
Chapter 1
Problem Solving with C++

3rd Edition
Computing Fundamentals with C++
Rick Mercer
Franklin, Beedle & Associates

Goals

• Understand an example of program development
• Understand the characteristics of a good

algorithm
• Understand how algorithmic patterns can help

design programs

Program Development

• One program development strategy has these
three steps:

• Analysis: Understand the problem
• Design: Organize the solution
• Implementation: Get the solution running

• Program development is the progression from
analysis to design to implementation

• We'll see deliverables from each phase

Analysis

• Synonyms
• inquiry, examination, study

• Activities
• Read and understand the problem statement
• Name the pieces of information necessary to solve the

problem
• these data names are part of the solution

Use good names

• Using this grade scale, compute a course grade
Item Weight
Projects 50%
Midterm 20%
Final Exam 30%

• Name the input data:
projects midterm finalExam

• Name the output:
courseGrade

Object Attributes

• The data things are called objects and have these
three important characteristics:

• a reference to the object like myAccount
• state (values) like ID and balance
• a set of operations to manipulates the values like
deposit(double) and withdraw(double)

To input or output?

• It helps to distinguish objects that are either input
or output

• Output: Information the computer must display after
the processing has occurred

• Input: Information the user must supply to solve the
problem.

Sample problems help

5

• It helps to provide sample problems
• Given specific input data, determine the output

x1 1.0
y1 1.0 Input
x2 5.0
y2 4.0
length 5.0 Output

 Mini Problem
 Description

Object Names Sample
Problem

Input or
Output?

 Compute the average
 of three test scores

test1
test2
test3
testAverage

 70.0
 80.0
 93.0
 81.0

Input
 "
 "
Output

 Compute the roots of a
 quadratic equation
 (ax2+bx+c)

a
b
c
root1
root2

 1.0
 0.0
 -1.0
 1.0
 -1.0

Input
 "
 "
Output
 "

 Compute a monthly
 loan payment

amount
rate
months
payment

12500.00
 0.08
 48
 303.14

Input
 "
 "
Output

Other Sample Problems

Summary of Analysis

• Activities performed during analysis
• Read and understand the problem
• Decide what object(s) represent the answer—the

output
• Decide what object(s) the user must enter to get the

answer—the input

Design

• Synonyms of design: model, think, plan, devise,
pattern, propose, outline

• We'll use these design tools:
• algorithms
• algorithmic patterns
• algorithm walkthroughs

Algorithms

• An algorithm is a set of activities that solves a
problem

• An algorithm must:
• list activities that must be performed
• list the activities in the proper order

Bake a Cake

• A recipe (a.k.a. an algorithm)
• Preheat Oven
• Grease Pan
• Mix ingredients
• Place ingredients into pan
• place pan in oven
• remove pan after 35 minutes

• Switch some activities around
• What's missing?

Algorithmic Patterns

• Pattern: Anything shaped or designed to serve
as a model or guide in making something else

• Algorithmic Pattern: A pattern that occurs
frequently during program development.

• The Input/Process/Output (IPO) Pattern is used
during the case study of Chapter 1

IPO Algorithmic Pattern

Pattern: Input/Process/Output (IPO)
Problem: The program requires input

to generate the desired info
Outline: 1. obtain input data from user

2. process input data
3. output the results

Patterns ala Alexander

"Each pattern describes a problem which occurs
over and over again in our environment, and
then describes the core of the solution to that
problem, in such a way that you can use this
solution a million times over, without ever doing
it the same way twice."

From A Pattern Language, Christopher Alexander, Oxford
University Press

Example of Algorithm Design

• The deliverable from this design phase will be an
algorithm.

• The IPO patterns provides a guide to design this
more specific algorithm (that is a bit sketchy):
IPO ModelOne Specific IPO Case Study
I)nput Obtain projects midTerm finalExam

P)rocess Compute the courseGrade
O)utput Show the courseGrade

Refining steps in algorithms

• We often need to refine some steps
• For example, "Compute the course grade" might now

be refined with the C++ mathematical addition + and
multiplication * symbols and names for the objects:

// Compute the courseGrade
courseGrade = projects * 0.50

+ midterm * 0.20
+ finalExam * 0.30;

Algorithm Walkthrough

• Suggestion: Use an algorithm walkthrough to
review the algorithm and find a test case

• Simulate what the computer would do if given the
instructions.

• If input occurs, copy values by object names
• if processing occurs, change an object's value
• if output occurs, write that output

Input/Process/Output (IPO)

I)nput Retrieve some example values from the user and
store them into the objects as shown:

projects 92 midterm 82 finalExam 78

P)rocess Use this input data to compute courseGrade

courseGrade = 0.5*projects + 0.2*midterm + 0.3*finalExam
0.5 * 92 + 0.2 * 82 + 0.3 * 78

46.0 + 16.4 + 23.4
courseGrade = 85.8

O)utput Display the course grade

Implementation

• Synonyms for Implementation
• accomplishment, making good, execution

• Implementation deliverable: computer program
Activity Deliverable

1) Translate algorithm into a programming language Source
Code

2) Compile source code into object code Machine
Language

3) Link together the object code files Running
program

4) Verify the program does what it is supposed to do Correct
program

Translation into Code

• Pseudo code algorithm
Display the value of the course grade

• Our programming language translation
cout << "Course grade: " << courseGrade;

• Once the algorithm is translated into a
programming language abstraction:

• use the compiler to generate machine code
• use the linker to create executable program
• run the program
• test the program

Preview of C++
#include <iostream>
using namespace std;

int main() {
// Declare the objects to be given values
int projects, midterm, finalExam;

// I)nput
cout << "Enter projects score: ";
cin >> projects;
cout << "Enter midterm: ";
cin >> midterm;
cout << "Enter final exam: ";
cin >> finalExam;

 // P)rocess
double courseGrade = (0.5 * projects) +

 (0.2 * midterm) +
 (0.3 * finalExam);

// O)utput
cout << "Course grade: " << courseGrade << "%" << endl;

}

One Dialog:
Enter projects score: 92
Enter midterm: 82
Enter final exam: 78
Course grade: 85.8%

Testing
• Testing occurs at any point in program

development:
• Analysis: example problems
• Design: algorithm walkthroughs
• Implementation: run program with several

sets of input data

• A running program isn't always right
• We can gain confidence that it is correct by running

the program with many test cases
• Try all 100s, all 0s, all the same, several sets where all are

different values

Objects Types, and Variables
• To input something that can be used by a program,

there must be a place to store it in the memory of
the computer

• These "places" are objects, which is a region of
memory (a bunch of bits)

• variable: a named object that can have changing
values

Objects
• We understand objects by the

• the value(s) they store
• the operations that can be applied

• The Course Grade problem used four numeric
objects (double that has double the precision of float)

• values: each object of the double class stores one
floating point number

• operations: operations such as input with cin >>,
output cout <<, assignment with courseGrade =,
addition with + and multiplication with *

Characteristics of Objects
• Name

• All four objects have their own unique name

• Values (State)
• The state of the double class objects was set either

through an input operation:
cin >> projects;

• or through an assignment operation:
courseGrade = 0.0;

Operations applied to objects
• Addition and multiplication operations are

applied to some double objects:
0.25 * test1 + 0.25 * test2 + 0.50 * finalExam

• There is an input operation applied to the
keyboard object named cin
cin >> test1; // This alters test1

• The state of courseGrade is examined through
an output operation (cout is the object that
represents the output console)

cout << courseGrade;

Types
• type: a set of values and the operations on

those values
• C++ has fundamental types

• int stores integers
• operations + - / * =

• float stores floating-point numbers like 1.234
• operations + - / * =

• double stores floating-point numbers like 1.234
• operations + - / * =

Compound Types
• compound type: a type composed of several

other types
• string stores a literal string like "Kim Baker"

• operations: size append []
• ostream: sends values to an output stream such as

the console or a file
• operations: width precision <<

• istream: sends values to an output stream such as
the console or a file
• operations: peek getline >>

• bankAccount: store data about an account at a bank
• operations: deposit withdraw getBalance

Pick the right type

• Which type of object and what name would you
use to represent each of the following?

• The number of students in a course ___________

• An effective annual percentage rate ___________

• A person’s name ____________

• Obtain keyboard input __________

