
Chapter 5
Sending Messages

3rd Edition
Computing Fundamentals with C++
Rick Mercer
Franklin, Beedle & Associates

Goals

• Send messages to objects
• Learn some string and ostream messages and

understand their effects
• Problem solve with string, Grid and BankAccount

objects
• Appreciate why programmers partition software into

classes, which are collections of member functions
combined with their related data members

Find the objects in this specification

Problem Implement a bank teller application to
allow bank customers to access bank accounts
through an identification number. The customer,
with the help of the teller, may complete any of
the following transactions: withdraw money,
deposit money, query account balances, and view
any and all transactions between any two given
dates. The system must maintain the correct
balances for all accounts and produce monthly
statements.

Nouns are potential classes

• Candidate Objects to model this new system
bank teller transaction
customers recent 10 transactions
bank account balance

• We will focus on one new class BankAccount

Operations and State

• Design is the choice of functions and values
• Member function names

deposit
withdraw
getBalance
getName

• Sate (values)
name

balance

Some objects need 2 or more
arguments in the constructor

• int, double, and string objects are initialized
with only one argument and optional use ()
int n = 0; int n(0);
double x = 0.001; double x(0.001);
string s = "Kim"; string s("kim");

• BankAccount objects require two arguments,
initialization with = is not an option

• The special function is named BankAccount
BankAccount anAccount("Kim", 100.00);

Class Diagram:
Name, State, Functions

BankAccount
string name
double balance

BankAccount(string initName, double
initBalance)
void deposit(double depositAmount)
void withdraw(double withdrawalAmount)
double getBalance() const
string getName() const

Messages

• General Form: sending a message to an object
object-name . function-name(arguments)

• Examples
anAccount.deposit(100.00);
cout.width(6);
cout << anAccount.balance() << endl;
cout << aString.length() << endl;
aGrid.move(3);

Messages

• Some messages return the object's state. Other
messages tell an object to do something.

• Here is a message that asks the BankAccount
object to return a value
cout << anAccount.balance() << endl;

• Here is a message that tells the object to do
something:
anAccount.withdraw(25.00);

Example Program Needs
BankAccount.h and BankAccount.cpp
#include <iostream>
using namespace std;
#include "BankAccount.h" // class BankAccount
int main() {

BankAccount acct("Chris", 0.00);
acct.deposit(222.22);
acct.withdraw(20.00);

cout << "Name: " << acct.getName() << endl;
 cout << "Balance: " << acct.getBalance() << endl;

return 0;
}

Output
Name: Chris
Balance: 202.22

Object Diagram

• Every object has
• a name: a variable that references the entire object
• state: the values that the object currently has

• This object diagram shows the state of the object
from the previous program

BankAccount anAcct

name = "Chris"
balance = 202.00

class string

• C++ has a type named string that is also
implemented as a C++ class

• string objects store a collection of characters
• string objects are initialized with "string literals"
• The string class has many functions and operators

length at find substr front back insert
[] + << >>

string member functions
length at find

#include <iostream>
#include <string> // class string
using namespace std;

int main() {
// Initialize a string:
string aString("Chris Boatright");
// How many characters are in aString:

 cout << aString.length() << endl; // 15
// Show the first character at index 0

 cout << aString.at(0) << endl; // 'C'
// Return the index where "Boat" is found
cout << aString.find("Boat") << endl; // 6
return 0;

}

string member functions

• substr returns a newly constructed string object
string substr (int pos, int len)

• The substring is the portion of the object that starts at
index pos and spans len characters (or until the end
of the string, whichever comes first)
string aString("Kim Thatcher");
cout << aString.substr(0, 1) << endl; // "K"
cout << aString.substr(0, 2) << endl; // "Ki"
cout << aString.substr(0, 3) << endl; // "Kim"
cout << aString.substr(5, 7) << endl; // "hatcher"
// Go to the end with 99, which is 7 characters
cout << aString.substr(5, 99) << endl; // "hatcher"

string operators [] and +

• The [] operator is like the at() function
• The [] operator returns a single character at the given

index
• The + operator concatenates two strings into one

string aString("Kim Thatcher");
cout << aString[0] << endl; // K
cout << aString[1] << endl; // i
cout << aString[2] << endl; // m

// Output: Mr. or Mrs. Kim Thatcher
cout << "Mr. or Mrs. " + aString << endl;

string operators >> and <<

• string also overloads the input and output operators
>> << to allow use with cin and cout
#include <iostream>
#include <string>
using namespace std;
int main() {
string name;
cout << "Enter your name: ";

 cin >> name;
 cout << "Hello " + name << endl;

}
Dialog
Enter your name: Chris
Hello Chris

classes ostream and istream

• class ostream allows for program output
• class istream allows for program input
• Not many useful istream functions yet
#include <iostream>
#include <string>
using namespace std;
int main() {
int anInt;

 cout << cin.good() << endl;
 cin >> anInt; // Enter a bad integer
 cout << cin.good();

return 0;
}

Dialog
1
abc
0

classes ostream and istream

• class ostream has a few functions useful for
formatting output
• precision rounds floats to a specific number of digits
• width specifies the number of columns
double x = 3.456;
cout << x << endl; // 3.456
cout.precision(1); // Modify cout
cout << x << endl; // 3
cout.precision(3); // Modify cout
cout << x << endl; // 3.46
cout.width(9);
cout << x << endl; // 3.46

Dialog
3.456
3
3.46

3.46

Class Member Function Headings

• Member function names are distinguished from
non-member functions by qualifying the operation
with the class-name and :: (the scope resolution
operator)
• Example function names as you might see them

referred to in the text
ostream::width
istream::good
string::length
string::substr
BankAccount::withdraw

Class member function headings

• Member function headings are also qualified
• Here are the member functions used so far:

int string::length()
int string::find(string subString)
string string::substr(int pos, int n)
int ostream::width(int nCols)
int ostream::precision(int nDigits)
int istream::good()
double BankAccount::withdraw(double amount)

void BankAccount::deposit(double amount)

Why qualify member function headings?

• Free functions do not belong to a class
• The previous class member function headings indicate

the class to which the function belongs with class-
name::
string string::substr(int pos, int n)
// post: return n characters of this string
// beginning at position pos

• You will have to do this when implementing C++
classes later

Another nonstandard class Grid

• A Grid object
• stores a rectangular map made up of rows and columns
• has an object to move around.
• is initialized with five arguments

Grid Grid_name(int rows, int cols,
int mover_row, int mover_col,
Direction direction);

• Direction is either north south east or west
 Grid aGrid(7, 14, 5, 8, east);

// Column 8 is the ninth column

Example

#include "Grid.h" // for class Grid
int main() {
 Grid aGrid(5, 10, 0, 0, east);

aGrid.display();
}

Program Output:
The Grid:

>

.

.

.

.

Access the state of a Grid object

• We observe state of Grid objects with
Grid::display (const means a display message
does not modify the Grid object)
void Grid::display() const
// post: The current state of the Grid
// is displayed on the computer screen

• Also access the state of Grid objects with
Grid::row // the row the mover is in
Grid::column // the column the mover is in
Grid::nRows // the maximum number of rows
Grid::nColumns // the maximum number of rows

Member Functions that Modify Grid objects
void Grid::move(int nSpaces)
// pre: The mover has no obstructions in the next nSpaces
// post: the mover has moved nSpaces forward

void Grid::putDown(int putDownRow, int putDownCol)
// pre: The intersection (putDownRow, putDownCol) has
// nothing on it expect the mover
// post: There is one thing at the intersection

void Grid::pickUp()
// pre: There is something to pickup at the movers location
// post: There is nothing to pick up

void Grid::turnLeft()
// post: The mover is facing 90 degrees counter-clockwise

void Grid::block(int blockRow, int blockCol)
// pre: There is nothing at all at the intersection
// post: The intersection can no longer be used

Failing to Meet the Preconditions

• There are many "illegal" messages you can send to a
Grid object
• send a message to move through a block ('#')
• send a message telling the mover to move off the

edge of the world
• send a pickUp message when there is nothing to

pickup

So what are we to do?

• A precondition is a statement the client must
ensure is true before sending a message

• If the client ignores it, the resulting behavior is
undefined--tough luck

• You can experiment and see what happens when
you run programs with Grid objects

One small Grid program
#include "Grid.h" // for class Grid

int main() {
 Grid aGrid(4, 6, 0, 0, east);
aGrid.move();
aGrid.move();
aGrid.turnRight();
aGrid.move();
aGrid.move();
aGrid.turnRight();
aGrid.move();
aGrid.move();
aGrid.display();

}

The Grid:
 . . .
.
< . . .
.

Why Functions and Classes?

• Abstraction
• has many meanings
• is the process of pulling out and highlighting the

relevant features of a complex system
• allows us to use existing functions and classes more

easily
• allows us to use existing software without knowing

all the implementation details how it works

Functions hide a lot of detail

• One function call can represent many statements

Operation The object-oriented way Statements

Construct one Grid object Grid g(15,15,9,4,east); 35

Move in current direction g.move(2); 112

Output the Grid g.display(); 6

Change direction g.turnRight(); 15

Reasons for functions

• Can reuse existing well-tested code rather than write
it and test it from scratch

• To concentrate on the bigger issues at hand
• To reduce errors by writing the function only once

and testing it thoroughly
• Programs that once had 1,000 statements in main

might now have 100 functions that are 10 lines long
• With object-orientation, it could be 10 classes with

10 member functions, that have 10 statements each

Structured Programming
Object-Oriented Programming

• Structured Programming
• Partition programs by functions
• The data is passed around from one non-member

function to another
• Object-Oriented Programming

• Partition programs by classes
• The data is safely encapsulated functions with

the functions that make up the type

