
Chapter 8
Repetition

3rd Edition
Computing Fundamentals with C++
Rick Mercer
Franklin, Beedle & Associates

Goals

• Use the Determinate Loop pattern to execute a set of
statements a predetermined number of times

• Implement determinate loops with the for statement
• Recognize and use the Indeterminate Loop pattern to

execute a set of statements until some event occurs to
stop it (no more data, for example)

• Implement indeterminate loops with the C++ while
statement

Repetitive Control

• The following algorithms involve repetition
• Add the remaining flour ¼ cup at a time whipping

until smooth
• While there are more burger/fries/soda orders, sum

each item. Apply tax. Display Total.
• Compute a course grade for every student
• While the ATM is running, process another customer,

and allow many transactions
• Microwave the food until the timer reaches 0, the

cancel button is hit, or the door is opened

Why is repetition needed?

• To take advantage of the computer's speed to perform
the same tasks faster

• To avoid writing the same statements over and over
again (shorter programs)

• To visit all elements in a collection of objects
• To make programs general enough to handle various

sized collections of data
• Consider code intended to average exactly 100

numbers (next slide):

Crazy way to average 100 values

double number;
double sum = 0;
cout << "Enter number: "; // <-Repeat these three
cin >> number; // <- statements for each
sum = sum + number; // <- number in the set
cout << "Enter number: ";
cin >> number;
sum = sum + number;

// ...291 statements deleted ...

cout << "Enter number: ";
cin >> number;
sum = sum + number;
double average = sum / 100;
cout << "Average: " << average << endl;

How many statements are
required for 100 inputs?____

What changes are necessary to
average 200 inputs? ____

The Determinate Loop Pattern

• There is a better way
• We often need to perform some action a specific

number of times:
• Produce 89 paychecks
• Count down to 0 (take 1 second of the clock)
• Send grade reports to 75,531 students

• The Determinate Loop pattern repeats some action
a specific number of times

Pattern:	 Determinate Loop
Problem:	 Do something exactly n times, where n is known

in advance.
Algorithm	 determine n

repeat the following n times {
 perform these actions
}

Code	
Example:	

cout << "Enter n: ";
cin >> n;
for (int count = 1; count <= n; count++) {
 cout << "Enter number: "; // Repeat
 cin >> number; // these
 sum = sum + number; // statements
}

Determinate Loops

• This template repeats a process n times

n = how often we must repeat the process
for (int i = 1; i <= n; i = i + 1) {

the process to be repeated
}

• Determinate Loops must know the number of
repetitions before they begin
• Know exactly how many employees, or students, or

whatever, that must be processed

The for loop

for (initial statement; loop-test; update-step) {
repeated-part

}

• When a for loop is encountered
• the initial-statement is executed, usually int i = 0;

• The initial-statement is only executed once, when the loop is
entered

• the loop-test evaluates to true or false
• if the loop-test is false, the for loop is terminated
• if loop-test is true, the repeated-part is executed and the

update-step executes

Flow Chart View of a for loop

Initial statement

false
Loop test

Repeated Part

update-step

true

Use a for loop to produce an average
 int n;
double number;
double sum = 0.0;
// Get a value for the number of iterations
cout << "How many numbers? ";

 cin >> n;

// Compute and display the average
double average = sum / n;
cout << "Average: " << average;

for(int count = 1; count <= n; count = count + 1) {
// Repeat the same three statements n times
cout << "Enter number: ";

 cin >> number;
sum = sum + number;

 }

Operators ++ and --

• It is common to see determinate loops of this form
where n is the number of repetitions
for(int count = 1; count <= n; count++)

• The unary ++ and -- operators add 1 and subtract 1
from the values, respectively
int n = 0;
n++; // n is now 1, equivalent to n=n+1;
n++; // n is now 2
n--; // n is now 1

• The expression count++; is equivalent to the more
verbose count = count + 1;

Other Assignment Operators

• C++ has several assignment operators in addition to =
n -= 2; is the equivalent of n = n - 2;
sum += x; is the equivalent of sum = sum + x;

• What is sum when a user enters 7 and 8?
int sum = 0;
int num = 0;
cout << "Enter a number: ";

 cin >> num; // user enters 7
 sum += num;

cout << "Enter a number: ";
 cin >> num; // user enters 8
 sum += num;

Determinate Loops with Grid Object

• This code surrounds the Grid with blocks
Grid g(7, 14, 4, 4, east);
g.display();
for (int row = 0; row < g.nRows(); row++) {
 g.block(row, 0); // block west col
g.block(row, g.nColumns() - 1); // block east col

}

for (int col = 1; col < g.nColumns() - 1; col++) {
 g.block(0, col); // block north row
g.block(g.nRows() - 1, col); // block south row

}

g.display();

The Grid:

. #
. . . . > #
. #
#

The Determinate Loop Pattern
Find the Range of Test Scores

• Find the range of test scores where range is defined as
the highest minus the lowest

• With the input of 4 test scores 80, 70, 100, and 90,
what is the range _____?

• Prelude to the range problem:
• Imagine finding the largest number in a list of

thousands of numbers––we need a systematic method
(we can’t just glance at the list)

Analysis

• Problem: Write a program that determines a range
(highest-lowest) of test scores. The user must enter
the number of tests to check

• Inputs: The number of test scores to scan, and the
actual test scores

• Output: The range
• Name the objects?

_________ _________ _______ _______

Design

• Start with this algorithm
1. Obtain the number of test scores
2. Determine the range
3. Display the range

• You might notice that the process step, "Determine
the range", needs further refinement

• The first step is a prompt/input pattern and the
third step is simply labeled output

Design (an Algorithm)

1. Obtain the number of test scores
cout << "Enter number of test scores: ";
cin >> n;

2. Determine the range: TBA
3. Display the range

cout << "Range = " << range;

• Let us concentrate on the second step:
• Determine the range

• Since range is defined as largest – smallest, we need to
find the largest and smallest

Design

• We need the actual test scores for input to determine
the largest and smallest

• As each new test score is input, we compare it to the
highest so far, and also to the smallest so far

• But what do we compare the first test to?
• How about something very large for the smallest

• 1,000 will be the smallest so far
• and something very small for the largest

• -1,000 will be the largest so far
• Then the first number (we'll use 76) is compared

to these artificial values for largest and smallest

Design continued

• In a side by side comparison, we see a valid test
score (76) is greater than the largest so far (-1000)
and also less than the smallest so far (+1000)

-1000

-500

0

500

1000 smallest

test

largest

+1,000

76

-1,000

Design

• Before reading tests from the user, initialize largest and
smallest like this:
double largest = -1000;
double smallest = +1000;

• Then we need to do the following n times
1) Input a test
2) Compare test to largest and if necessary, store the test as the largest
3) Compare to smallest and if necessary store it as the smallest

• Trace with inputs of 87, 91, 72 (range 91-72=19)
test ? 87 91 72
largest -1000 87 91 91

smallest +1000 87 87 72

Implementation
 int n = 3;
int test;
int largest = -1000;
int smallest = 1000;
// 2. Determine the range
for (int counter = 1; counter <= n; counter++) {
// The process to repeat n times

 cout << "Enter test: ";
 cin >> test;

if (test > largest)
 largest = test;

if (test < smallest)
smallest = test;

 }
int range = largest - smallest;
cout << range;

Dialog
Enter test: 87
Enter test: 91
Enter test: 72
19

Why bother?

• It should be noted, that this computer based range
problem is more cumbersome than just scanning a
small list of tests for the highest and lowest

• But imagine thousands of value stored in a file or a
spreadsheet

• We could use the same pattern, but someone must
somehow count the inputs before starting

• There must be a way to do this programmatically

Algorithmic Pattern
The Indeterminate Loop

• Determinate loops have a limitation
• We must know n in advance

• Many situations repeat a set of statements, but we
can not determine how many:
• Processing report cards for every student in a school

(or paychecks for all employees, or...)
• Generating a bill for every customer
• Playing a game until somebody wins

Some Events that terminate
indeterminate loops

• An indeterminate loop repeats a process until some
stopping event terminates the repetition

• There are many such events, but we'll focus on these
events only:
• User enters a special value indicating end of data.
• A logical expression becomes false
• The Grid mover hits the wall or an edge
• The end of a file is encountered

• Indeterminate loops do not need to know n in advance

Pattern: Indeterminate loop

Problem: Some process must repeat an unknown number
of times so some event is needed to terminate
the loop.

Algorithm: while(the termination event has not occurred) {
perform these actions
bring the loop closer to termination somehow

}

Code while(aGrid.frontIsClear()) {
Example: myGrid.putDown();

myGrid.move();
}

The while loop
• The indeterminate loop pattern can be implemented

with the C++ while loop
while (loop-test) {

repeated-part
}

• When a while statement is encountered the block
executes while (as long as) the loop-test is true

• You need to determine the loop test, an expression that
must eventually become false

Flow chart view of while-loop execution

loop-test
statement-1

statement-2

statement-n

Iterative
Part

false true

while Statement as a Determinate Loop

• This loop terminates when counter <= n
becomes false

• The event that terminates this loop is counter > n
int counter = 1;

 int n = 4;
while (counter <= n) {

 cout << counter << " ";
counter++;

 }

• Output? ______________

Indeterminate Loop Pattern with Grid

 Grid g(5, 10);
// assert: g is a 5x10 Grid surrounded by blocks
// with one opening and the mover in a random spot
while (g.frontIsClear()) {
 g.move(1);
}
g.display();

Output
#
.
< .
.
#

Indeterminate Loop Using a Sentinel

• A sentinel is a specific input from the user or a signal
that there is no more data

• The sentinel must be the same type of data
• The sentinel must not be in the valid range of data
• Example: Use -1 as the sentinel for test scores that can

only be in the range of 0 through 100

• Enter test scores or -1 to quit:
80 95 76 82 56 100 45 86 -1

• A priming read could be used
• The first input could be -1 or a valid number
• The while loop test will check (see next slide)

Priming Read

• Read before the loop and at the end!
int sum = 0;
int test;
cout << "Enter data or -1 to quit" << endl;

 cin >> test;
while (test != -1) {

 sum += test;
 cin >> test;
 }
 cout << sum;

Dialog
Enter data or -1 to quit
1 2 3
-1
6

Using cin >> as a Loop Test

• An input with cin evaluates to true or false
while (cin >> intObject)

• It can be part of the loop test to simplify the code

// Reading input can be part of a loop test
while ((cin >> test) && (test != -1)) {
// Must have a valid int not equal to -1

 sum += test;
n++; // n is count of test

 }

Infinite Loops

• Infinite loop: a loop that never terminates
• Infinite loops are usually not desirable
• Below is an example of an infinite loop, there is no

step that brings the loop closer to termination
• Wait until you hear your fan turn on, or better yet,

terminate the program
 cin >> test;

while (test != -1) {
sum += test;

 n++;
 }

The do while Statement

• C++ also has a "post-test" loop
• The loop test occurs at the end of the loop

• Use when you have to do something to initialize part
of the loop test (or use whilewith break)
do {

repeated-part
} while (loop-test) ;

• The repeated part always executes at least once
• a while loop executes zero times if the loop test is

false immediately

Flow chart view of do while

loop-test

statement-1

statement-2

statement-n

Repeated
Part

False

True

Why another loop?
char nextOption() {
// post: return an uppercase W, D, or Q

 char option = '?';
 do {

cout << "W)ithdraw, D)eposit, or Q)uit: ";
cin >> option; // wants w, W, d, D, q, or Q
option = toupper(option); // need option in test

} while((option != 'W') && // a post test loop
 (option != 'D') &&

(option != 'Q'));
return option;

}

int main() {
cout << nextOption();
return 0;

}

Dialog:
W)ithdraw, D)eposit, or Q)uit: x
W)ithdraw, D)eposit, or Q)uit: y
W)ithdraw, D)eposit, or Q)uit: z
W)ithdraw, D)eposit, or Q)uit: w
W

Equivalent while loop

• The while loop repeats until the user enters an upper or
lower case W, D, or Q using break to exit the loop

char nextOption() {
// post: return an uppercase W, D, or Q
char option;
while (true) {
cout << "W)ithdraw, D)eposit, or Q)uit: ";

 cin >> option;
option = toupper(option);
if (option=='W' || option=='D' || option=='Q')
break; // a more positive way to stop

 }
return option;

}

Loop Selection and Design

• The following outline is offered to help you choose
and design loops in a variety of situations:
• Determine which type of loop to use
• Determine the loop-test
• Write the statements to be repeated
• Bring the loop one step closer to termination
• Initialize objects if necessary

Determine Which Type of Loop to Use

• If the number of repetitions is known in advance or
read as input, use a determinate for loop

• If the loop must stop when some event occurs, use
an indeterminate while loop

• When the loop must always execute once (to
validate input for example), use a do-while loop

Determine the Loop Test

• Try writing the conditions that must be true for the
loop to terminate
inputName == "QUIT" // Termination condition

• The logical negation (with ! applied) can be used
directly as the loop-test of a while loop:
while (inputName != "QUIT") // logical negation

Write the Statements to be Repeated

• This is why the loop is being written

{
cout << "Enter number: ";
cin >> x;
sum = sum + x;
n++;

}

Bring the Loop one Step Closer to
Termination

• To avoid an infinite loop, there should be at least
one action in the loop body that brings it closer to
termination.
• Increment the counter by +1
• Read data from an input stream with cin >>

Initialize Objects if Necessary

• Check to see if any objects used in either the body
of the loop or the loop-test need to be initialized

• In this loop, which object(s) need to be initialized
before this while loop is encountered? _________
int count, n;
double x, sum;
while (count <= n) {
cout << "Enter a number: ";
cin >> x;
sum = sum + x;
count++;

}

