
Chapter 11
Generic Collections

3rd Edition
Computing Fundamentals with C++
Rick Mercer
Franklin, Beedle & Associates

Chapter 11
A Container with Iterators

• Build your own collection class to store any type
of element

• Better understand classes with data members,
constructors, and member functions

• Better understand how to develop functions that
involve vector processing

Collection classes

• Programmers often use many collections
• Collection classes have the main purpose of storing

a collection of elements
• Standard collection classes include
vector<type>, stack<type>, queue<type>,
list<type>

• All of these take a type argument, which is the type
of elements that the collection stores

Passing Types as Arguments

• C++ has a template mechanism that allow the type
of element to be set when compiled

• It is a type enclosed two special symbols <type>
• This allows us to have a vector of int,
double, string, BankAccount, . . .

• The collection can only store that type of element
• With a type argument, we only need one collection class

• In this presentation, a Bag type is implemented
with templates to allow for Bag<int> aBag;

class Bag<Type>

• The Bag class developed here will review class
definitions, vector processing, and show it is possible
to pass a type like int or double as an argument

• A bag (aka multi-set) is the most general collection
• Bags store a collection of elements not in any

particular order and are not necessarily unique
• operations include

bag::add
bag::remove
bag::occurrencesOf
bag::size

Using a Bag object

• This code should compile, all assertions should pass
Bag<int> aBag;
aBag.add(5);

 aBag.add(4);
 aBag.add(4);

assert(aBag.occurrencesOf(5) == 1);
assert(aBag.occurrencesOf(4) == 2);

assert(aBag.occurrencesOf(99) == 0);
assert(!aBag.remove(99));

assert(aBag.remove(5));
assert(aBag.occurrencesOf(5) == 0);
assert(aBag.remove(4));
assert(aBag.occurrencesOf(4) == 1);

The Data Members and Constructor

// File name: Bag.h
#include <vector>

template<class Type> // Allow type arguments
class Bag {
private:
std::vector<Type> elements; // Can be any type

 int n;

public:
//--constructor

 Bag() {
elements.resize(20); // size 20 is arbitrary
n = 0;

}

Bag::add

• The Bag::add operation adds all new elements to the
"end" of the vector. The vector may be resized
// Add element and increase the size (n) by 1
void add(Type const& element) {
// First make sure there is enough capacity

 if (n == elements.size()) {
// Grow the vector's capacity by 10

 elements.resize(n + 10);
 }

// Then add element at the end of the vector
elements[n] = element;

 // Increase the number of elements
n++;

 }

Bag::size

• The Bag::size operation simply returns n, that
increases by 1 in add and will decrease by 1 in remove

// Return the number of elements
// that are currently in this Bag
int size() const {

 return n;
 }

Bag::remove

• The Bag::removeoperation begins by finding the
index of the value to be removed
// pre: removalCandidate must define ==
// post: If found, value is removed from this Bag.
// If object is not in this Bag, return false.
bool remove(Type const& value) {
// Find the index of the element to remove
// or let index be out of range when not found

 int index = 0;
while (index < n && value != elements[index]) {

 index++;
 }
// . . .

Bag::remove

• If not found, return false. If found, overwrite it with
the most recently added element
// element[subscript] == value if found,
// otherwise subscript == size (not found).
if (index == n) {
return false;

 }
else {
// Overwrite value with the last element
elements[index] = elements[n - 1];
// and decrease size by 1

 n--;
// Report success to the client
return true;

 }
 } // End remove member function

Trace Bag::remove

• Assume this state of aBag<int>where n==4

• After aBag.remove(4) when n-- makes n==3

vector location value
element[0] 5

element[1] 4

element[2] 4

element[3] 9

vector location value
element[0] 5

element[1] 4 9

element[2] 4

element[3] 9

This 9 is no longer
in the Bag since
n == 3

Bag::occurrencesOf

• Bag::occurrencesOf iterates over the vector to
count how often value exists in this Bag
// Return how often value exists in this Bag
int occurrencesOf(Type const& value) const {

 int result = 0;
 for (int i = 0; i < n; i++) {
 if (value == elements[i])
 result++;
 }

return result;
 }

