
1

Responsibility Driven Design

Responsibility Driven Design, Rebecca Wirfs Brock, 1990

The Coffee Machine Design Problem, Alistair Cockburn, C/C++ User's
Journal, May and June 1998.

Introducing Object-Oriented Design with Active
Learning, Rick Mercer , Consortium for Computing in
Small Colleges, 2000

2

In Rebecca Wirfs Brocks' Words

Responsibility-Driven Design is a way to design that
emphasizes behavioral modeling using objects, responsibilities
and collaborations. In a responsibility-based model, objects
play specific roles and occupy well-known positions in the
application architecture. Each object is accountable for a
specific portion of the work. They collaborate in clearly
defined ways, contracting with each other to fulfill the larger
goals of the application. By creating a "community of objects",
assigning specific responsibilities to each, you build a
collaborative model of our application.

Responsible: able to answer for one's conduct and obligations—trustworthy, Merriam Webster

3

Responsibility Driven Design
in Rick's words

1. Identify candidate objects that model a system
as a sensible set of abstractions

2. Determine the responsibility of each object
— what an instance of the class must be able to do,
— and what each instance must know about itself

3. Understand the system through role play
— To help complete its responsibility, an object

often needs help from other objects

4

OO Design Principle

" The Single Responsibility Principle
 Classes should have a single responsibility
http://en.wikipedia.org/wiki/Single_responsibility_principle
♦ Why?

— Cohesion, when high, reduces complexity, makes
the system more understandable

http://en.wikipedia.org/wiki/Cohesion_%28computer_science%29
— Maintenance: Fixing or changing a module should

not break other parts of the system

5

First Design a Model
Note: design is iterative

♦ Find a set of objects (candidate classes) that
model a solution

♦ Each will be a part of the bigger system
♦ Each should have a single responsibility
♦ What are these objects?

6

Find the Objects

♦ Candidate objects may come from
— An understanding of the problem domain

•  knowledge of the system that the problem
specification may have missed or took for granted

— The words floating around the room Alistair
Cockburn

— The nouns in the problem statement
•  Underline the noun phrases to look for the objects

that could model the system

7

The student affairs office want to put some newfound activity
fee funds toward a Jukebox in the student center. The Jukebox
must allow students to play a song. No money will be
required. Instead, a student will swipe a magnetic ID card
through a card reader, view the song collection and choose a
song. Students will each be allowed to play up to 1500
minutes worth of "free" Jukebox music in their academic
careers, but never more than two songs on any given date. No
song can be played more than five times a day*.

*What a drag it would be to hear "Dancing Queen" 14 times while eating lunch
(apologies to ABBA)!

 The Problem Specification repeated

8

A First Cut at the Candidate
Objects (may become classes)

What objects effectively model the system? What is
the responsibility, Example

Song: Know song title, artist, playtime, how often it's been played today

Others?

9

Yesses

Jukebox: coordinates activities
one instance to start things and keep them going

JukeboxAccount changed from Student: maintain
one account: model user who play songs

Song: one song that can be played
CardReader: reads the magnetic ID card

10

A No

StudentIdCard: store user data
" Object-Oriented Design Guideline
Eliminate classes that are outside the system

— The hallmark of such a class is one whose only
importance to the system is the data contained in it.

— Student identification number is of great importance
— The system should not care whether the ID number was

read from a swiped magnetic ID card, typed in at the
keyboard, or "if a squirrel arrived carrying it in his
mouth" Arthur Reil

11

More Candidate Objects?

♦ SongCollection: songs to choose from
♦ What about storing a collection of accounts?
 JukeBoxAccountCollection
♦ Use a compact disk player or real Jukebox?

♦ Could have a software equivalent like
SongPlayer to play audio files?

12

Date

Date: Can determine when a song is played and
the current date.

— Maybe
— Can we use use java.util.GregorianCalendar?

13

Another No?

StereoSystem: Amplifies the music
— No, it's on the other side what we have to build

♦ The next slide summarizes some needed
candidate objects

— It also sets the boundaries of the system
•  There are model of the real world objects

14

Candidate Objects and the system boundary
Rick drew this before UML existed

CardReader
Gets student ID JukeboxAccountCollection

Stores all JukeboxAccount objects

JukeBox
Coordinates
activities

SongPlayer
Plays a song

SongCollection
Stores all Songs that can be played

JukeboxAccount

Song

15 30

Another Example
http://www.ifi.uio.no/in219/verktoy/doc/html/doc/user/mg/dgmsuml6.html

Scenario: The user tries to use an ATM, but the account is not known

16

Role Play

♦ Need 7 students to play the role play the scenario
Rick wants to play “Feelin’ Alright”

1. CarderReader

2. JukeboxAccountCollection

3. JukeBoxAccount
4. Jukebox

5. Songplayer
6. SongCollection

7. Song

The rest of you will have to write
a sequence Diagram by hand, it

will be like taking notes, a start

