
Chapter 10
Vectors

3rd Edition
Computing Fundamentals with C++
Rick Mercer
Franklin, Beedle & Associates

Goals

• Construct and use vector objects that store
collections of any type

• Implement algorithms to process a collection of
objects

• Use the sequential search algorithm to locate a
specific element in a vector

• Pass vector objects to functions
• Sort vector elements
• Understand how to search using the classic

sequential and binary search algorithms

• Some objects store precisely one value
• a double store one number
• an int stores one integer

• Other objects store more than one (possibly
dissimilar) values, for example:

• BankAccount objects store a string and a double
• What does a string object store?

class Vector

Recall string objects

• Any string object stores a collection of characters,
more than one value

• Individual characters are referenced with []
cout << name[0]; // reference 1st character

• This chapter introduces vector objects
• Store a indexed collection of objects
• Individual objects are accessed through subscripts[]

vectors are Generic

• This code declares a vector named x that has the
capacity to store 100 numbers
vector<double> x(100); // All garbage values

 x[0] = 1.5;
 x[1] = 6.3;
 cout << x[0] + x[1]; // 7.8

• We can have a vector of almost any class of object
vector <int> tests(100);
vector <string> names(20);
vector <Employee> employees(1000);
vector<vector<int> > table(12);

vector construction

vector<class> identifier (capacity, initial-value) ;

• class specifies the class of objects stored in the vector
• identifier is the name of the vector object
• capacity is an integer expression specifying the

maximum number of objects that can be stored
• initial-value is the value of every element
• initial value is optional
• Need to
#include <vector> // For vector<type>

Example Constructions

• A vector that stores up to 8 numbers, which are all
initialized to 0.0
vector <double> x(8, 0.0);

• A vector that stores 500 string objects:
vector <string> name(500);

• A vector that store 1,000 integers, which are all
initialized to -1):

vector <int> test(1000, -1);

• A vector that stores up to 100 BankAccounts
vector <BankAccount> customer(100);

Accessing Individual Elements in the
Collection

• Individual array elements are referenced through
subscripts of this form:
vector-name [int-expression]
• int-expression is an integer that should be in the

range of 0..capacity-1.
• Examples:

x[0] // Pronounced x sub 0
name[5] // Pronounced name sub 5
test[99] // Pronounced test sub 99
customer[12] // Pronounced customer sub 12

A Complete Program
#include <vector>
#include <iostream>
using namespace std;
int main() {
 int n = 5;
 vector <int> x(n, 0);
 x[0] = 1; // Assume input of
cout << "Enter two integers: "; // 2 5

 cin >> x[1] >> x[2];
 x[3] = x[0] + x[2];
 x[4] = x[3] - 1;
 for(int j = 0; j < n; j++) {
 cout << x[j] << " ";
 }
return 0;

}
Enter two integers: 2 5
1 2 5 6 5

Enter two integers: 2 5
1 2 5 6 5

Individual
Element

Value

x[0] 1

x[1] 2

x[2] 5

x[3] 6

x[4] 5

Another view of the vector<int>

Vector Processing with a Determinate
Loop

• The need often arises to access all meaningful elements
vector <double> test(100, -99.9);

// Initialize the first 24 elements
test[0] = 64;
test[1] = 82;
// . . . assume 21 additional assignments . . .
test[23] = 97;
int n = 24; // The first 24 elements are meaningful

// Sum the first n elements in test
double sum = 0.0;
for (int j = 0; j < n; j++) {
sum += test[j];

}

Processing the First n Elements of a
vector

• A vector often has capacity larger than need be
• The previous example only used the first 24 of a

potential 100 elements.
• The textbook often uses n to represent the number of

initialized and meaningful elements
• The previous loop did not add x[24] nor x[25], nor
x[99] all of which were -99.9

• vectors can be sized at runtime and even resized later

vector processing in this text book

• Example vector processing you will see
• displaying some or all vector elements
• finding the sum, average, largest, ... of all vector

elements
• searching for a given value in the vector
• arranging elements in a certain order

• ordering elements from largest to smallest
• or alphabetizing a vector of strings from smallest to

largest

Out of Range
Subscript Checking

• Most vector classes don't care if you use subscripts
that are out of range
vector<string> name(1000);
name[-1] = "Subscript too low";
name[0] = "This should be the first name";
name[999] = "This is the last good subscript";
name[1000] = "Subscript too high";

• This could crash your computer instead! segmentation or
general protection faults

Subscript Checking
• vector does not perform range checking with []
• The programmer must be careful to avoid subscripts

that are not in the range
• Both assignments below do not cause a runtime error

• Instead they store the values in memory that belongs
to someone else, there is no error or warning
int n = 5;

 vector <int> x(n, 0);
 x[-1] = 123; // Too low
 x[5] = 123; // Too high

Subscript Checking
• vector has a member function at(int) that does

perform range checking
• If the subscript is out of range, you get a runtime error
• Both assignments below would cause a runtime error

int n = 5;
 vector <int> x(n, 0);
 x.at(-1) = 123; // Too low
 x.at(5) = 123; // Too high

libc++abi.dylib: terminating with uncaught exception
of type std::out_of_range: vector

vector::capacity and vector::resize
• The proper capacity of a vector is usually an issue
• There are two useful functions to help

// Maximum number of elements to be stored

int vector::capacity()

// Change the capacity

void vector::resize(int newSize)

vector::capacity and vector::resize
#include <vector> // for the standard vector class
#include <iostream>

using namespace std;
int main() {

vector <int> v1; // v1 cannot store any elements
 vector <int> v2(5);
 cout << "v1 can hold " << v1.capacity() << endl;
 cout << "v2 can hold " << v2.capacity() << endl;

v1.resize(22);
cout << "v1 can now hold " << v1.capacity() << endl;
return 0;

} Output v1 can hold 0
v2 can hold 5
v1 can now hold 22

What happens during a resize message?

• When a vector is resized
• and the new size is bigger than the old size

• the existing elements are intact
• and the new size is smaller than the old size

• the elements in the highest locations are truncated

Sequential Search

• We often need to search for data stored in a vector (a
phone number, an inventory item, an airline
reservation, a bank customer)

• We will simplify the search algorithm by searching
only for strings

• Imagine however that the vector may be a collection
of bankAccounts, students, inventory, sales,
employees, or reservations

Sequential search algorithm

• There are many searching algorithms
• We will study the sequential search algorithm with

a simple collection of strings
• Here is the first cut at the algorithm:

Initialize a vector of strings (call it friends)
Get the name to search for (call it searchName)
Try to find searchName
Report on success or failure of search

The array being searched

• We'll use this data in our searches:
vector<string> friends(10);
int n = 4; // Number of meaningful elements
friends[0] = "Casey";
myFriends[1] = "Dylan";
friends[2] = "Jordan";
myFriends[3] = "Kelly";

• Note: We often have unused elements in a vector
• For example, we could add 6 more strings to the

collection named friends

The Possibilities?

• searchName is in the vector
• searchName is not in the vector
• Complete this problem as a free function

int indexOf(string searchName,

const vector<string> & names,

int n)

• Calls look like this, expected returns in comments
indexOf("Not Here", friends, n) // -1

indexOf("Jordan", friends, n) // 2

Sequential Search

• This algorithm is called sequential search because it
looks at each vector element from index 0 to index n-1
in sequence

• If searchName is found, return the index
• If the loop terminates with no find, return -1

int indexOf(string search,
const vector<string> & names, int n) {

for (int index = 0; index < n; index++) {
if (names[index] == search)

 return index;
 }

return -1; // search not in the vector
}

Trace indexOf for "Jordan"

Loop
Iteration searchName n if index

Vector element

before "Jordan" 4 N/A N/A N/A

#1 " " false 0 "Casey"

#2 " " false 1 "Dylan"

#3 " " true 2 "Jordan"

• At index 2, indexOf returns 2 when the if
statements is true

Trace indexOfwhen not found

Loop
Iteration searchName n if index

Vector element

before "Not Here" 4 N/A N/A N/A

#1 " " false 0 "Casey"

#2 " " false 1 "Dylan"

#3 " " false 2 "Jordan"

#4 " " false 3 "Kelly

• The loop terminates when index goes from 3 to 4
• indexOf then returns -1

Messages to individual objects

• General form for sending a message to an individual
object in a vector:
vector-name [subscript] .message

• Examples:
vector<string> name(1000);
vector<BankAccount> acct(10000);

acct[0] = BankAccount("Kelsey", 0.0);
 acct[0].deposit(20.00);

acct[0].withdraw(10.00);
cout << acct[0].getBalance() << endl;
cout << acct[0].getName() << endl;

Initializing a vector with File Input

• A vector is often initialized with file input
• For example, might need to initialize a data base of

bank customers with this file input:
Cust0 0.00
AnyName 111.11
Austen 222.22
Chelsea 333.33
Kieran 444.44
Cust5 555.55
... Seven lines are omitted ...
Cust11 1111.11

Some preliminaries

// Initialize a vector of BankAccounts with file input
#include <istream> // for class ifstream
#include <iostream> // for cout
#include <vector> // for the standard vector class
#include "BankAccount.h" // for class BankAccount
using namespace std;
int main() {
ifstream inFile("bank.data");

 if (!inFile) {
cout << "*Error* 'bank.data' not found" << endl;

} else {

 // . . . Read all lines from bank.data . . .

Reading until end of file

vector<BankAccount> account(20);
string name;
double balance = 0.0;
int n = 0;

while ((inFile >> name >> balance) && (n <
account.capacity())) {
// Create and store a new BankAccount
account[n] = BankAccount(name, balance);
// Increase total of the accounts on file and
// get ready to locate the next new BankAccount

 n++;
}

vector Argument/Parameter Associations
by example

void foo(vector<BankAccount> accounts) {
// VALUE parameter (should not be used with vectors)
// all elements of accounts are copied
// after allocating the additional memory

}

void foo(vector<BankAccount> & accounts) {
// REFERENCE parameter (allows changes to argument)
// Only a pointer the accounts is copied.
// A change to accounts changes the argument

}

void foo(const vector<BankAccount> & accounts) {
// CONST REFERENCE parameter (for efficiency and safety)
// Only a reference to the accounts is copied (4 bytes)
// A change to accounts does NOT change the argument

}

Sorting

• Sorting: the process of arranging vector elements into
ascending or descending order

• Natural, or ascending order, where x is a vector object
x[0] <= x[1] <= x[2] <= ... <= x[n-2] <= x[n-1]

• Here's the data used in the next few slides:

Element Unsorted Sorted
data[0] 76.0 63.0

data[1] 74.0 74.0

data[2] 100.0 76.0

data[3] 62.0 89.0

data[4] 89.0 100.0

Swap smallest into index 0

// Find the index of the smallest element
left= 0
indexOfSmallest = left
for index ranging from left+1 through n – 1 {

if data[index] < data[indexOfSmallest] then
indexOfSmallest = index

}
// Question: What is smallestIndex now? __________
swap data[smallestIndex] with data[top]

Selection sort algorithm

• Now we can sort the entire vector by changing left
from 0 to n-2 with this loop

for (left = 0; left < n-1; left++)
for each subvector, get the smallest to data[left]
(algorithm on previous slide)

• The index moves up one index vector position each
time the element at the indexOfSmallest is swapped
to the index

• It is certainly possible the data[indexOfSmallest] is
data[left]

Selection Sort

• This swap occurs when left is 0
• 62 is swapped with data[left] when left == 0

• With left++ , 76.0will be swapped with 91.0

Binary Search

• We'll see that binary search can be a more efficient
algorithm for searching

• It works only on sorted arrays like this
• Compare the element in the middle
• if that's the target, quit and report success
• if the key is smaller, search the array to the left
• otherwise search the array to the right

• This process repeats until we find the target or there
is nothing left to search

Bob
Carl

Froggie
Gene
Harry
Igor

Debbie
Evan

a[0]

a[1]

a[2]

a[3]

a[4]

a[5]

a[6]

a[7]

a[8]

low

mid

high

low

mid

highJudy

Data reference pass 1 pass 2

How fast is Binary Search?

• Best case: 1 comparison
• Worst case: when the target is not there
• At each pass, the live portion of the array (where we

need to search) is narrowed to half the previous size
• The series proceeds like this:

• n , n/2, n/4, n/8, ...
• Each term in the series represents one comparison

How long does it take to get to 1?
• This will be the number of comparisons

Defective Binary Search

• Binary search sounds simple, but it's tricky consider this code
int binarySearch(const vector<int> & a, int n, int target) {
// pre: array a is sorted from a[0] to a[n-1]
int first = 0;

 int last = n - 1;
int mid;
while (first <= last) {

 mid = (first + last) / 2;
 if (target == a[mid])

return mid; // found target
else if (target < a[mid])
last = mid; // must be that target > a[mid]

 else
first = mid; // must be that target > a[mid]

 }
return -1; // use -1 to indicate item not found

}

Bob
Carl

Froggie

Debbie
Evan

a[0]

a[1]

a[2]

a[3]

a[4]

low

mid

high

low

mid

high

Data pass 1 pass 2 pass 3 pass 4...

low

mid

high

low...

mid...

high...

• How do we fix this defective binary search ?

It's an Infinite Loop

