
Chapter 12
Pointers and Memory Management

3rd Edition
Computing Fundamentals with C++
Rick Mercer
Franklin, Beedle & Associates

Goals

• Understand pointers store addresses of other objects
• Use primitive C++ arrays with no range checking
• Use several methods for initializing pointers
• Use the new and delete operators for memory

management

Memory Considerations

• In addition to name, state, and operations, every
object has an address, where the values are stored

• Objects also have a lifetime beginning with
construction to when they are no longer accessible

• With the following initialization, we see that the name
charlie, state 99, and operations like = + cout
<< are known

int charlie = 99; // But where is 99 stored?

Addresses

• An object's address is the actual memory location
where the first byte of the object is stored

• The actual memory location is something we have
not needed to know about until now

• We can't predict addresses, but ints are four bytes so
two integers could have addresses 4 bytes apart

int a = 123;
int b = 456

Address Type Name State
6300 int a 123
6304 int b 456

Static and Dynamic Memory Allocation

• Some objects take a fixed amount of memory at
compiletime:
char int double

• Other objects require varying amounts of memory,
which is allocated and deallocated dynamically, that
is, at runtime, string for example

• We sometimes use pointers to allow for such
dynamic objects

Pointers

• Pointer store addresses of other objects and are
declared with * as follows:
class-name* identifier ;
int anInt = 123; // The int object is initialized
int* intPtr; // intPtr stores an address

• anInt stores an integer value
• intPtr stores the address of variable
• So pointer objects may store the address of other

objects

About Pointer Types

• Pointer objects store the address of other objects
which are the same type as the type of the pointer

• An int pointer hold an addresses to a int object
int intP = 25;
int* intPtr = &intP;

• A double pointer hold an addresses to a double
double doubleD = 25.45;
double* doublePtr = &doubleD;

• A Grid pointer hold an addresses to a Grid object
Grid gridG(5, 5, 0, 0, south);
Grid* gridPtr = &gridG;

The State of Pointers

• At this point, the value of intPtrmay have or
become one of these values

• Undefined (as intPtr exists above)
• The special value nullptr to indicate the pointer

points to nothing: intPtr = nullptr;

• The address of the int object: intPtr=&anInt;
• & means address of

• Currently, we may depict the undefined value of
intPtr as follows:

intPtr

• The & symbol is called the address-of operator when
it precedes an existing object

• This assignment returns the address of anInt and
stores that address into intPtr:
intPtr = &anInt;

???

Pointer Values

Defining Pointer Objects

• The affect of this assignment
intPtr = &anInt;

is represented graphically like this:
intPtr anInt

• Now intPtr is defined

123

• We can change the value of anInt indirectly with
the dereference operator *

*intPtr = 97; // The same as anInt = 97

• Now both objects are defined

intPtr anInt or *intPtr

97

The State of Pointers

The dereference Operator

• The following code displays 97 and 96
cout << (*intPtr) << (*intPtr-1) << endl;

• This code changes 97 to 98
*intPtr = *intPtr + 1;

intPtr anInt

97

The & operator

• The & operator has different meanings depending
on how you use it.
• When you use & to create a variable, you are

creating a reference
• When you use & in front of an existing variable the
& is called the address-of operator and returns the
address of the variable and not the value stored in
the variable

The * operator

• The * operator also has different meanings
depending on how you use it.
• When you use * to create a variable, you are creating

a pointer
• When you use * in front of an existing pointer, you

get the value stored at the address the pointer contains
and not the address stored in the pointer

• The * is also used in math operations when between
numeric types

Address-of and Dereference

• What is the output generated by this program?
#include <iostream>
using namespace std;
int main() {
 int *p1, *p2;
int n1, n2;

 p1 = &n1;
 *p1 = 5;
 n2 = 10;
 p2 = &n2;
 cout << n1 << " " << *p1 << endl;
 cout << n2 << " " << *p2 << endl;

return 0;
}

Pointers to Objects

• Pointers can also store the addresses of objects
with more than one value

• Because function calls have a higher precedence
than dereferencing, override the priority scheme by
wrapping the pointer dereference in parentheses
BankAccount anAcct("Ashley", 123.45);
BankAccount* bp;

 bp = &anAcct;
 (*bp).deposit(123.43);
 cout << (*bp).getBalance(); // 246.88

Arrow Operator ->

• C++ also has an arrow operator to send message to
object via its address (location in memory)
BankAccount anAcct("Ashley", 123.45);
BankAccount* bp;

 bp = &anAcct;
bp->deposit(123.43);

 cout << bp->getBalance(); // 246.88

The Primitive C Array

• C++ has primitive arrays
string myFriends[20]; // store up to 20 strings
double x[100]; // store up to 100 numbers

• There is no range checking with these

Compare C arrays to vector
Difference vector Example C Array Example

vectors can initialize all
vector elements at
construction; arrays
cannot.

vector <int> x(100, 0);

All elements are 0

int x[100];

All garbage

vectors can be easily
resized at runtime; arrays
take a lot more work.

int n;
cin >> n;
x.resize(n);

Can "grow" an array
with more code

vectors can be made to
prevent out-of-range
subscripts.

You are told
something is wrong
cin >> x.at(100);

Destroys other memory
cin >> x[100];

vectors require an
#include primitive,
built-in arrays do not.

#include <vector> No #include required

The Array/Pointer Connection

• A primitive array is actually a pointer
• The array name is actually the memory location of the

very first array element
• Individual array elements are referenced like this
address of 1st array element + (subscript * size of 1 element)

• Arrays are automatically passed by reference when the
parameter has []
void init(int x[], int & n)
// Both x and n are reference parameters

Array parameters are reference
parameters

• When passing arrays as parameters, you don't need &
• x and anArray reference the same array object

Allocating Memory with New

• Pointers can also be set with the C++ new operator
• This code allocates a contiguous block of memory to

store the state.
• It also returns the address, or a pointer to the object
int* intPtr = new int;

 *intPtr = 123;
 cout << *intPtr; // 123

• This code allocates a new array
int* nums = new int[10];

nums ? ? ? ? ? ? ? ? ? ?

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

The delete Operator

• new allocates memory at runtime
• delete deallocates that memory to avoid memory

leaks so it can be used by other new objects
• General form for recycling memory

delete pointer;
delete[] pointer-to-array;

• For the programs you write, you won't notice any
difference by forgetting to delete
• In a future course with destructors, or in an

internship or job, you probably will

