
Chapter 7
Selection

3rd Edition
Computing Fundamentals with C++
Rick Mercer
Franklin, Beedle & Associates

Goals
• Recognize when to use the Guarded Action pattern
• Implement the Guarded Action pattern with the if statement
• use relational operators such as < and >
• create and evaluate expressions with the logical operators
• use bool objects
• understand the Alternative Action pattern
• implement the Alternative Action pattern with the C++
if...else statement

• implement the Multiple Selection n with if...else and
switch

• solve problems using the Multiple Selection pattern

Why do we need selection?

• Programs must often anticipate a variety of
situations

• Consider an Automated Teller Machine:
• ATMs must serve valid bank customers.
• They must also reject invalid PINs
• The code that controls an ATM must permit

different requests
• Software developers must implement code that

anticipates all possible transactions

Selective Control

• Programs often contain statements that may not
always execute

• Sometimes a statement may execute and other
certain conditions it may not

• Reject invalid PIN entries at an ATM instead of
allowing a withdrawal

• We say an action is guarded from executing

The Guarded Action Pattern

Pattern: Guarded Action

Problem: Execute an action only under certain conditions

General if(logical-expression)
Form: true-part

Code if(aStudent.GPA() >= 3.5)
Example: deansList.push_back(aStudent);

The if statement

• The if is the first statement that alters strict
sequential control. General form
if (logical-expression)

true-part ;
• logical-expression: any expression that evaluates to

nonzero (true) or zero (false)
• In C++, almost everything is true or false

Flow of control with if

• After the logical expression of the if statement
evaluates, the true-part executes only if the logical
expression is true.

logical
expression

False

statement -1

statement-n

True
Part

Example if statement

double hours = 38.0;
// Add 1.5 hours for hours>40.0 (overtime)
if (hours > 40.0)
hours = 40.0 + 1.5 * (hours - 40.0);

• What is the value of hours when hours is
double hours = 38.0; // _______
double hours = 40.0; // _______
double hours = 42.0; // _______

Another way

• The if statement could also be written with a block
double hours = 42.0;
if (hours > 40.0) {
hours = 40.0 + 1.5 * (hours - 40.0);

}

• Sometimes the block is required consider using { }
if (hours > 40.0) {
regularHours = 40.0;
overtimeHours = hours - 40.0;

}

Relational Operators

• Logical expressions often use relational operators:

> Greater than
< Less than
>= Greater than or equal
<= Less than or equal
== Equal
!= Not equal

Logical Expressions

• Which expressions are true, which are false?
int n1 = 78;

int n2 = 80;

n1 < n2 // _____

n1 >= n2 // _____

(n1 + 35) > n2 // _____

n1 > 78 // _____

n1 == n2 // _____

n1 != n2 // _____

Logical Expressions with strings

• Which expressions are true, which are false?

string s1 = "Carson";

string s2 = "Carly";

s1 < s2 _____
s1 > s2 _____
s1 == s2 _____
s1 != s2 _____
s1 > s2 _____
s2 < "C" _____

Relational Operators in
if Statements

double x = 59.0;
 if (x >= 60.0) {
 cout << "passing";
 }
 if (x < 60.0) {
 cout << "failing";
 }

• What is the output when x is 59, 60, and 61?
double x = 59.0; _______

double x = 60.0; _______

double x = 61.0; _______

Programming Tip

• Using = for == is a common mistake. For example
the following two statements are legal, but ...

 int x = 25;
// Because assignment statements evaluate
// to the expression on the right of =, x=1
// is always 1, which is nonzero, or true
if (x = 1) // should be (x == 1)
cout << "I'm always displayed";

• So consider putting the literal first
if (1 = x) // This is a compiletime error

The Alternative Action Pattern

• Programs often contain statements that select
between one set of actions or another

• Examples
• withdraw or deposit money
• pass or fail the entrance requirements

• This is the Alternative Action Pattern
• choose between two alternate sets of actions

Alternative Action

Pattern: Alternative Action
Problem: Must choose one action from two alternatives
Outline: if (true-or-false-condition is true)

action-1
else

action-2
Code if(finalGrade >= 60.0)

cout << "passing" << endl;
else
cout << "failing" << endl;

if-else

if (logical-expression)
true-part ;

else
false-part ;

• When the logical expression evaluates to true, the
true-part executes and the false-part is disregarded

• When the logical expression is false, only the
false-part executes.

The if...else statement

• The if...else statement allows two alternate courses of
action

logical
expression

False

statement-1

statement-n

statement-1

statement-n

True

False
Part

True
Part

if...else Example

 if (miles > 24000)
 cout << "Tune-up " << miles-24000 << " miles overdue";

else
 cout << "Tune-up due in " << 24000-miles << " miles";

miles Output?

30123 ____________________________

2000 ____________________________

24000 ____________________________

The Block {} with if-else

• Blocks may be used even when
if (miles > 24000) {

 cout << "Tune-up " << miles-24000 << " miles overdue";
} else {
 cout << "Tune-up due in " << 24000-miles << " miles";
}

• Using curly braces all the time helps avoid difficult to
detect errors

bool Objects

• The standard bool type stores one of two values
true and false

• A bool object stores the result of a logical
expression:

bool ready = false;
cout << ready << endl; // 0 for false
double hours = 4.5;
ready = hours >= 4.0;
cout << ready << endl; // 1 for true

bool Functions

• It is common to have functions that return one of
the bool values (true or false)

 // true if n is odd
bool odd(int n) {

return (n % 2) != 0;
}

// Use the odd function
int main() {

int anInt = 3;
if(odd(anInt))

 anInt++;
cout << anInt; // 4
return 0;

}

Boolean Operators

• A logical operator (&& means and) used in an
if...else statement

 int test = 50;
 if((test >= 0) && (test <= 100))

cout << "Test is in range";
else
cout << "**Warning--Test out of range";

• The code describes whether or not the value of
test is in the range of 0 through 100 inclusive.

Truth Tables for Boolean Operators

• Truth tables for the Logical (Boolean) operators
! (not) ¦¦ (or) && (and)

! (not) ¦¦ (or) && (and)
Expression Result Expression Result Expression Result
! false
! true

true
false

true ¦¦ true
true ¦¦ false
false ¦¦ true
false ¦¦ false

true
true
true
false

true && true
true && false
false && true
false && false

true
false
false
false

• You can also use these more readable operators
instead of ! ¦¦ &&

not or and

More Precedence Rules

• The following slide summarizes all operators used in
this textbook (we've seen them all now)

• Precedence: most operators are evaluated (grouped)
in a left-to-right order:

a/b/c/d is equivalent to (((a/b)/c)/d)
• Assignment operators group in a right-to-left order so

the expression
x=y=z=0 is equivalent to x=(y=(z=0))

Operators used in this book
Operator Description Grouping

Highest ::
()

Scope resolution
Function call

Left to right

Unary !, +, - Not, unary plus/minus Right to left
Multiplicative * / % Multiply/divide/remainder Left to right
Additive + - Binary plus, minus Left to right
Input/Output >> << Extraction / insertion Left to right
Relational < >

<= >=
Less/Greater than
Less/Greater or equal

Left to right

Equality == != Equal, Not equal Left to right
and && Logical and Left to right
or ¦¦ Logical or Left to right
Assignment = Assign expression Right to left

Applying Operators and
Precedence Rules

• Use the precedence rules to evaluate the following
expression:

 int j = 5;
 int k = 10;

bool TorF;

 TorF = (j * (1 + k) > 55) ||
 ((j + 5 <= k) && (j > k));

• What is assigned to TorF?______

The bool || with a Grid Object
#include "Grid.h" // for class Grid

// Return true if the mover is at an end of the world
bool moverOnEdge(const Grid & aGrid) {
return(aGrid.row()==0 // on north edge?

|| aGrid.row()==aGrid.nRows()-1 // on sout?
|| aGrid.column()==0 // on west edge?
|| aGrid.column()==aGrid.nColumns()-1);

}

int main() {
Grid tarpit(5, 10, 4, 4, east);
if(moverOnEdge(tarpit))
cout << "On edge" << endl; // On edge

else
cout << "Inside border" << endl;

return 0;
}

Short Circuit Boolean Evaluation

• C++ logical expressions evaluate sub-expressions in
a left to right order

• Sometimes the evaluation can stop early
• This will never evaluates sqrt of a negative number:

if((x >= 0.0) && (sqrt(x) <= 2.5))

• test > 100 will not be evaluated when test is
negative

if(test < 0 || test > 100)

A bool member function

• Consider changing BankAccount::withdraw so
it only withdraws money if the balance is sufficient

• Also have it return true in this case
• Have it return false when there are insufficient

funds, after the change to the state of the object
• First change heading in class BankAccount that is

in the file BankAccount.h
bool withdraw(double withdrawalAmount);

a bool member function

• Also change implementation in BankAccount.cpp
bool BankAccount::withdraw(double amount) {
// post: return true if withdrawal was
// successful or false with insufficient funds
if (balance >= amount) {
balance = balance - amount;
return true;

 }
return false;

}

Multiple Selection

• Nested logic: When one control structure contains
another similar control structure

• an if else inside another if else
• allows selections from 3 or more alternatives

• We must often select one alternative from many

Pattern: Multiple Selection

Problem: Must execute one set of actions from three or more
alternatives.

Outline: if (condition 1 is true)
 execute action 1
else if(condition 2 is true)
 execute action 2
 // ...
else if(condition n-1 is true)
 execute action n-1
else
 execute action n

Code
Example:

if(grade < 60)
 result = "F";
else if(grade < 70)
 result = "D";
else if(grade < 80)
 result = "C";
else if(grade < 90)
 result = "B";
else
 result = "A";

Example of Multiple Selection nested
if...else

if(GPA < 3.5)
cout << "Try harder" << endl;

else

GPA Output:
3.0 __________________
3.6 __________________
4.0 __________________

The false
part is
another
if...else

if(GPA < 4.0)
cout << "Dean's List";

else
cout << "President's list";

Multiple Returns

• It's possible to have multiple return statements in a
function terminate when the first return executes

string letterGrade(double percentage) {
 if (percentage >= 90)

 return "A";
 if (percentage >= 80)
 return "B";
 if (percentage >= 70)
 return "C";
 if (percentage >= 60)
 return "D";

return "F"; // percentage < 0
}

Testing Multiple Selection

• It is often difficult and unnecessary to test every
possible value imagine all those doubles 0.1, 0.001,
0.0001,...

• Testing our code in "most" branches can prove
dangerously inadequate

• Each branch through the multiple selection should
be tested

Perform Branch Coverage Test

• To correctly perform branch coverage testing we
need to do the following:

• Establish a set of data that ensures all paths will
execute the statements after the logical expressions

• Execute the code call the function with the nested
logic for all selected data values

• Observe that the code behaves correctly for all
data compare program output with expected results

• This is glass box testing when you look at the code

Boundary Testing

• Boundary testing involves executing the code using
the boundary (cutoff) values

• What grade would you receive with a percentage of
90 using this code

string letterGrade(double percentage) {
 if (percentage > 90)

 return "A";
 if (percentage >= 80)
 return "B";

. . .

function assert

• So far testing has been done by printing with cout
• This requires a careful inspection of the cout

statements and the associated output
• C++ has an assert function takes a bool

argument to more easily test our functions
• If the argument is false, C++ will inform you with a

line of output that begins with Assertion failed
• In this case, assert will terminate the program
• If all expressions in all calls to the assert function are

true, there is no output

function assert

• Consider this test driver that uses assert
• If letterGrade is correct there will be no output

int main() {
 assert("A" == letterGrade(100.0));
 assert("A" == letterGrade(90.0));
 assert("B" == letterGrade(89.9));
 assert("B" == letterGrade(80.0));
 assert("C" == letterGrade(79.9));
 assert("C" == letterGrade(70.0));
 assert("D" == letterGrade(69.9));
 assert("D" == letterGrade(60.0));
 assert("F" == letterGrade(59.0));
 assert("F" == letterGrade(59.9));
}

function assert

• If any assertion is wrong, you will get a message
• The program terminates, the 3rd assert is not

executed
int main() {
 assert("A" == letterGrade(100.0));
 assert("E" == letterGrade(90.0));
assert("A" == letterGrade(59.9));

}

Assertion failed: ("E" == letterGrade(90.0)),
function main, file ../src/testGrade.cpp, line 29.

The switch Statement

switch (switch-expression) {
case value-1 :

statement(s)-1
break; ... // many cases are allowed

case value-n :
statement(s)-n
break;

default:
default-statement(s)

}

Switch control

• When a switch statement is encountered:
• the switch-expression is evaluated. This value is

compared to each case value until switch-
expression equals the case value.

• All statements after the colon : are executed.
• It is important to include the break statement
• The switch expression must evaluate to one of C++'s

integral types
int char enum

char Objects

• A char object stores 1 character

'A' 'x' 'c' '?' ' ' '1' '.'

• Or 1 escape sequence

Escape Sequence Meaning
'\n' new line
'\"' double quote in a char
'\'' single quote in a char
'\\' forward slash
'\t' tab

Example switch statement:
 char option = '?';
cout << "Enter W)ithdraw D)eposit B)alances: ";
cin >> option;
switch (option) {

 case 'W':
cout << "Withdraw" << endl;

 break;
case 'D':
cout << "Deposit" << endl;

 break;
case 'B':
cout << "Balance" << endl;

 break;
default:
cout << "Invalid" << endl;

} // end switch

Show output when

option == '?' _______

option == 'W' _______

option == 'B' _______

option == 'A' _______

option == 'Q' _______

