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Abstract
Cartograms are used for visualizing geographically distributed data by scaling the regions of a map (e.g.,

countries in Europe) such that their areas are proportional to the data associated with them (e.g., GDP). Thus
the cartogram computation problem can be thought of as a map deformation problem where the input is a
planar polygonal map M and an assignment of some positive weight for each region in M . The goal is
to create a deformed map M ′ where the area of each region in M realizes the weight assigned to it (no
cartographic error) while the overall map remains recognizable (e.g., the topology, the relative positions
and the shapes of the regions remain the same). Since achieving no cartographic error and preserving map
readability are impossible to achieve simultaneously, all the cartogram generation algorithms tolerate some
error in one or both of these criteria. Here we first define some quantitative measures that can be used to
evaluate how faithfully a cartogram represents the weights, as well as several measures for evaluating the
readability of the final representation. We then study several early algorithms for computing cartograms and
two new ones and compare them in terms of our quantitative measures.
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(a) (b)
Figure 1: (a) Geographically accurate map, (b) rectilinear value-by-area cartogram.

1 Introduction

A cartogram, or value-by-area diagram, is a thematic visualization of a planar map, where geographic regions
such as countries or provinces are modified in order to realize a given set of values by their areas. This kind of
visualization have been used for many years to represent census data like population, gross-domestic-product
and to visualize election returns, disease incidence and other geo-referenced statistical data. Red-and-blue pop-
ulation cartograms of the United States are often used to illustrate the results in presidential elections starting
in the year 2000. For example, in the 2004 elections, geographically accurate maps seemed to show an over-
whelming victory for George W. Bush; see Fig. 1(a). On the other hand, the population cartograms effectively
communicate the near even split, by deflating the rural and suburban central states; see Fig. 1(b). Incorporating
vastly different scaling factors for different countries forces topological or geometrical distortions in the input
map, resulting in poor readability, or even recognizability for the map. This is also undesirable since for effec-
tive visualization of the given data, the cartogram should enable the viewer to quickly relate the displayed data
to the original map. This recognizability depends on preserving basic properties such as shapes and relative
positions or orientations for the regions as well as the basic topology of the map. All of these goals are diffi-
cult to achieve simultaneously, and in general, it is impossible to retain even the original maps topology, while
realizing the given geo-referential data perfectly [16].

For example, the rectilinear cartogram in Fig. 1(b) shows the correct distribution of red and blue squares,
each representing one vote in the electoral college, but many characteristic shapes and adjacencies are compro-
mised. Idaho and Washington are no longer neighbors, and the mirror-image shapes of New Hampshire and
Vermont are lost. It also perturbs the relative north-south and east-west placement for some pairs of states.
Thus none of the existing algorithms and techniques to generate cartograms for a map is “perfect”; each of
them produces a “good” cartogram with respect to some criteria while this might be “bad” with respect to oth-
ers. Moreover, we lack a set of performance measures which would capture the quality of a cartogram. We
propose several such measures and evaluate several early and two new algorithms for cartogram generation.

1.1 Related Work

Realizing additional information on top of a geographic map dates back to the 19’th century and the highly
schematized cartograms of Raisz [19], where each country is represented by an axis-aligned rectangle. Several
more recent methods for computing rectangular cartogram have also been proposed [5, 12, 24]. The main
advantage of such rectangular representations is that it is usually easy to realize all desired weights by area and it
is usually easy to compare the resulting areas, unless the rectangles have poor aspect ratio. One disadvantage is
that with rectangular cartograms, it is not always possible to maintain the topology of the map, i.e., not all given
pairwise adjacencies between countries can be maintained. Thus in all the existing methods for rectangular
cartogram, some adjacencies are compromised, or a few countries are allowed to have non-rectangular shapes,
or some errors in the representation of weights by area are allowed [24]. Relaxing the requirement of rectangular
shape, some algorithms use more general rectilinear shapes (still of constant polygonal complexity) to produced
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error-free cartograms. The upper bound on the complexity of the polygonal shapes used in these cartograms
has been reduced from the initial 40 [6] to 34 [15], 12 [4], 10 [1] and finally to 8 [2], which also matches the
lower bound [26].

All the cartogram algorithms mentioned so far have one feature in common: they extract the topology of
the map, in the form of the dual graph, and then by processing these dual graphs they generate a schematized
layout for the map. As a result, most cartograms produced by these methods result in maps where it is difficult
to recognize which country is which by their shape, or even by their location in the map.

A different class of algorithms for generating cartograms gradually deforms the input map in order to
realize different weights for the regions. One popular such method is the diffusion-based algorithm of Gastner
and Newman [11], where the original input map is projected onto a distorted grid, computed in such a way that
the areas of the countries match the pre-defined values. Dougenik et al. introduce a method based on force
fields where the map is divided into cells and every cell has a force related to its data value which affects the
other cells [8]. Dorling uses a cellular automaton approach, where regions exchange cells until an equilibrium
has been achieved, i.e., each region has attained the desired amount of cells [7]. It is worth noting that this
technique can result in significant distortions, thereby reducing readability and recognizability, which is usually
one of the main advantages of this type of cartograms. Welzl et al. generate cartograms using a sequence of
homeomorphic deformations and measure the quality with local distance distortion metrics [25]. Kocmoud and
House [13] describe a technique that combines the cell-based approach of Dorling [7] with the homeomorphic
deformations of Welzl et al. [25]. As cartogram generation is a popular research topic, there are many more
algorithms that we are are aware of [16, 18, 23], and probably many more that we are not aware of; a great
survey by Tobler provides more information [22].

Of particular interest in this paper is a recent method by Kämper et al. [14] which deforms an existing map
so that countries are drawn as polygons with circular arcs instead of straight-line segments. Here the straight-
line segments of the map are replaced by circular arcs so that the countries with less area in the original map
than required inflate (and become cloud-shaped), while those with more area than required deflate (and become
snowflake shaped). Thus in such a cartogram, it is easy to determine whether a country has grown or shrunk,
just by its overall shape.

1.2 Our Contribution

In this paper we compare the performance of several existing algorithms for generating cartograms. For
this purpose we first fix a number of quantitative measures for evaluating cartograms that captures both the
degree of faithfulness in the representation of the geo-referential data and the extent to which the original map
properties are maintained. We also designed and implemented two new algorithms, based on earlier methods,
both of which offer significant improvements. In summary

• We study various quantitative measures that have been used in the literature for analysis of cartogram
algorithms. We then compare how well these metrics capture different properties of cartograms. Based
on this analysis, we propose a set of metrics that we use in the comparison of cartogram algorithms in
this paper, and which might be useful in future evaluations.

• We develop two new heuristics for the circular-arc cartogram algorithm by Kämper et al. and com-
pare this new algorithm with the one described in [14]. Our analysis shows significant improvement in
performance.

• We also designed another new heuristic for obtaining a rectangular cartogram starting from the optimal
rectilinear representation in [2]. This new algorithm also exhibits significant performance improvements.

• We analyze the performance of several existing algorithms as well as our new algorithms, using the
proposed cartogram metrics. Although there is no clear winner in all the metrics, different algorithms
exhibit better performance with respect to different metrics.
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2 Performance Metrics for a Cartogram

The challenge in creating a good cartogram is to shrink or grow the regions in a map so that they reflect the set of
pre-specified area values, while still retaining their characteristic shapes, relative positions, and adjacencies.In
general, there are trade-offs between faithful realization of the weights and faithful representation of the initial
map. We have considered several natural quantitative measures that captures these different quality criteria for
a map. Often there are a number of metrics that have been used to measure the same aesthetic in different
previous papers. In this section we analyze these metrics to compare how faithfully they represent the intuitive
notions for the criteria they measure. Based on this analysis we select standard metrics that we use in this paper,
and that will hopefully be used in future evaluations.

For the following discussion we assume that we are given an input mapM that is partitioned into n countries
V = {v1, v2, . . . , vn} with polygonal boundaries. Assume that for each country v, a(v) denotes the area of v
in M . For each country v we are also given a weight w(v) which represents the desired area for the country.
Assume that both the functions a and w have been normalized to the same total area, i.e.,

∑
v∈V a(v) =∑

v∈V w(v). An algorithm then constructs a cartogram M ′, that is a deformation of M where each country v is
realized by a polygonal area of o(v). We now define some quantitative metrics that measure the quality of M ′.

2.1 Parameters for Faithful Realization of Weights

The most common measure for weight realization is the cartographic error. Even though intuitively clear,
this has been defined in different ways, which often make sense for the specific algorithm under consideration.

Cartographic Error: The cartographic error for each country v is defined as the value of |o(v) − w(v)|
where o(v) and w(v) are the obtained and required areas for the country v [17]. These error measures for the
countries are then combined to obtain an estimate of the error for the whole cartogram. In some past analysis
this error has been normalized by dividing the result for v by w(v) [5, 12]. However if we normalize the error
in this way, then the cartographic error penalizes a country that needs to grow and a country that needs to shrink
in non-symmetric ways. In particular for a country v for which w(v) ≥ o(v) the error lies in the range [0, 1],
while in case w(v) ≤ o(v), the error theoretically can range inside [0,∞). Thus when the error for different
countries are combined by taking an average or in some other way, the resulting error depends on the number
of countries that need to grow or shrink, rather than the actual amount by which they need to grow or shrink. It
is preferable to normalize the error for each country v by some function f(o(v), w(v)) that is symmetric with
respect to a(v) and w(v) such as |o(v)−w(v)|

o(v)+w(v) as in [16]. We considered adopting this function, but chose to
normalized the error by the maximum of o(v) and w(v). Thus for each country v we compute the normalized
cartographic error as |(o(v)−w(v))|

max{o(v),w(v)} . The reason we normalize the error in such a way is that our experiments
indicate a more uniform and distribution of the normalized error.

In order to combine the cartographic error for each country to obtain an overall value for the map, previous
papers have generally taken either the maximum, the average, or the root-mean-square (RMS) value of the
errors over all the countries. Thus we consider three different measurements of cartographic errors for the
cartograms: (i) maximum cartographic error, εm, (ii) average cartographic error, ε and (iii) RMS cartographic
error,

√
ε2. Our experiment show that these measures are positively correlated with each other; in particular

from a sample of 200 cartograms that we computed on different maps and data by different algorithms, we find
that the correlation coefficient between εm, ε and between

√
ε2, ε are 0.83 and 0.97, respectively. Hence in our

analysis, we use only one of these measurements: ε.

Success Rate: Kämper et al. [14] use another way to evaluate the realization of weights, called the success
rate. This measurement takes the obtained and required areas into account, but also uses the original area of the
countries in the given geographic map. The goal is to evaluate the achieved area change, relative to the required
area change. In particular, the success rate for a country v is computed by | o(v)−a(v)w(v)−a(v) |, where a(v) is the actual
area of v in the input map. This metric is natural for cartograms that are generated by gradually deforming the
input map to realize the weights. However, for the algorithms that do not deform the map, but rather use the
topology or the dual graph of the map to generate a new layout, the actual area of a country in the original map
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100×1 and 1×100: Ψ = 1, ΨM = 0.752, δ = 0.01 1×100 and square: Ψ = 0.875, ΨM = 0.824, δ = 0.1

1×10 and state: Ψ = 0.824, ΨM = 0.78, δ = 0.262 10×1 and state: Ψ = 0.824, ΨM = 0.822, δ = 0.508

Figure 2: Of the three shape comparison metrics, δ matches best with the underlying notion of map distortion.

does not make sense in comparing the cartogram performance.

2.2 Parameters for Faithful Representation of a Map

In order for a cartogram to effectively visualize some given data, such as population or GDP, it is important
that the cartogram is readable, in that one can find and identify every country, and recognizable, in that one
can see the same structure and topology as in the input map. We use the following quantitative metrics for
evaluating the readability and recognizability for a cartogram.

Topology/Adjacency Error: The topology error τ is an estimation of how the adjacency relationships be-
tween pairs of neighboring countries have been affected in the cartogram, compared to the original map.
Similar to [12] we measure this by the fraction of the adjacencies that the cartogram fails to preserve; i.e.,
τ = 1 − |Ec∩Em||Ec∪Em| , where Ec and Em are respectively the adjacencies between countries in the cartogram and
the map.

Relative Position/Orientation: We define a metric, called the angular orientation error, θ, to estimate how
distorted a cartogram is from its input map in terms of relative position of the pairs of countries. We compute
θ by computing how much, on average, the slope of the line between the centroids of pairs of countries has
changed. For applications where only orthogonal relative position (north-south, east-west) is important, some-
times this metric θ can be approximated by calculating the fraction of pairs of countries for which the relative
north-south and east-west orientations have changed. We call this metric orthogonal orientation error, ρ. In
this paper we use the metric θ to estimate the distortion in orientation.

Shape Distortions for the Countries: We need to measure how the shape a country in the generated car-
togram compares with its original shape in the input map. The shape of two polygons can be compared in
several ways. We want to use a metric that is translation-invariant, scale-invariant, but not rotation-invariant.
Arkin et al. [3] compute the deviation between two polygons through an approximation of the curvature of
each polygon by normalizing the polygons by perimeter and then measuring a turning function, which captures
turning angle and edge length. We call this metric the turning-angle distortion, Ψ. This metric is translation-
invariant, scale-invariant, and rotation-invariant. Thus two rectangles which are the same, up to rotation, are
considered identical with this metric; see Fig. 2. However, the aspect ratio for a country is an important criterion
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in recognizing the shape of a country in a map. On the other extreme, Heilmann et al. [12] considered a metric
that takes into account only the aspect ratios of the axis-aligned bounding boxes while comparing the shape of
two polygons. We believe that this is also not a faithful approximation of the polygonal shape.

We have taken into consideration three different metrics for comparing the shapes of two polygons. The first
metric is the turning function proposed by Arkin et al. [3] to compare the similarity of polygons. The second
metric is a modification of the metric of Arkin et al. [3], where we have removed its rotation-invariance. We
call this metric the modified turning-angle distortion, ΨM . The other metric is based on the idea of Hamming
distance between two polygons [21]. We superimpose two polygons one top of each other and we take the
percentage of area for the two polygons which are not common to both. In order to make the comparison scale-
invariant, we normalize the area of polygons to unit area. Then to make it translation-invariant we consider all
possible values of translation and use the one that gives the smallest error. We call this metric the Hamming
distance, δ.

We compared the three metrics for various simple examples as well as some real world examples. The
result shows that among the three metrics the Hamming distance, δ captures the similarity better than the other
two metrics; see Fig. 2. We therefore use the metric δ in comparing the shapes of the countries in a cartogram
with their original shapes.

Complexity: It is desirable for aesthetic, practical and cognitive reason to limit the polygonal complexity of
the countries. We compare our implemented algorithms in terms of the worst-case polygonal complexity for
the countries in the generated cartograms.

Metric Name Notation Definition

Average Cartographic Error ε 1
|V |

∑
v∈V

|o(v)− w(v)|
max{o(v), w(v)}

Topology Error τ 1− |Ec∩Em|
|Ec∪Em|

Angular Orientation Error θ
Hamming distance δ

Table 1: Definition of Performance Metrics

3 Cartogram Algorithms Implemented

In this section we give a brief description of several known cartogram algorithms (rectangular, rectilinear,
diffusion-based) that we have implemented, as well as describe the new heuristics that we have developed.

Diffusion Method (DIF): Gastner and Newman use a diffusion method for creating cartograms [11], where
the original input map is projected onto a distorted grid, computed in such a way that the areas of the countries
match exactly the pre-defined values. This method uses a physical model in which the desired areas are achieved
via an iterative diffusion process where flows move from one country to another until a balanced distribution is
reached. After each iteration the new coordinates for points on the map are computed by interpolation of the
distorted grid points. Note that this method depends on the size of the chosen grid. We have used a 1024×1024
grid that generally is sufficient for the geographic maps under consideration.

Rectangular Cartogram Algorithms (RECT): Not all planar maps can be drawn so that all the countries are
rectangles. But if we allow some of the adjacencies to be absent, it is possible that one may find a rectangular
cartogram. Such cartograms have been studied by van Kreveld and Speckmann [24], where they used three
different heuristics to find a rectangular cartogram for a given map. Here we have implemented their “segment-
moving heuristic” to generate rectangular cartograms. This heuristic gives two different cartogram algorithms:
in one the adjacencies might be disturbed in order to realize the weights perfectly; while in the second one
the adjacencies are maintained perfectly while the cartograms would contain some errors. We call these two
variants RECT and RECT-R, respectively.
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Evolution Algorithm for Rectangular Cartograms (RECT-E): Recently Buchin et al. have described an
evolution algorithm to generate the “fittest” rectangular cartogram for a planar map. At each step they consider
a number of different rectangular layouts for the map and keep only the ones that give the least error or the best
“score” for a given scoring function. Then they generate a number of new rectangular layouts by combining the
“fittest” old ones. The final layout is obtained after running this iterative process for several generations. We
implemented this algorithm for the variant where we are required to maintain the adjacencies. Experimental
evidences shows significant improvement for this algorithm over the naive segment moving heuristic of RECT-
R (Section 4). We did not implement similar evolution algorithm for the other variant since the simple segment
moving heuristic (RECT) gives almost zero cartographic error.

T-Shape Cartogram Algorithm (COMB-T): Using a Schnyder realizer [20] and the area-universality of one-
sided rectangular duals [10], one can compute rectilinear cartograms with optimal complexity [2]. Each country
in the resulting cartogram is drawn by a T-shape with at most 8 corners per polygon and the desired areas are
obtained via an iterative process that mimics the natural phenomenon of air-pressure. This method of producing
cartograms guarantees convergence to an error-free cartogram and converges very quickly in practice.

Degenerate T-Shape Cartogram Algorithm (COMB-R): The T-shape cartogram algorithm [10] also pro-
vides an option to generate rectangular cartograms. Since every T-shape is made of four rectangles and the
layout is area-universal, one can conveniently distribute the weights arbitrarily among the four rectangles. A
rectangular cartogram can be generated by randomly choosing one of these rectangle to realize all the weights
while the other three have zero weights. We have modified this approach to obtain two new heuristics. In the
first variant, called COMB-R, we run the algorithm for about 20-30 iterations, each time randomly choosing
one of the four rectangles for each T-shape polygon to realize the entire weight and we return the one with min-
imum average cartographic error. In the second variant, called COMB-I, we again run the algorithm for 20-30
iterations, but at each iteration we compute the weight assignment of the rectangles as follows. We randomly
pick one rectangle from each T-shape to realize the entire weight (with 50% probability), or we take the weight
assignment from the previous iteration (with 25% probability), or the weight assignment from the past iteration
that generated the cartogram with least cartographic error so far (with 25% probability) and modify the weight
assignment in the T-shapes for 10% of the countries that gave the worst cartographic error.

Our experimental results (Section 4) show that both our COMB-R and COMB-I heuristics outperform the
original algorithm [2]. However, the more complicated iterative variant does not provide significant improve-
ment over the random variant. We therefore use the COMB-R variant to produce rectanglar cartograms for
comparison with other algorithms.

Circular-Arc Cartogram Algorithm (CIRC): The method of Kämper et al. [14] deforms an existing map
where countries are drawn as polygons with circular arcs instead of straight-line segments so that the areas for
the countries closely match the predefined values. First a flow network is computed from the dual graph of the
map, where bidrectional edges are created between pairs of adjacent countries. The flow on such edge (a, b)
represents the area that the polygon for a transfers to the polygon for b. The capacity of this edge is assigned
as the maximum “safe” area that can be transfered from polygon for a to polygon for b, without creating any
crossing or overlapping polygons. Each country that needs to shrink (grow) is connected to a source (sink)
node and the capacity on these edges corresponds to how much these countries need to grow or shrink. The
output cartogram is the one that maximizes the flow in the network. Kämper et al. [14] defined strong and weak
variants of circular-arc cartograms. The strong variant is more appealing from an information visualization
point of view as if a country needs to grow (shrink) then none of its edges are bent inward (outward). This way
all enlarged countries are cloud-shaped and all shrunk countries are snowflake-shaped, making it easy to see
at a glance the type of change. The weak variant can achieve lower cartographic error. We have implemented
both variants and identified some shortcomings. We also designed, implemented and tested new heuristics for
both variants which address these shortcomings and result in significantly better performance.

The first shortcoming of the algorithm in [14] is that it does not allow the area of the sea to change. As
a result a country cannot grow into the sea unless there is some other country that can compensate for it by
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among countries

source
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Figure 3: Modified flow formulation to allow the area of the sea to change.

shrinking near the sea. We overcome this restriction by making a small modification to the flow network; see
Fig. 3. In addition to the edges in the flow network defined in [14], we add high capacity edges from the
source to the sea and from the sea to the sink. This allows the flow to satisfy the need for some country to grow
or shrink by changing the sea area (in other words the total land area). However we need to take care of an
artifact caused by the modification: we have created a high capacity path from the source to the sink that goes
only through the sea and no other country. We forbid this direct flow with a weighted flow, where the weight
assigned to an edge adjacent to at least one country is twice as much as the weight on the edges from source
to sea and from sea to sink. This also ensures that a flow between two countries takes precedence over a flow
between a country and the sea. Because of the flexible sea, we call this variant CIRC-F.

The second shortcoming of the algorithm is that if the boundary of a country consists of only edges of small
length, then it is impossible to achieve significant change in the area by replacing straight-line segments by
circular arcs. We propose to carefully delete intermediate degree-2 points on the boundary of a country so as to
make it possible to achieve significant change in the area, while the overall shape of the country remains almost
unchanged. We accomplish this with a modified version of the poly-line simplification algorithm of Douglas
and Peucker [9]. At each iteration i of our algorithm, we select the border between two countries for which the
difference between the signed cartographic error at the (i − 1)-th iteration is maximum. Let c1 and c2 be two
adjacent countries with cartographic errors of e1 and e2. The sign of e1 (resp. e2) is positive if c1 (resp. c2) has
more area in the cartogram at the (i− 1)-th iteration than desired. We select a pair (c1, c2) such that |e1− e2| is
maximized, and then simplify the border between them by removing half of the degree-2 points provided that
it improves the cartographic error. We call this variant of the heuristic CIRC-A.

In Section 4 we show that CIRC-A (which uses both the CIRC-F and CIRC-A optimizations) performs
significantly better than the original circular-arc cartogram algorithm [14] in terms of cartographic error. We
therefore use this variant of the heuristic to produce circular-arc cartograms for comparison with other algo-
rithms. For simplicity in the remaining parts of the paper, we use CIRC to denote this variant of the heuristic
and we use CIRC-S and CIRC-W to denote the strong and weak model of this heuristic.

Table 2 summarizes the high-level features of the cartograms generated by our different algorithms: adjacency-
preserving refers to the topology of the map,O(1)-complexity refers to the number of corners per country, zero-
error refers to the cartographic error, recognizability refers to angular orientation error and Hamming distance.
The last two columns are discussed in the next section.

Algorithm
Adjacency
Preserving

O(1)-
Complexity

Zero-Error Recognizability Effect of
Schematization

Exhibit
Area-Change

DIF Y N Y M Y N
CIRC-S Y N N H Y Y
CIRC-W Y N N H Y N
COMB-T Y Y Y L N N
COMB-R N Y N L N N

RECT N Y Y L N N
RECT-R Y Y N L N N
RECT-E Y Y N L N N

Table 2: High-level cartogram features; Yes (Y), No (N), or High (H), Medium (M), and Low (L).
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DIF: ε = 0.013, τ = 0, θ = 0.82, δ = 12.02 CIRC-S: ε = 0.103, τ = 0, θ = 0.7, δ = 10.32 CIRC-W: ε = 0.067, τ = 0, θ = 0.83, δ = 13.81

RECT-E: ε = 0.094, τ = 0, θ = 17.61, δ = 34.14 RECT-R: ε = 0.266, τ = 0, θ = 7.83, δ = 32.74 COMB-T: ε = 0.012, τ = 0, θ = 12.45, δ = 42.81

Table 3: Germany GDP cartograms by different algorithms along with the values for ε, τ , θ and δ.

4 Experiments and Results

We have used three different maps, USA, Italy and Germany, to compare all the cartogram algorithms. For
each of them we used several different schematizations of the map. For each of these maps we used two geo-
referenced datasets: GDP and population in 2010. More details about the maps, geo-referenced data. are in
Appendix A. All experiments were performed on on an Intel Core i5 1.8GHz machine with 8 GB RAM. We
run each algorithm for the weight functions of GDP and population on the maps of USA, Germany, Italy. After
each algorithm is run on each map and data, we compute the value of the 4 performance metrics ε, τ , θ, δ.
Table 3 shows GDP cartograms of Germany generated by six algorithms. The white regions have as much area
as required; the redder a region is the more it needs to grow, the greener a region is, the more it needs to shrink.
Appendix B contains more examples.

4.1 Circular-Arc Cartograms (CIRC): Old Algorithm vs New Heuristic

We compare the cartographic errors for the original weak and strong models and the four new variants;
see Fig. 4. The new heuristic CIRC-A significantly reduces the errors in both the strong and weak model In

Figure 4: Cartographic Error for different variants of CIRC.
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Figure 5: Average normalized cartographic error (ε) for (a) different COMB variants and (b) for all algorithms.

particular, the combination of flexible sea and the ability to simplify borders leads to 50-100% improvement in
cartographic error. We use this variant in our subsequent comparisons.

4.2 Degenerate T-shape Cartogram Algorithms : COMB-S vs COMB-R vs COMB-I

We implemented three different variants for the Degenerate T-shape Cartogram algorithm. Here we com-
pare these three variants with respect to the cartographic error they produce; see Fig. 5(a). Clearly both the
iterative variants outperforms the naive approach significantly. While the error generated by the two iterative
variant is comparable, we will take the COMB-R heuristics in the subsequent analysis due to their relative
simplicity.

4.3 Performance Comparison for Different Algorithms
Here we compare all the cartogram algorithms that we implemented with respect to all the four performance

metrics. Figures 5(b), 6(a) and 6(b) illustrate the values of the three metrics ε, θ and δ, for the cartograms
generated by all algorithms. Before we analyze these results we note that the algorithms under consideration
can be partitioned into two types. The first type includes the diffusion method and the circular-arc cartogram
algorithm, both of which modify the input map by either moving vertices and deforming edges. The second type
contains all remaining algorithms which use the map topology (i.e., the planar dual) and construct cartograms
using different combinatorial properties.

Figure 6: (a) Angular orientation error (θ); (b) Hamming distance (δ).

Since Type-1 algorithms works on the map itself rather than the dual, they produce cartograms with better
readability and recongnizability than Type-2 algorithms; see Fig. 6. However, Type-2 algorithms have the ad-
vantage of having a constant polygonal complexity for the countries, while for Type-1 algorithms the polygonal
complexity is the same as the input map; see Table 2.
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From the Type-1 algorithms, the circular-arc cartograms performs slightly better than the diffusion method
in terms of readability metrics (θ, δ); see Fig. 6. This implies that circular-arc cartograms preserve the shapes
or the polygons and their relative positions better than any other algorithm. On the other hand the diffusion
method generates cartograms with lower cartographic error. While the error for the circular-arc cartograms
are comparable with RECT-R and COMB-R, it is much worse than COMB-T and RECT and slightly worse
than RECT-E. A unique advantage of strong circular-arc cartograms is that one can estimate whether a country
has grown or shrunk just by looking at the country shapes (cloud/snowflake shapes for expanding/shrinking
countries); see Table 2.

Among the Type-2 algorithms, the COMB-T algorithm and the RECT algorithm achieve almost zero

Figure 7: Topological errors (τ ).

cartographic error, but the RECTalgorithm might not pre-
serve adjacencies; see Fig. 7. RECT, RECT-R, and RECT-E
often require that one more more countries be deleted, in
order to make the map suitable for rectangular representa-
tion. In particular, these three algorithms delete one state
from Italy, two states from Germany and four states from
the USA to make the graph 4-connected, which guaran-
tees the existence of such a rectangular drawing. RECT-
R, RECT-E, and COMB-R generate rectangular cartograms
with much higher cartographic error; see Fig. 5. RECT-R
and RECT-E preserve adjacencies in the map while COMB-
R does not; see Fig. 7. Unlike RECT-R and RECT-E,
COMB-R does not need to delete any state to compute a
rectangular layout. A disadvantage of type-2 algorithms
is that they do not preserve country shapes and positions
compared with their type-1 counterparts; see Fig. 6.

4.4 Level of Schematization

The level of schematization of the map affects the performance of Type-1 algorithms: CIRC and DIF. For
circular-arc cartograms there is a general trend of reduction of error as the level of schematization increases.
This is because, the greater the schematization, the farther we can bend an edge inward or outward. Schema-
tizing too much can be detrimental as the readability and recognizability decrease. For the DIF cartograms
there is a general trend of increase in error as the level of schematization increases. This is due to the effect of
interpolation used to compute point positions. Type-2 algorithms are not affected by schematization since they
only use the topology of the map.

4.5 Time-Analysis

Fig. 8 (Appendix C) shows the time required for different algorithms. The DIF algorithm require 30-50
seconds. The runtime for all the iterative algorithms (CIRC-A, COMB-I, COMB-R, RECT-E) depends on the
preset number of iterations. The remaining algorithms are fast at 10-20 seconds. The COMB-T and the RECT
algorithms guarantee convergence to zero cartographic error; we let them run for only 10 seconds, which
suffices to obtain near-zero cartographic error.

5 Conclusion and Future Work

We compared a number of cartogram algorithms of different types in terms of various metrics to quantitatively
evaluate how faithfully the generated cartograms represent the underlying map and the given data. We plan to
link data sources (e.g., US Census) with our implementations in order to generate many different cartograms
online. We also plan to perform a user study to test whether our metrics (cartographic error, topology, ori-
entation, distortion) accurately capture the underlying notions of faithful representation. Several cartogram
generation algorithms are time-consuming, making them less suitable for real-time interaction; running time
improvements would be valuable.
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Appendix A

Here we give some important statistics about the three maps (USA, Germany and Italy) and the geo-referential
data (GDP and Population for each map) that we have used in our experiments.

Datasets

We have used three different maps, USA, Italy and Germany, to compare all the cartogram algorithms.
For each of them we used three or four different schematizations of the map. In particular we use four levels
of schematization for Germany and three levels of schematization for USA and Italy. We collected the initial
source files for these maps from http://download.geofabrik.de. We then ran a modified version of
the algorithm in [9] to compute different levels of schematization for each map. For each of these maps we used
two geo-referenced data: GDP and population in 2010. We collected the datasets from http://europa.eu
and http://quickfacts.census.gov/qfd/index.html. All the maps and data are also available
in http://www.cs.arizona.edu/˜mjalam/optocart/data.html. The properties of these maps
and the data are illustrated in Tables 4 and 5.

Country Level of
Schematization

Number of
States

Number of
Dual Edges

Average Polygon
Complexity

USA

1

46 117

52.4
2 27.2
3 15.1

Germany

1

12 28

159.5
2 66.3
3 29.1
4 14.4

Italy

1

15 30

32
2 16
3 9.3

Table 4: Properties of the input maps.

Country Data Maximum Value Minimum Value Average Value

USA GDP 1936400 26400 284846.71
Population 38041430 576412 5926901.69

Germany GDP 37509 21404 27822.92
Population 17837000 1639000 6232500

Italy GDP 321627 6067 82289.53
Population 9642000 320000 3377196.6

Table 5: Properties of the input data.
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Appendix B

Here we show cartograms for USA, Germany and Italy generated by different algorithms.

USA GDP Cartograms

CIRC-S: ε = 0.407, τ = 0, θ = 1.86, δ = 9.72 CIRC-W: ε = 0.395, τ = 0, θ = 1.91, δ = 10.86

DIF: ε = 0.092, τ = 0, θ = 7.91, δ = 25.81 COMB-T: ε = 0.001, τ = 0, θ = 33.88, δ = 53.14

COMB-R: ε = 0.438, τ = 6.087, θ = 30.57, δ = 53.81 RECT-R: ε = 0.345, τ = 0, θ = 13.08, δ = 37.48

RECT: ε = 0.0003, τ = 2.82, θ = 16.56, δ = 40.67 RECT-E: ε = 0.191, τ = 0, θ = 27.73, δ = 33.88
Table 6: USA GDP cartograms by different algorithms along with the values for ε, τ , θ and δ.
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USA Population Cartograms

CIRC-S: ε = 0.405, τ = 0, θ = 1.22, δ = 8.12 CIRC-W: ε = 0.386, τ = 0, θ = 1.3, δ = 9.96

DIF: ε = 0.081, τ = 0, θ = 6.88, δ = 25.57 COMB-T: ε = 0.001, τ = 0, θ = 33.57, δ = 52.16

COMB-R: ε = 0.427, τ = 6.38, θ = 30.51, δ = 51.65 RECT-R: ε = 0.277, τ = 0, θ = 14.23, δ = 37.76

RECT: ε = 0.0002, τ = 2.56, θ = 16.17, δ = 40 RECT-E: ε = 0.163, τ = 0, θ = 29.75, δ = 48.79
Table 7: USA Population cartograms by different algorithms along with the values for ε, τ , θ and δ.
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Germany GDP Cartograms

CIRC-S: ε = 0.103, τ = 0, θ = 0.7, δ = 10.32 CIRC-W: ε = 0.067, τ = 0, θ = 0.83, δ = 13.81

DIF: ε = 0.013, τ = 0, θ = 0.82, δ = 12.02 COMB-T: ε = 0.012, τ = 0, θ = 12.45, δ = 42.81

COMB-R: ε = 0.189, τ = 19.7, θ = 15.42, δ = 42.88 RECT-R: ε = 0.266, τ = 0, θ = 7.83, δ = 32.74

RECT: ε = 0, τ = 7.27, θ = 11.79, δ = 38.25 RECT-E: ε = 0.094, τ = 0, θ = 17.61, δ = 34.14
Table 8: Germany GDP cartograms by different algorithms along with the values for ε, τ , θ and δ.
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Germany Population Cartograms

CIRC-S: ε = 0.238, τ = 0, θ = 0.43, δ = 7.45 CIRC-W: ε = 0.209, τ = 0, θ = 0.57, δ = 10.25

DIF: ε = 0.02, τ = 0, θ = 1.66, δ = 15.35 COMB-T: ε = 0.01, τ = 0, θ = 9.49, δ = 42.7

COMB-R: ε = 0.323, τ = 30.3, θ = 17.19, δ = 42.34 RECT-R: ε = 0.235, τ = 0, θ = 16.67, δ = 37.71

RECT: ε = 0, τ = 7.27, θ = 18.97, δ = 41.47 RECT-E: ε = 0.052, τ = 0, θ = 10.79, δ = 30.21
Table 9: Germany Population cartograms by different algorithms along with the values for ε, τ , θ and δ.
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Italy GDP Cartograms

CIRC-S: ε = 0.184, τ = 0, θ = 0.34, δ = 9.7 CIRC-W: ε = 0.162, τ = 0, θ = 0.48, δ = 13.78

DIF: ε = 0.085, τ = 0, θ = 1.19, δ = 20.5 COMB-T: ε = 0.001, τ = 0, θ = 49.29, δ = 50.18

COMB-R: ε = 0.315, τ = 13.33, θ = 38.81, δ = 56.71 RECT-R: ε = 0.33, τ = 0, θ = 38.26, δ = 37.97

RECT: ε = 0.0003, τ = 3.3, θ = 35.3, δ = 37.48 RECT-E: ε = 0.126, τ = 0, θ = 32.3, δ = 53.88
Table 10: Italy GDP cartograms by different algorithms along with the values for ε, τ , θ and δ.
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Italy Population Cartograms

CIRC-S: ε = 0.085, τ = 0, θ = 0.54, δ = 11.18 CIRC-W: ε = 0.054, τ = 0, θ = 0.6, δ = 13.47

DIF: ε = 0.056, τ = 0, θ = 0.85, δ = 14.95 COMB-T: ε = 0.001, τ = 0, θ = 47.77, δ = 49.11

COMB-R: ε = 0.33, τ = 13.33, θ = 46.25, δ = 43.09 RECT-R: ε = 0.241, τ = 0, θ = 40.09, δ = 37.96

RECT: ε = 0.0003, τ = 3.3, θ = 35.23, δ = 37.52 RECT-E: ε = 0.148, τ = 0, θ = 37.29, δ = 51.19
Table 11: Italy Population cartograms by different algorithms along with the values for ε, τ , θ and δ.
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Appendix C

Here we report the running time for different cartogram generation algorithms, using GDP and population on
the maps of USA, Germany and Italy.

Figure 8: Running time for different algorithms in seconds. For the iterative algorithms, COMB-R, RECT-E, CIRC-S and
CIRC-W, the running time depends on the number of iteration. The three algorithms COMB-T , RECT and RECT-R were
let to run for 10 seconds. For DIF, CIRC-S and CIRC-W algorithms, running time increases as the level of schematization
decreases.
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