
C++ Classes
Rick Mercer

Goals

• Read and understand class definitions
• Implement class member functions using existing

class definitions
• Apply some object-oriented design guidelines

Abstraction

• Abstraction is the act of using and/or understanding
something without full knowledge of the implementation

• Abstraction allows programmers to concentrate on the
essentials
• how does a Grid object move? No need to worry
• how does string::substr work? Don't really need to

know
• How does a vector push_back a value? Maybe we will

actually do that later

What is "good" design?

• Design decisions may be based on making
• a software component more maintainable
• code that is easier to read and understand
• software that is easy to use
• software that can be reused in other applications

• There are usually tradeoffs to consider
• There is rarely a perfect design
• Design is influenced by many things

The C++ Class

• Consider the design of a BankAccount type to represent
an account at a bank

• Values
name
balance

• Operations
deposit
withdraw
getBalance
getName

Design Decisions with
class BankAccount

• BankAccount could have
• more operations
• more values

• BankAccount was designed to be simple because it is
an introductory example

• An account number wasn't present because
• it's easier to remember a name like "Smith" rather

than a more realistic account number like
"217051931"

Class Definitions

• The design a new type can be captured as a class
definition

Class Definitions

class class-name {
public:

class-name() ; // Default constructor
class-name(parameter-list); // Constructor with parameters
function-heading; // Member functions that modify state
function-heading;
function-heading const; // Members function that don't modify
function-heading const;

private:
object-declaration; // Data members -- the state
object-declaration; // that can also be initialized here

};

Some objects need 2 or more
arguments in the constructor

• int, double, and string objects are initialized
with only one argument and optional use ()
int n = 0; int n(0);
double x = 0.001; double x(0.001);
string s = "Kim"; string s("kim");

• BankAccount objects require two arguments,
initialization with = is not an option

• The special function is named BankAccount
BankAccount anAccount("Kim", 100.00);

Class Definition (comments removed)

#include <string>

class BankAccount {
public:
BankAccount();
BankAccount(const std::string &initName,

double initBalance);

void deposit(double depositAmount);
void withdraw(double withdrawalAmount);

double getBalance() const;
std::string getName() const;

private:
std::string name;
double balance;

};

Class Definitions

• The following things can be determined from a
class definition
• The class name
• The name of all member functions
• The return type of any function (or if it is void)
• The number and type of arguments required in any

member function call
• The action of each member function if it has

comments, that is

Class Definitions

• Class definitions
• represent the interface, which is the collection of

available messages
• describe the member function headings to enable

syntactically correct messages
• describes the data members

• the values each object will remember

Objects are about
Operations and State

• The function-headings after public: represent
the messages that may be sent to any object

• The data-members after private: store the state
of any object
• every instance of a class has it own separate state

Construct an object, send Messages

// This code would compile, but not build until
// the methods are implemented in BankAccout.cpp
#include <iostream>
#include "BankAccount.h" // for class BankAccount

int main() {
BankAccount anAcct ("Alex", 50.00); // Construct

std::anAcct.withdraw(20.00); // Modify
anAcct.deposit(40.00); // Modify
std:: cout << anAcct.getName() << endl; // Access
std:: cout << anAcct.getBalance() << endl; // Access

return 0;
}

Output
Alex
70

Implementing Class Member
Functions

• Class member function implementation are similar
to their non-member counterparts

• All class member functions must be qualified with
the class name and :: scope resolution operator
• Important! This gives the member functions access

to the private data members.
• Constructors have the same name as the class and

no return type
• Modifying member functions can not have const
• Accessing member functions should have const

Why have .h files

• The practice of studying a class through its interface
represents a principle in software engineering
• This allows us to separate the interface from the

implementation, that are the details in the functions
• In C++, interfaces are in header (.h) files
• Member function implementations are separated

from class definitions in a .cpp file
• Using .h file speeds up compilation (large programs)
• It is easier to understand a type by looking at the

interface rather than the implementation

Implementing Constructors

• The following constructor with parameters is called
whenever objects are constructed like this
BankAccount anAccount("Mason", 2500.00);

// This code is in the file BankAccount.cpp
#include "BankAccount.h" // Get the definition

BankAccount::BankAccount(const std::string &initName,
double initBalance) {

name = initName;
balance = initBalance;

}
• The parameters are used to initialized the private

instance variables name and balance

Constructors

• Constructors
• They differ from the other member functions

1. they have no return type
2. they have the same name as the class

Default Constructors

• Classes can have more than one constructor
• Default constructors assign default values to the

private instance variables
• A default constructor is a constructor with no

parameters and no return type
BankAccount::BankAccount() {
name = "?";
balance = 0.0;

}

Why Default Constructors?
• Default constructors are required to have collections

of objects; needed later with vector objects
• Default constructors guarantee initialization to a

specific state so programmers always know what to
expect (more vivid examples are yet to come)

• Default constructors define the default values used
when another default constructor is called
• For example, the default state for string is the empty

string ""

Implementing Modifiers

• Member functions are implemented like free
functions and qualified with class-name::
• The scope resolution operator :: gives the

modifier access to the private instance variables
that need to be modified

• In modifying member functions, the private data
member balance is changed so do not use const

void BankAccount::deposit(double depositAmount) {
balance = balance + depositAmount;

}
void BankAccount::withdraw(double amount) {
balance = balance - amount;

}

Implementing Accessor Functions:

• Accessor functions must also be qualified with
class-name :: to gives access to the state being used
to return info remember to write const
double BankAccount::getBalance() const {
return balance;

}

std::string BankAccount::getName() const {
return name;

}

• The state is now available with these messages
cout << anAcct.getBalance() << endl;
cout << anAcct.getName() << endl;

Construct Objects

• Create 3 default BankAccount objects that would
have an initial balance of 0.0 and a name of "?"
BankAccount a, b, c;

• Initialize BankAccount objects with () or {}
BankAccount anAcct {"Kim", 123.45};
BankAccount anotherAcct ("Chris", 200.00};

Constructing Objects

• General form for object construction
type identifier(s);

-or-
type identifier(initial-state);

• When passing one or more arguments to a
constructor, enclose the arguments in () or {}
string name("First I. L. Last");
string name2{"Last, First"};
BankAccount anAcct("Alex", 50.00);
BankAccount anAcct{ "Alex", 50.00};

Constructing Objects

• C++ default constructor calls keep the same format
at creating objects from C++ primitives:

• When calling the default constructor to create one
or more objects, do not use the ()
string s1, s2, s3;
BankAccount a, b, c;

• These are incorrect
string s1(), s2(), s3(); // Wrong
BankAccount a(), b(), c(); // Wrong

Object-Oriented Design Heuristics
• Classes must be designed

• function names, needed parameters and return types
• There are some heuristics (guidelines) to help us

make design decisions
Design Heuristic
All data should be hidden within its class

• Ramifications
• Good: Can't mess up the state (compiler complains)
• Good: Have to create interface of member functions
• Bad: Extra coding, but worth it

Cohesion Within a Class

• A class definition provides the public interface
• The methods and state should be closely related

• The related data objects necessary to carry out a
message should be in the class
Design Heuristic

Keep related data and behavior in one place
• Ramifications

• Good: Provides intuitive collection of operations
• Good: Reduces the number of arguments in

messages
• Bad: None that I can think of

Cohesion
• Synonyms for cohesion:

• hanging together
• unity, adherence, solidarity

• Cohesion means
• data objects are related to the operations
• operations are related to the data objects
• data and operations are part of the same class

definition

Cohesion
• For example, cohesion means

• BankAccount does not have operations like
dealCardDeck or ambientTemperature or
instance variables velocity or meters

• BankAccount member functions have access to
balance, something which often needs to be
referenced
• The private instance variable balance is not

maintained separately or passed as an argument

const or not?

• Note that const follows the accessing functions
but not the modifying functions

• This makes our object 'safer' by avoiding
accidental modification

• Using const is necessary to allow objects be
passed by const reference to another function

const Messages are Okay,
Non const are Errors

void display(const BankAccount & b) {
// OKAY to send name and balance messages since they
// were both declared with const member functions
cout << "{ BankAccount: " << b.getName()

<< ", $" << b.getBalance() << " }" << endl;

// Modifying message to non-const member function
// was not tagged as const. It should be an ERROR
b.withdraw(234.56); // <- Error

}

A C++ Specific Guideline

• This leads to another guideline that is particular
to C++

Design Heuristic
Always declare accessor member functions as

const, Never declare modifiers as const
• This guideline is easy to forget

• Unless you thoroughly test, you may not get a
compiletime error

• You will not be told something is wrong until
you try to pass an instance of your new class by
const reference

Naming Conventions

• Rules #1, 2, and 3:
1: Always use meaningful names
2: Always use meaningful names
3: Always use meaningful names

• Rule #4
Constructors: Name of the class
Modifiers: Verbs borrowBook withdraw
Accessors: Nouns with get getLength getName

public: or private:

• When designing a class, do this at least for now
• place operations under public:
• place object that store state under private:

• Public messages can be sent from the block in which
the object is declared

• Private state can not be messed up like this
BankAccount myAcct("Me", 10.00);
myAcct. balance = myAcct. balance + 999999.99;

