
1

Polymorphism through the

Java Interface

Rick Mercer

2

Outline

Describe Polymorphism

Show a few ways that interfaces are used
— Compare objects with Comparator

— Create our own icons with Icon

— Play audio files with AudioClip

— The role of interfaces in Java’s Collection Framework

3

Polymorphism

 In general, polymorphism is the ability to appear in

many forms

 In object-oriented programming, polymorphism

refers to a programming language's ability to

process objects differently depending on their data

type (class)

 Polymorphism is a requirement of any true object-

oriented programming language

4

Polymorphism from mercer

To understand polymorphism, take an example of a

workday at Franklin, Beedle, and Associates. Kim

brought in pastries while everyone was chatting. When

the food was mostly devoured, Jim, the president of

the company, invited everyone to “Get back to work.”
Sue went back to read a new section of a book she was

editing. Tom continued laying out a book. Stephanie

went back to figure out some setting in her word-

processing program. Ian finished the company catalog.

5

Polymorphism

Jeni met with Jim to discuss a new project. Chris began

contacting professors to review a new manuscript. And

Krista continued her Web search to find on whether

colleges are using C++, Python, or Java. Marty went

back to work on the index of his new book. Kim

cleaned up the pastries. Rick was just visiting so he

went to work on the remaining raspberries.

6

Polymorphic Messages

10 different behaviors with the same message!

The message “Get back to work” is a

polymorphic message

— a message that is understood by many different

types of object (or employees in this case)

— but responded to with different behaviors based

on the type of the employee: Editor, Production,

Marketing, …

7

Polymorphism

Polymorphism allows the same message to be
sent to different types to get different behavior

 In Java, polymorphism is possible through

— inheritance

• Example: Override toString() to return different
values that are textual representations of that type.

— interfaces

• Example: Collections.sort(List<?>) sends
compareTo messages to objects that must have
implemented Comparable<T>

8

Polymorphism

The runtime message finds the correct method

— same message can invoke different methods

— the reference variable knows the type
aString.compareTo(anotherString)

anInteger.compareTo(anotherInteger)

aButton.actionPerformed(anEvent)

aTextField.actionPerformed(anEvent)

aList.add(anObject)

aHashSet.add(anObject)

9

The Java Interface

An interface describes a set of methods
— class variables are allowed (need static)

— NOT allowed: constructors, instance variables

public interface IBowlingLine {

public static final int LAST_FRAME = 10;

public abstract int scoreAtFrame(int frame);

public int scoreSoFar();

// Interface methods are implicitly abstract, so the

// abstract modifier is not used with interface methods

// (it could be—it's just not necessary).

// Also public by default, so this would work

void pinsDowned(int pins);

}

10

The Java Interface

 Interfaces are to be implemented by a class
— ~ 33% of classes (about 1,000) in Java’s API

implement one or more interfaces

Typically, two or more classes implement the
same interface
— Type guaranteed to have the same methods

— Objects can be treated as the same type

— May use different algorithms / instance variables
/ data structures

11

The Comparable interface
remember?

 Can assign an instance of a class that implements
and interface to a variable of the interface type
Comparable str = new String("abc");

Comparable acct = new BankAccount("B", 1);

Comparable day = new Date();

Some classes implement Comparable
— find out how many with Java’s API

 interface Comparable defines the "natural ordering"

for collections

12

interface comparator

/**

* Compares its two arguments for order. Returns a

* negative integer, zero, or a positive integer as the

* first argument is less than, equal to, or greater

* than the second argument. Equals not shown here

*/

public interface Comparator<T> {

int compare(T one, T other);

}

 Can specify sort order by objects. In the code below

— What class needs to be written?

— What interface must that new class implement?

Comparator<BankAccount> idComparator = new ByID();

Collections.sort(accounts, idComparator);

Sort using different Comparators

13

class OurIcon implements Icon

Icon myIcon = new

LiveCamImage("http://www.cs.arizona.edu/camera/view.jpg");

JOptionPane.showMessageDialog(

null,

"View from\nthe UofA\nComputer Science\nDepartment",

"Message",

JOptionPane.INFORMATION_MESSAGE,

myIcon);

Notice the 5th parameter type, class or interface?

public static void showMessageDialog(Component parentComponent,

Object message, String title, int messageType, Icon icon)
throws HeadlessException

../../java/awt/Component.html
../../java/lang/Object.html
../../java/lang/String.html
../../javax/swing/Icon.html
../../java/awt/HeadlessException.html

14

LiveCamImage
public class LiveCamImage implements Icon {

private BufferedImage myImage;

public LiveCamImage(String imageFileName) {

try {

myImage =

javax.imageio.ImageIO.read(new URL(imageFileName));

} catch (IOException e) {

System.err.println("Could not load" + imageFileName);

}

}

// Control the upper left corner of the image

public void paintIcon(Component c, Graphics g, int x, int y) {

g.drawImage(myImage, 2, 2, null);

}

// Icon also specifies getIconWidth and getIconHeight

// See file in InterfaceExamples.zip

15

An interface you need now

An interface, a reference type, can have

— static variables and method headings with ;
public int size(); // no { }

Many classes may implement an interface

— Use interface ActionListener to register any

number of objects to respond to button clicks,

menu selections, and input into a text field

public interface ActionListener {

public void actionPerformed(ActionEvent theEvent);

}

16

Multiple classes implement

the same interface

To implement an interface, classes must have

all methods specified as given in the interface

private class TheButtonListener implements ActionListener {

public void actionPerformed(ActionEvent theEvent) {

// Do this method when a user clicks TheButton

}

}

private class TheTextFieldListener implements ActionListener {

public void actionPerformed(ActionEvent theEvent) {
// Do this code when user presses the enter
// key in TheTextField when it has focus

}
}

