
Networking with Java

CSc 335

Object-Oriented Programming and Design

Craig Barber, Ian Vasquez, Rick Snodgrass, Rick Mercer

Networking

Refactoring Y-2Refactoring Y-2Refactoring Y-2

ConcurrencyNetworksSerialization

Javadoc

JUnit

Eclipse

Debugging

Testing &

Maintaing

Large

Programs

Teams

Reading

others’

code

MVC

Observer

Observable

Design

Patterns

UML

Class

Diagrams

Inheritance

Hierarchy

Coupling/

Cohesion

OO Design

PITL

Sequence

Diagrams

Package

Diagrams

Anonymous

Classes

Abstract

Classes
Packages

JDK/JRE

Java Language

Compile-Time

Run-Time

Type Resolution

Type Checking

Java Swing

Frameworks

Java API

Inversion

of Control

Layout

Manager

Listeners

Events

I/O

Iterator

Collection

Exceptions

Composite

CommandTemplate

Decorator

N-2

Networking with Java N-3

Outline

• Introduction to Networking Concepts

 Client-Server and Peer-to-Peer

 Sockets

 Streams

Networking with Java N-4

What is “Networking”

• What is “Networking”?

 Getting two or more computers to send data (in Java--
serialized objects) to each other

 Having programs on separate computers interact with one
another

• Types of Networking

 Client - Server

 Many clients connect with one server.

 Clients communicate only with server.

 Peer-to-Peer

 Clients connect to a group of other clients, with no server.

 Clients communicating directly with each-other.

Networking with Java N-5

Client - Server Networking

• Advantages:

 Easier to implement

 Less coordination

involved

 Easier to maintain

control of users

• Disadvantage:

 Relies on one main

server for entire

operation

Networking with Java N-6

How Can Networking Work?

• Computers connect to each other through links called

sockets, each associated with a single computer.

• A network stream is created by connecting a socket on

one computer to a socket on another computer

• Applications communicate by sending data through

streams to each other

 Reading and writing objects over the network employs the

same serialization you used for persistence

Networking with Java N-7

Sockets

• A socket is a connection on one computer used to send

data back and forth

• The application consists of multiple processes, one

running on each computer

• Sockets are created by the process on each computer

• The sockets then establish a connection to each other

 One process sets up a server socket to receive a connection.

 The other process sets up a client socket to establish the

connection with the server socket.

Networking with Java N-8

Socket-programming using TCP

TCP service: reliable byte stream transfer

process

TCP with
buffers,
variables

socket

controlled by
application
developer

controlled by
operating

system

process

TCP with
buffers,
variables

socket

internet

client
serversocket()

bind()
connect()

socket()
bind()
listen()

accept()
send()

recv()

close() close()

recv()
send()

TCP conn. request

TCP ACK

Networking with Java N-9

Outline

• Introduction to Networking Concepts

• Networking in Java

 Sockets

 Streams

 Decorating Streams

• Summary

Networking with Java N-10

Sockets in Java

• Found in java.net package

• java.net.ServerSocket

 Accepts new incoming connections

 Creates new ServerSocket for each connection

• java.net.Socket

 Connects to an existing ServerSocket, through the

network

Sockets in Java

Networking with Java N-11

Host Machine

Process

Client Machine

Process

Server

Socket

Input

Socket

Output

Socket

Socket

Socket

Socket

Input

Socket

Process

Socket

Client Machine

Two new types

Networking with Java N-12

• We'll be using two new types

• java.net.ServerSocket

• java.net.Socket

 You can write to and read from a Socket's input and

output streams with readObject and writeObject messages

 which makes networked programs easier to develop

Networking with Java N-13

java.net.ServerSocket

• public ServerSocket(int port)

 Throws IOException

 Creates a ServerSocket to accept new connections at the specified

port

• public Socket accept()

 Throws IOException

 Waits for an incoming connection, establishes the new connection, and

returns a socket for that connection

 Multiple applications can connect to the same ServerSocket

• public void close()

 Throws IOException

 Closes the server socket.

 Does not close open sockets.

Networking with Java N-14

java.net.Socket

• public Socket(String host, int port)

 Throws IOException, UnknownHostException

 Connects to a server socket at the provided address (host) on the provided

port

• public InputStream getInputStream()

 Throws IOException

 Returns the input stream from the socket

• public OutputStream getOutputStream()

 Throws IOException

 Returns the output stream from the socket

• public void close()

 Throws IOException

 Closes the connection

Networking with Java N-15

Building a Network app

• This app will have one server and only one client (no

Threads needed)

• Build the server first

 Need a new ServerSocket (int port)

 The accept message to ServerSocket waits for a connection

that knows where the server is and what port it is listening to

int port = 4000; // A port available on lectura soince 2003

ServerSocket socket = new ServerSocket(port);

Socket connection = socket.accept();

Networking with Java N-16

Get the connection's streams

• Let the server communicate with the connection

ObjectOutputStream output

= new ObjectOutputStream(connection.getOutputStream());

ObjectInputStream input

= new ObjectInputStream(connection.getInputStream());

Networking with Java N-17

Let the server read and write in loop

• Let the server communicate with the connection

// Take money from the client's account

BankAccount theClientsAccount = null;

BankAccount theServersAccount = new BankAccount("Greedy", 0.00);

while (true) {

double amount = ((Double) input.readObject()).doubleValue();

if (amount <= 0.0)

break;

theClientsAccount = (BankAccount) input.readObject();

if (theClientsAccount.withdraw(amount))

theServersAccount.deposit(amount);

// Send back the modified object

output.writeObject(theClientsAccount);

}

connection.close();

Networking with Java N-18

Write the Client

• Get the input and output stream to and friom the server

we are connecting to

ObjectOutputStream output

= new ObjectOutputStream(server.getOutputStream());

ObjectInputStream input

= new ObjectInputStream(server.getInputStream());

Networking with Java N-19

Write the Client

• Request a socket connection with the running sever

// This IPAddress is for the machine where this code will run

// We'll run the server and the client on the same machine for now

String IPAddress = "localhost"; // There's no place like home

int port = 4000;

Socket server = new Socket(IPAddress, port);

Networking with Java N-20

Let the client read and write in loop

• Let the client communicate with the server
// Give money to the server without knowing it

BankAccount myAccount = new BankAccount("Sucker", 5000.00);

boolean done = false;

while (!done) {

String amountAsString = JOptionPane.showInputDialog(

null,

"You've won! Enter desired amount" + " you have "

+ myAccount.getBalance());

double amount = Double.parseDouble(amountAsString);

output.writeObject(new Double(amount));

if (amount > 0) {

output.writeObject(myAccount);

myAccount = (BankAccount) input.readObject();

} else

// The user figured out how to quit

done = true;

}

server.close();

