIndex, int columnIndex) {

Employee currentEmployee = data.get(rowIndex);

double totalTaxes = currentEmployee.incomeTax()

+ currentEmployee.medicareTax()

+ currentEmployee.socialSecurityTax();

switch (columnIndex) {

case 0:

return currentEmployee.getName();

case 1:

return currentEmployee.grossPay();

case 2:

return totalTaxes;

case 3:

return data.get(rowIndex).grossPay() - totalTaxes;

default:

return null;

}

}

11

A View: to demonstrate

class EmployeeFrame extends JFrame {

public static void main(String[] args) {

new EmployeeFrame().setVisible(true);

}

private EmployeeList threeEmps;

public EmployeeFrame() {

threeEmps = new EmployeeList();

EmployeeList threeEmps = new EmployeeList();

setSize(300, 120);

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

JTable view = new JTable(threeEmps);

this.add(view, BorderLayout.CENTER);

}

}

 Client: EmployFrame

 Adaptor: JTable

 Adaptee: EmployList
class EmployeeFrame extends JFrame {

public static void main(String[] args) {

new EmployeeFrame().setVisible(true);

}

private EmployeeList threeEmps;

public EmployeeFrame() {

threeEmps = new EmployeeList();

EmployeeList threeEmps = new EmployeeList();

setSize(300, 120);

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

JTable view = new JTable(threeEmps);

this.add(view, BorderLayout.CENTER);

}

}

12

Adapter Classes

 The WindowListener interface has seven methods
that you must implement

 If you only need to respond to one window event,
you can extend WindowAdapter (sic)

 and override whatever methods you need to

private class Terminator extends WindowAdapter {

// This is a WindowAdapter, methods do nothing

public void WindowClosing(WindowEvent e) {

System.exit(0);

}

// the other 6 methods are in WindowAdaptor
// and they are set to do nothing

}

Besides WindowListener/WindowAdapter,

Java has lots of Listener/Adapter pairs

package java.awt.event

ComponentListener/ComponentAdapter

ContainerListener/ContainerAdapter

FocusListener/FocusAdapter

HierarchyBoundsListener/HierarchyBoundsAdapter

KeyListener/KeyAdapter

MouseListener/MouseAdapter

MouseMotionListener/MouseMotionAdapter

WindowListener/WindowAdapter

package java.awt.dnd

DragSourceListener/DragSourceAdapter

DragTargetListener/DragTargetAdapter

package javax.swing.event

InternalFrameListener/InternalFrameAdapter

MouseInputListener/MouseInputAdapter

http://java.sun.com/javase/6/docs/api/java/awt/event/package-summary.html
http://java.sun.com/javase/6/docs/api/java/awt/dnd/package-summary.html
http://java.sun.com/javase/6/docs/api/javax/swing/event/package-summary.html

Java Data Base Connectivity

(JDBC) Adaptor

 Write code in Java using

the methods of the JDBC

Adaptor

 The Adaptor creates SQL

commands for you

Picture from IBM

15

The Façade Design Pattern

16

Façade is closely related to Adapter

17

 Provide a unified interface to a set of interfaces in

a System. Façade defines a higher level interface

that makes the subsystem easier to use GangOf4

Facade takes a "riddle

wrapped in an enigma

shrouded in mystery", and

interjects a wrapper that

tames the amorphous and

inscrutable mass of software.
SourceMaking

Façade

 Façade is used to

 Create a simpler interface

 Reduce the number of objects that a client deals with

 Hide or encapsulate a large system

 CSc 436 student wants to build a Façade

 …creating an open source library to introduce people to the

power of the OpenCL API. Why?

 Many people complain about the various intricacies of the

"boiler plate" code just to get things working. This library

will handle all this for the user so they can focus on learning

the techniques of OpenCL.
OpenCL™ is the first open, royalty-free standard for cross-platform, parallel programming of

modern processors found in personal computers, servers and handheld/embedded devices.

18

The State Design Pattern

19

Sate

 Most objects have state that changes

 State can become a prominent aspect of its

behavior

 An object that can be in one of several states, with

different behavior in each state

20

Use State when . . .

 Complex if statements determine what to do
if (thisSprite == running)

doRunAnimation();

else if (thisSpite == shooting)

doShootingAnimination();

else if (thisSpite == noLongerAlive)

doRollOverAnimation();
...

 An object can be in one of several states, with
different behavior in each state

21

State Design Pattern

 State is one of the Behavioral patterns

 It is similar to Strategy

 Allows an object to alter its behavior when its

internal state changes

 The object will appear to change its class

22

General Form
from Wikipedia, copied from Gof4

23

“Context” class: Represents the interface to the outside world

“State” abstract class: Base class which defines the different states of

the “state machine”

“Derived” classes from the State class: Defines the true nature of the

state that the state machine can be in

Example from Atri Jaterjee

24

MyMood MoodState

doSomething()

mad angry happy

doSomething() doSomething() doSomething()

state variable

Client
doSomething()

Another Example
from Steve Metsker's Design Patterns Java Workbook,

Addison Wesley

 Consider the state of a carousal door in a factory

 large smart rack that accepts material through a

doorway and stores material according to a bar code

 there is a single button to operate this door

 if closed, door begins opening

 if opening, another click begins closing

 once open, 2 seconds later (timeout), the door begins closing

 can be prevented by clicking after open state and before

timeout begins

 These state changes can be represented by a state

machine (next slide)
25

A UML State Diagram

26

Things to do

 Define a “context” class to present a single interface

 Define a State abstract base class.

 Represent different “states” of the state machine as derived

classes of the State base class

 Define state-specific behavior in the appropriate State

derived classes (see code demo that changes state, from

Opening to Closing or Closing to Opening for example)

 Maintain a reference to the current “state” in the

“context” class

 To change the state of the state machine, change the

current “state” reference
27

Code reverse engineered (demo)

28

Another Example

A game

29

UML diagram of state

30

Play a game

 See EEClone for ideas about animations and

using Strategy

31

