
Object-Oriented

Design Patterns

CSC 335: Object-Oriented

Programming and Design

Outline

Overview of Design Patterns

Four Design Patterns

– Iterator

– Decorator

– Strategy

– Observer

The Beginning of Patterns

Christopher Alexander, architect

– A Pattern Language--Towns, Buildings, Construction

– Timeless Way of Building (1979)

– “Each pattern describes a problem which occurs over

and over again in our environment, and then describes

the core of the solution to that problem, in such a way

that you can use this solution a million times over,

without ever doing it the same way twice.”

Other patterns: novels (tragic, romantic, crime),

movies genres (drama, comedy, documentary)

“Gang of Four” (GoF) Book

Design Patterns: Elements of Reusable Object-Oriented

Software, Addison-Wesley Publishing Company, 1994

Written by this "gang of four"

– Dr. Erich Gamma, then Software Engineer, Taligent, Inc.

– Dr. Richard Helm, then Senior Technology Consultant, DMR Group

– Dr. Ralph Johnson, then and now at University of Illinois, Computer

Science Department

– Dr. John Vlissides, then a researcher at IBM

• Thomas J. Watson Research Center

• See John's WikiWiki tribute page http://c2.com/cgi/wiki?JohnVlissides

http://c2.com/cgi/wiki?JohnVlissides

Object-Oriented Design Patterns

This book defined 23 patterns in three categories
– Creational patterns deal with the process of object creation

– Structural patterns, deal primarily with the static composition and
structure of classes and objects

– Behavioral patterns, which deal primarily with dynamic interaction
among classes and objects

Documenting Discovered Patterns

Many other patterns have been introduced
documented
– For example, the book Data Access Patterns by Clifton

Nock introduces 4 decoupling patterns, 5 resource patterns,
5 I/O patterns, 7 cache patterns, and 4 concurrency patterns.

– Other pattern languages include telecommunications
patterns, pedagogical patterns, analysis patterns

– Patterns are mined at places like Patterns Conferences

http://hillside.net/patterns/

ChiliPLoP

Recent patterns books work shopped at

ChiliPLoP, Wickenburg and Carefree Arizona
– Patterns of Enterprise Application Arhitecture Martin Fowler

– Patterns of Fault Tolerant Software, Bob Hamner

– Patterns in XML Fabio Arciniegas

– Patterns of Adopting Agile Development Practices Amr

Elssamadisy

– 2010: Patterns of Parallel Programming, Ralph Johnson

• 16 patterns and one Pattern Language work shopped

http://www.hillside.net/chiliplop/
http://www.amazon.com/Patterns-Enterprise-Application-Architecture-Martin/dp/0321127420
http://www.amazon.com/Patterns-Fault-Tolerant-Software-Wiley/dp/0470319798
http://www.amazon.com/Patterns-XML-Design-Implementation-Applications/dp/0321241606/ref=sr_1_3?ie=UTF8&s=books&qid=1254257237&sr=1-3
http://www.amazon.com/Agile-Adoption-Patterns-Roadmap-Organizational/dp/0321514521
http://www.upcrc.illinois.edu/workshops/paraplop10/program.html

GoF Patterns

– Creational Patterns

• Abstract Factory

• Builder

• Factory Method

• Prototype

• Singleton

– Structural Patterns

• Adapter

• Bridge

• Composite

• Decorator

• Façade

• Flyweight

• Proxy

– Behavioral Patterns

• Chain of Responsibility

• Command

• Interpreter

• Iterator

• Mediator

• Memento

• Observer

• State

• Strategy

• Template Method

• Visitor

Why Study Patterns?

Reuse tried, proven solutions

– Provides a head start

– Avoids gotchas later (unanticipated things)

– No need to reinvent the wheel

Establish common terminology

– Design patterns provide a common point of reference

– Easier to say, “We could use Strategy here.”

Provide a higher level prospective

– Frees us from dealing with the details too early

Other advantages

Most design patterns make software more

modifiable, less brittle

– we are using time tested solutions

Using design patterns makes software systems

easier to change—more maintainable

Helps increase the understanding of basic object-

oriented design principles

– encapsulation, inheritance, interfaces, polymorphism

Style for Describing Patterns

We will use this structure:

– Pattern name

– Recurring problem: what problem the pattern

addresses

– Solution: the general approach of the pattern

– UML for the pattern

• Participants: a description as a class diagram

– Use Example(s): examples of this pattern, in Java

A few OO Design Patterns

Coming up:
– Iterator

• access the elements of an aggregate object

sequentially without exposing its underlying

representation

– Strategy
• A means to define a family of algorithms, encapsulate

each one as an object, and make them interchangeable

– Observer a preview

• One object stores a list of observers that are updated

when the state of the object is changed

Iterator

Pattern: Iterator

Name: Iterator (a.k.a Enumeration)

Recurring Problem: How can you loop over all objects

in any collection. You don’t want to change client code

when the collection changes. Want the same methods

Solution: 1) Have each class implement an interface,

and 2) Have an interface that works with all collections

Consequences: Can change collection class details

without changing code to traverse the collection

GoF Version

of Iterator page 257

ListIterator

First()

Next()

IsDone()

CurrentItem()

// A C++ Implementation

ListIterator<Employee> itr = list.iterator();

for(itr.First(); !itr.IsDone(); itr.Next()) {

cout << itr.CurrentItem().toString();

Java version of Iterator

interface Iterator

boolean hasNext()
Returns true if the iteration has more elements.

Object next()
Returns the next element in the iteration and updates the iteration to

refer to the next (or have hasNext() return false)

void remove()
Removes the most recently visited element

Java’s Iterator interface

// The Client code

List<BankAccount> bank =

new ArrayList<BankAccount>();

bank.add(new BankAccount("One", 0.01));

// ...

bank.add(new BankAccount("Nine thousand", 9000.00));

String ID = "Two";

Iterator<BankAccount> itr = bank.iterator();

while(itr.hasNext()) {

if(itr.next().getID().equals(searchAcct.getID()))

System.out.println("Found " + ref.getID());

}

UML Diagram of Java's

Iterator with a few Collections

<<interface>>

Iterator

hasNext()

next()

<<interface>>

List

iterator(): Iterator

…

Client

Vector

iterator()

Iterator

hasNext()

next()

LinkedList

iterator()

ArrayList

iterator()

http://download.oracle.com/javase/6/docs/api/java/util/List.html

http://download.oracle.com/javase/6/docs/api/java/util/List.html

Decorator Design Pattern

Rick Mercer

CSC 335: Object-Oriented

Programming and Design

The Decorator Pattern from GoF

Intent
– Attach additional responsibilities to an object dynamically.

Decorators provide a flexible alternative to sub classing to

extend flexibility

Also Known As Wrapper

Motivation
– Want to add properties to an existing object.

2 Examples
• Add borders or scrollbars to a GUI component

• Add stream functionality such as reading a line of input or

compressing a file before sending it over the wire

Applicability

Use Decorator

– To add responsibilities to individual objects

dynamically without affecting other objects

– When extending classes is impractical

• Sometimes a large number of independent extensions

are possible and would produce an explosion of

subclasses to support every combination (this

inheritance approach is on the next few slides)

An Application

Suppose there is a TextView GUI component
and you want to add different kinds of borders
and/or scrollbars to it

You can add 3 types of borders

– Plain, 3D, Fancy

and 1 or 2 two scrollbars

– Horizontal and Vertical

An inheritance solution requires15 classes for
one view

That’s a lot of classes!

1.TextView_Plain

2.TextView_Fancy

3.TextView_3D

4.TextView_Horizontal

5.TextView_Vertical

6.TextView_Horizontal_Vertical

7.TextView_Plain_Horizontal

8.TextView_Plain_Vertical

9.TextView_Plain_Horizontal_Vertical

10.TextView_3D_Horizontal

11.TextView_3D_Vertical

12.TextView_3D_Horizontal_Vertical

13.TextView_Fancy_Horizontal

14.TextView_Fancy_Vertical

15.TextView_Fancy_Horizontal_Vertical

Disadvantages

Inheritance solution has an explosion of classes

If another view were added such as StreamedVideoView,

double the number of Borders/Scrollbar classes

Solution to this explosion of classes?

– Use the Decorator Pattern instead

VisualComponent

draw()

resize()

TextView

draw()

resize()

Border

draw()

resize()

Decorator

draw()

resize()

ScrollBar

draw()

resize()

SteamedVideoView

draw()

resize()

1

1

Plain

draw()

resize()

3D

draw()

resize()

Fancy

draw()

resize()

Decorator contains a

visual component

Horiz

draw()

resize()

Vert

draw()

resize()

An imagined

example

Decorator's General Form

JScrollPane

Any Component such as Container, JList,

Panel can be decorated with a JScrollPane

The next slide shows how to decorate a JPanel

with a JScrollPane

Decorate a JPanel

JScrollPane scrollPane = new JScrollPane(toStringView);

add(scrollPane); // Add to a JFrame or another panel

Motivation Continued

The more flexible containment approach encloses the

component in another object that adds the border

The enclosing object is called the decorator

The decorator conforms to the interface of the

component so its presence is transparent to clients

The decorator forwards requests to the component and

may perform additional actions before or after any

forwarding

Decorator Design: Java Streams

InputStreamReader(InputStream in) System.in is an InputStream object

– ... bridge from byte streams to character streams: It reads bytes
and translates them into characters using the specified character

encoding. JavaTMAPI

BufferedReader

– Read text from a character-input stream, buffering characters so as

to provide for the efficient reading of characters, arrays, and lines.
JavaTMAPI

What we had to do for console input before Java 1.5’s Scanner
BufferedReader keyboard =

new BufferedReader(new

InputStreamReader(System.in));

BufferedReader

readLine() // add a useful method

InputStreamReader

read() // 1 byte at a time

close()

Decorator pattern in the real world

BufferedReader decorates InputStreamReader

Still needed to parse integers, doubles, or words

Java streams

With > 60 streams in Java, you can create a wide

variety of input and output streams

– this provides flexibility good

• it also adds complexity

– Flexibility made possible with inheritance and classes

that accept classes that extend the parameter type

Another Decorator Example

We decorated a FileInputStream with an

ObjectInputStream to read objects that

implement Serializable

– and we used FileOutputStream with
ObjectOutputStream

– then we were able to use nice methods like these two

read and write large complex objects on the file system:
\

outFile.writeObject(list);

// and later on …

list = (ArrayList<String>)inFile.readObject();

Another Decorator Example

Read a plain text file and compress it using the

GZIP format ZIP.java

Read a compress file in the GZIP format and write

it to a plain text file UNGZIP.java

Sample text iliad10.txt from Project Gutenberg

bytes

875,736 iliad10.txt bytes

305,152 iliad10.gz

875,736 TheIliadByHomer

(after code on next slide)

http://www.cs.arizona.edu/classes/cs335/spring07/demoCode/iliad10.txt

// Open the input file

String inFilename = "iliad10.txt";

FileInputStream input = new FileInputStream(inFilename);

// Open the output file

String outFilename = "iliad10.gz";

GZIPOutputStream out = new GZIPOutputStream(

new FileOutputStream(outFilename));

// Transfer bytes from output file to compressed file

byte[] buf = new byte[1024];

int len;

while ((len = input.read(buf)) > 0) {

out.write(buf, 0, len);

}

// Close the file and stream

input.close();

out.close();

// Open the gzip file

String inFilename = "iliad10.gz";

GZIPInputStream gzipInputStream =

new GZIPInputStream(new FileInputStream(inFilename));

// Open the output file

String outFilename = "TheIliadByHomer";

OutputStream out = new FileOutputStream(outFilename);

// Transfer bytes from compressed file to output file

byte[] buf = new byte[1024];

int len;

while ((len = gzipInputStream.read(buf)) > 0) {

out.write(buf, 0, len);

}

// Close the file and stream

gzipInputStream.close();

out.close();

GZIPInputStream is a Decorator

GZIPInputStream

Summary

Decorators are very flexible alternative of

inheritance

Decorators enhance (or in some cases restrict)

the functionality of decorated objects

They work dynamically to extend class

responsibilities, even inheritance does some but

in a static fashion at compile time

Strategy Design Pattern

Strategy

Pattern: Strategy

Name: Strategy (a.k.a Policy)

Problem: You want to encapsulate a family of

algorithms and make them interchangeable.

Strategy lets the algorithm vary independently

from the clients that use it (GoF)

Solution: Create an abstract strategy class (or

interface) and extend (or implement) it in

numerous ways. Each subclass defines the

same method names in different ways

Design Pattern: Strategy

Consequences:

– Allows families of algorithms

Known uses:

– Critters seen in section for Rick’s 127B / 227

– Layout managers in Java

– Different Poker Strategies in a 335 Project

– Different PacMan chase strategies in a 335 Project

– Different Jukebox policies that can be

Java Example of Strategy

this.setLayout(new FlowLayout());

this.setLayout(new GridLayout());

In Java, a container HAS-A layout manager

– There is a default

– You can change a container's layout manager with
a setLayout message

Change the stategy at runtime

Demonstrate LayoutControllerFrame.java
private class FlowListener

implements ActionListener {

// There is another ActionListener for GridLayout

public void actionPerformed(ActionEvent evt) {

// Change the layout strategy of the JPanel

// and tell it to lay itself out

centerPanel.setLayout(new FlowLayout());

centerPanel.validate();

}

}

12-43

http://www.cs.arizona.edu/classes/cs335/spring07/demoCode/LayoutControllerFrame.java

interface LayoutManager

– Java has interface java.awt.LayoutManager

– Known Implementing Classes

• GridLayout, FlowLayout, ScrollPaneLayout

– Each class implements the following methods
addLayoutComponent(String name, Component comp)

layoutContainer(Container parent)

minimumLayoutSize(Container parent)

preferredLayoutSize(Container parent)

removeLayoutComponent(Component comp)

http://java.sun.com/j2se/1.5.0/docs/api/java/awt/LayoutManager.html

UML Diagram of Strategy

General Form

Context

strategy: Strategy

setStrategy(Strategy)

…

<<interface>>

Strategy

AlgorithmInterface

ConcreteClassA

AlgorithmInterface

ConcreteClassB

AlgorithmInterface

ConcreteClassC

AlgorithmInterface

implements

Specific UML Diagram of

LayoutManager in Java

JPanel

layoutMan: LayoutManager

size: Dimension

setLayout(lm: LayoutManager)

setPreferredSize(di:Dimension)

<<interface>>

LayoutManager

addLayoutComponent()

layoutContainer()

minimumLayoutSize()

GridLayout

addLayoutComponent()

layoutContainer()

minimumLayoutSize()

FlowLayout

addLayoutComponent()

layoutContainer()

minimumLayoutSize()

ScrollPaneLayout

addLayoutComponent()

layoutContainer()

minimumLayoutSize()

implements

Another Example

– Pac Man GhostChasesPacMan strategies in 2001

– Level 1: random

– Level 2: a bit smarter

– Level 3: use a shortest path algorithm
http://www.martystepp.com/applets/pacman/

– Could be interface ChaseStategy is in the Ghost class
interface ChaseStategy {

public Point nextPointToMoveTo();

}

– and Ghost has setChaseStrategy(new ShortestPath())

http://www.martystepp.com/applets/pacman/

The Observer Design Pattern

Name: Observer

Problem: Need to notify a changing number of

objects that something has changed

Solution: Define a one-to-many dependency

between objects so that when one object

changes state, all its dependents are notified

and updated automatically

Examples

From Heads-First: Send a newspaper to all who

subscribe

– People add and drop subscriptions, when a new

version comes out, it goes to all currently described

Spreadsheet

– Demo: Draw two charts—two views--with some

changing numbers--the model

16-49

Examples

File Explorer (or Finders) are registered

observers (the view) of the file system (the

model).

Demo: Open several finders to view file system

and delete a file

Later in Java: We'll have two views of the same

model that get an update message whenever the

state of the model has changed

16-50

Observer Example

